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ABSTRACT

This paper concerns the statistical analysis of output fro
discrete-event computer simulations. In particular, we dis
cuss problems involving terminating simulations, the ini
tialization of simulations, steady-state point and confidenc
interval estimation for various system parameters, and com
parison among competing system designs.

1 INTRODUCTION

Since the input processes driving a simulation are usua
random variables (e.g., interarrival times, service times, an
breakdown times), a prudent experimenter must also rega
the output from the simulation as random. Thus, runs o
the simulation only yieldestimatesof measures of system
performance (e.g., the mean customer waiting time). O
course, these estimators are themselves random variab
and are therefore subject to sampling error. This samplin
error must be taken into account in a rigorous way if w
are to make valid inferences or decisions concerning th
performance of the underlying system.

The fundamental problem is that simulations almos
never produce raw output that is independent and identica
distributed (i.i.d.) normal data. For example, consecutiv
customer waiting times from a complicated queueing syste

• Are not independent — typically, they are serially
correlated. If one customer at the post office wait
in line a long time, then the next customer is also
likely to wait a long time.

• Are not identically distributed. Customers showing
up early in the morning might have a much shorte
wait than those who show up just before closing
time.

• Are not normally distributed — they are usually
skewed to the right (and are certainly never les
than zero).
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These facts of life make it difficult to apply “classical”
statistical techniques to the analysis of simulation outpu
And so our purpose in this survey is to give practical method
to perform statistical analysis of output from discrete-even
computer simulations.

In order to facilitate the presentation, we identify two
types of simulations with respect to output analysis.

1. Terminating (or transient) simulations. Here, the
nature of the problem explicitly defines the length
of the simulation run. For instance, we might be
interested in simulating a bank that closes at
specific time each day.

2. Nonterminating (steady-state) simulations. Here,
the long-run behavior of the system is studied
Presumedly this “steady-state” behavior is inde
pendent of the simulation’s initial conditions. An
example is that of a continuously running produc
tion line for which the experimenter is interested
in some long-run performance measure.

Techniques to analyze output from terminating simulation
are primarily based on the method of independent repl
cations, discussed in §2. Additional problems arise fo
steady-state simulations. One must now worry about th
problem of starting the simulation — how should it be
initialized at time zero, and how long must it be run before
data representative of steady state can be collected? Su
initialization problems are considered in §3. Then §4 dea
with methods of point and confidence interval estimation fo
steady-state simulation performance parameters. §5 co
cerns the problem of comparing a number of competin
systems, i.e., which is the “best” system? §6 presents co
clusions and provides the interested reader with addition
references. Finally, we note that parts of this paper fo
low the discussions in Goldsman (1992) and Goldsman an
Tokol (1997).
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2 TERMINATING SIMULATIONS

Suppose we are conducting a terminating simulation, i.
we simulate some system of interest over a finite tim
horizon. For now, assume that we obtaindiscretesimulation
outputY1, Y2, . . . , Ym, where the number of observationsm
can be a constant or a random variable. For example,
experimenter can specify the numberm of customer waiting
timesY1, Y2, . . . , Ym to be taken from a queueing simulation
orm could denote the random number of customers observ
during a specified time period[0, T ]. Alternatively, we
might observecontinuoussimulation output{Y (t)|0 ≤ t ≤
T } over a specified interval[0, T ]; for instance, if we
are interested in estimating the time-averaged number
customers waiting in a queue during[0, T ], the quantity
Y (t) would be the number of customers in the queue
time t .

Suppose for simplicity that the goal of the experimen
is to estimate the expected value of the sample mean of
observations,

θ ≡ E[Ȳm],
where the sample mean in the discrete case is

Ȳm ≡ 1

m

m∑
i=1

Yi

(with a similar expression for the continuous case). F
example, we might be interested in estimating the expec
average waiting time of all customers at a shopping cen
during the period 10 a.m. to 2 p.m.

Although Ȳm is an unbiased estimator forθ , a proper
statistical analysis requires that we also provide an estim
of Var(Ȳm). Since theYi ’s are not necessarily i.i.d. random
variables, it is may be thatVar(Ȳm) 6= Var(Yi)/m for any
i, a case not covered in elementary statistics textbooks.
this reason, the familiar sample variance,S2 ≡∑m

i=1(Yi −
Ȳm)

2/(m−1), is likely to be highlybiasedas an estimator
of mVar(Ȳm); and therefore one shouldnot useS2/m to
estimateVar(Ȳm).

The way around the problem is via the method o
independent replications. This method estimatesVar(Ȳm)by
conductingb independent simulation runs (replications) o
the system under study, where each replication consists om

observations. It is easy to make the replications independ
— just reinitialize each replication with a different pseudo
random number seed.

Let us denote the sample mean from replicationi by

Zi ≡ 1

m

m∑
j=1

Yi,j ,
40
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where Yi,j is observationj from replication i, for i =
1,2, . . . , b and j = 1,2, . . . , m. If each run is started
under the same operating conditions (e.g., all queues emp
and idle), then the replication sample meansZ1, Z2, . . . , Zb
are i.i.d. random variables, and an obvious point estimato
for Var(Ȳm) = Var(Zi) is

V̂R ≡ 1

b − 1

b∑
i=1

(Zi − Z̄b)2,

where the grand mean is defined as

Z̄b ≡ 1

b

b∑
i=1

Zi.

Notice how closely the forms of̂VR and S2/m resemble
each other. But since the replicate sample means are i.i.
V̂R is usually much less biased forVar(Ȳm) than isS2/m.

In light of the above, we see thatV̂R/b is a reasonable
estimator forVar(Z̄b). If the number of observations per
replication, m, is large enough, a central limit theorem
tells us that the replicate sample means are approximate
i.i.d. normal. Then we have an approximate 100(1− α)%
two-sided confidence interval (CI) forθ ,

θ ∈ Z̄b ± tα/2,b−1

√
V̂R/b , (1)

wheretα/2,b−1 is the 1− α/2 quantile of thet-distribution
with b − 1 degrees of freedom.

EXAMPLE Suppose we want to estimate the expecte
average waiting time for the first 5000 customers in
certain queueing system. We will make five independen
replications of the system, with each run initialized empt
and idle and consisting of 5000 waiting times. The
resulting replicate means are:

i 1 2 3 4 5
Zi 3.2 4.3 5.1 4.2 4.6

Then Z̄5 = 4.28 andV̂R = 0.487. For levelα = 0.05, we
have t0.025,4 = 2.78, and (1) gives[3.41,5.15] as a 95%
CI for the expected average waiting time for the first 500
customers.

Independent replications can be used to calculate va
ance estimates for statistics other than sample means; a
then the method can be used to get CI’s for quantities oth
than E[Ȳm], e.g., quantiles. See any of the standard tex
cited in §6 for additional uses of independent replications
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3 INITIALIZATION PROBLEMS

Before a simulation can be run, one must provide initia
values for all of the simulation’s state variables. Sinc
the experimenter may not know what initial values ar
appropriate for the state variables, these values might
chosen somewhat arbitrarily. For instance, we might decid
that it is “most convenient” to initialize a queue as empty
and idle. Such a choice of initial conditions can have
significant but unrecognized impact on the simulation run
outcome. Thus, theinitialization biasproblem can lead to
errors, particularly in steady-state output analysis.

We give several examples of problems concerning sim
ulation initialization.

• Visual detection of initialization effects is some-
times difficult — especially in the case of stochas
tic processes having high intrinsic variance suc
as queueing systems.

• How should the simulation be initialized? Suppose
that a machine shop closes at a certain time ea
day, even if there are jobs waiting to be served
One must therefore be careful to start each da
with a demand that depends on the number of job
remaining from the previous day.

• Initialization bias can lead to point estimators for
steady-state parameters having high mean squar
error, as well as CI’s having poor coverage.

Since initialization bias raises important concerns, on
must ask how to detect and deal with it? We first lis
methods to detect the presence of bias.

Attempt to detect the bias visuallyby scanning a real-
ization of the simulated process. This might not be an ea
task, since visual analysis can miss bias that happens to
present. Further, in a simulation study with a large numbe
of runs, a visual scan can be very tedious. In order to ma
the visual analysis a bit more efficient, one might transform
the data (e.g., by taking logs or square roots), smooth it (s
Welch 1981, 1983), average it across several independe
replications, or construct CUSUM plots (Schruben 1982)

Conduct statistical tests for initialization bias.Kelton
and Law (1983) give an intuitively appealing sequentia
procedure to detect bias. Goldsman, Schruben, and Sw
(1994), Schruben (1982), and Schruben, Singh, and Tiern
(1983) present tests that check to see whether the init
portion of the simulation output contains more variation
than latter portions.

If initialization bias is detected, one may want to do
something about it. Two simple methods for dealing with
bias have been suggested.

Truncate the outputby allowing the simulation to “warm
up” before data are retained for analysis. The experiment
hopes that the remaining data are representative of t
41
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steady-state system. Output truncation is probably the mo
popular method for dealing with initialization bias; and all
of the major simulation languages have built-in truncatio
functions. But how can one find a good truncation point? I
the output is truncated “too early,” significant bias might stil
exist in the remaining data. If it is truncated “too late,” then
good observations might be wasted. Unfortunately, Wilso
and Pritsker (1978ab) find that simple rules to determin
truncation points do not seem to perform well in general. A
common practice is to average observations across seve
replications, and then visually choose a truncation poin
based on the averaged run; see Welch (1983) for a ni
visual/graphical approach.

Make a very long runto overwhelm the effects of ini-
tialization bias. This method of bias control is conceptuall
simple to carry out and may yield point estimators havin
lower mean squared errors than the analogous estimat
from truncated data (see, e.g., Fishman 1978). However
problem with this approach is that it can be wasteful with
observations; for some systems, an excessive run leng
might be required before the initialization effects are ren
dered negligible.

4 STEADY-STATE ANALYSIS

We henceforth assume that we have on hand stationa
(steady-state) simulation output,Y1, Y2, . . . , Yn. Suppose
our goal is to estimate some parameter of interest, possib
the mean customer waiting time or the expected profi
produced by a certain factory configuration. As in the cas
of terminating simulations, it is of the utmost importance to
accompany the value of any point estimator with a measu
of its variance.

A number of methodologies have been proposed i
the literature for conducting steady-state output analysi
We will examine the two most popular: batch means an
independent replications. (As discussed in §2, confiden
intervals forterminatingsimulations usually use independent
replications.)

4.1 Batch Means

The method of batch means is often used to estimateVar(Ȳn)
or calculate CI’s for the steady-state process meanµ. The
idea is to divide one long simulation run into a numbe
of contiguousbatches, and then appeal to a central limit
theorem to assume that the resulting batch sample means
approximately i.i.d. normal. In particular, suppose that w
partition Y1, Y2, . . . , Yn into b nonoverlapping, contiguous
batches, each consisting ofm observations (assume that
n = bm). Thus, theith batch consists of the random
variables

Y(i−1)m+1, Y(i−1)m+2, . . . , Yim,
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see
i = 1,2, . . . , b. The ith batch mean is the sample mean o
them observations from batchi,

Zi ≡ 1

m

m∑
j=1

Y(i−1)m+j ,

i = 1,2, . . . , b. Similar to independent replications (as
described in §2), we define the batch means estimator f
Var(Zi) as

V̂B ≡ 1

b − 1

b∑
i=1

(Zi − Z̄b)2,

where

Ȳn = Z̄b ≡ 1

b

b∑
i=1

Zi

is the grand sample mean. Ifm is large, then the batch
means are approximately i.i.d.normal, and (as in §2) we
obtain an approximate 100(1− α)% CI for µ,

µ ∈ Z̄b ± tα/2,b−1

√
V̂B/b.

This equation is very similar to (1). Of course, the differenc
here is that batch means divides one long run into a numb
of batches, whereas independent replications uses a num
of independent shorter runs.

To illustrate, we refer the reader to the example from §
with the understanding that theZi ’s must now be regarded
as batch means (instead of replicate means); then the sa
numbers carry through the example.

The technique of batch means is intuitively appealin
and easy to understand. But problems can come up if t
Yj ’s are not stationary (e.g., if significant initialization bias
is present), if the batch means are not normal, or if th
batch means are not independent. If any of these assum
tion violations exist, poor confidence interval coverage ma
result — unbeknownst to the analyst. To ameliorate th
initialization bias problem, the user can truncate some o
the data or make a long run as discussed in §3. In additio
the lack of independence or normality of the batch mean
can be countered by increasing the batch sizem. For more
information on batch means, the reader should see Chie
Goldsman, and Melamed (1997), Schmeiser (1982), or th
various textbooks cited herein.

4.2 Independent Replications

Of the difficulties encountered when using batch mean
one can argue that the possibility of correlation amon
the batch means is the most troublesome. This problem
explicitly avoided by the method of independent replications
42
r

er
er

me

e

e
p-

y
e
f
n,
s

n,
e

,

is
,

described in the context of terminating simulations in §2
The replicate means are independent by their constructio
Unfortunately, sinceeach of the b replications has to be
started properly, initialization bias presents more troubl
when using independent replications than when using batc
means. Further, as in the case of batch means, we can
guarantee the normality of the replicate means (althoug
this is not usually a serious problem). These problem
luckily disappear as the replicate sizem becomes large.
Nevertheless, for moderatem, Law and Kelton (1984) are
concerned enough about the possibility of initialization bia
in each of the replications to recommend the use of batc
means over independent replications.

4.3 Other Methods

There are several other methods for obtaining variance e
timators for the sample mean and CI’s for the steady-sta
process meanµ.

Spectral Estimation. The spectral method estimates
Var(Ȳn) (as well as the analogous CI’s forµ) in a manner
completely different from that of batch means. In particular
this approach operates in the so-calledfrequency domain,
whereas batch means uses thetime domain. Spectral es-
timation sometimes takes a little effort, but it works well
enough to suggest that the reader consult the relevant ref
ences, e.g., Heidelberger and Welch (1981, 1983). Meketo
and Schmeiser (1984) developed the method ofoverlapping
batch means, which links together the best aspects of the
batch means and spectral approaches.

Regeneration.Many simulations can be broken into
i.i.d. blocks or groups that probabilistically “start over”
at certain regenerationpoints. An elementary example
of this phenomenon is an M/M/1 queue’s waiting time
process, where the i.i.d. blocks are defined by groups o
customers whose endpoints have zero waiting times. Th
method of regeneration uses this i.i.d. structure and, und
certain conditions, produces excellent estimators forVar(Ȳn)
and CI’s for µ. The method effectively eliminates any
initialization problems. On the other hand, it may be difficult
to define natural regeneration points, and it is frequentl
the case thatextremelylong simulation runs are needed
to obtain a reasonable number of i.i.d. blocks. For mor
details, see the fundamental references Crane and Igleh
(1975) and Crane and Lemoine (1977).

Standardized Time Series.One often uses the central
limit theorem to standardize i.i.d. random variables into a
(asymptotically) normal random variable. Schruben (1983
generalizes this idea by using aprocesscentral limit the-
orem to standardize a stationary simulation process into
Brownian bridgeprocess. Properties of Brownian bridges
are then used to calculate a number of good estimato
for Var(Ȳn) and CI’s forµ. This method is easy to apply
and has some asymptotic advantages over batch means (
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Goldsman and Schruben 1984); however, long simulatio
may be needed before the necessary asymptotics kick
(Sargent, Kang, and Goldsman 1992).

5 COMPARISON OF SYSTEMS

One of the most important uses of simulation output analys
regards the comparison of competing systems or alternat
system configurations. For instance, we might want
evaluate two different “re-start” strategies that an airlin
can evoke following a major traffic disruption such as
snowstorm in the Northeast — which policy minimizes a
certain cost function associated with the re-start?

Simulation is uniquely equipped to help the exper
imenter conduct this type of comparison analysis. Th
current section discusses four techniques that are useful
the problem of selecting the best of a number of systems:
classical statistical CI’s, (ii) common random numbers, (iii
antithetic variates, (iv) and ranking, selection, and multip
comparisons procedures.

5.1 Classical Confidence Intervals

With our airline example in mind, we will useZi,j in this
section to denote the cost from thej th simulation replication
of strategyi, i = 1,2, j = 1,2, . . . , bi . We shall assume
that Zi,1, Z1,2, . . . , Z1,bi are i.i.d. normal with unknown
meanµi and unknown variance,i = 1,2.

How can we justify these assumptions? As in §2,

• We obtain independent data by controlling the ran
dom numbers between replications.

• We get identically distributed costs between replica
tions by performing the replications under identica
conditions.

• We end up with approximately normally distributed
data by adding up (or averaging) many sub-cos
to get overall costs for both strategies.

Our goal is to obtain a 100(1−α)% CI for the difference
µ1−µ2. To do so, we also assume for now that theZ1,j ’s are
independent of theZ2,j ’s and define the respective sample
means and variances as

Z̄i,bi ≡
1

bi

bi∑
j=1

Zi,j , i = 1,2,

and

S2
i ≡

1

bi − 1

bi∑
j=1

(Zi,j − Z̄i,bi )2, i = 1,2.
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An approximate 100(1− α)% CI is

µ1− µ2 ∈ Z̄1,b1 − Z̄2,b2 ± tα/2,ν
√
S2

1

b1
+ S

2
2

b2

where the (approximate) degrees of freedomν is given in
any standard statistics text.

Suppose, as in the airline example, that small cost
good. Then we can interpret the above CI as follows: If th
interval lies entirely to the left [right] of zero, then system
1 [2] is better; if the interval contains zero, then the two
systems must be regarded, in a statistical sense, as ab
the same.

An alternative classical strategy is to use a CI that
analogous to a paired-t test. Here we takeb replications
from bothstrategies and set the differenceDi ≡ Z1,j−Z2,j
for j = 1,2, . . . , b. Then calculate the sample mean an
variance of the differences:

D̄b ≡ 1

b

b∑
j=1

Dj and S2
D ≡

1

b − 1

b∑
j=1

(Dj − D̄b)2.

The resulting 100(1− α)% CI is

µ1− µ2 ∈ D̄b ± tα/2,b−1

√
S2
D/b.

These paired-t intervals are amenable to an efficiency
trick if Corr(Z1,j , Z2,j ) > 0, j = 1,2, . . . , b (where
we still assume thatZ1,1, Z1,2, . . . , Z1,b are i.i.d. and
Z2,1, Z2,2, . . . , Z2,b are i.i.d.). In that case, it turns out
that (see §5.2)

Var(D̄b) <
1

b
[Var(Z1,j )+Var(Z2,j )].

One can also show that ifZ1,j andZ2,j had been simulated
independently, then we would have had anequality in the
above expression. Thus, our trick may result in relative
smallS2

D and, hence, small CI length. So how do we evok
the trick?

5.2 Common Random Numbers

The idea behind §5.1’s trick is to usecommon random
numbers, i.e., use the same pseudo-random numbers
exactly the same ways for corresponding runs of each
the competing systems. For instance, we could use the sa
customer arrival times when simulating different propose
configurations of a job shop. By subjecting the alternativ
systems to identical experimental conditions, we hope
make it easy to distinguish which systems are best ev
though the respective estimators are subject to sampli
error.
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Consider the case in which we compare two queuein
systems,A andB, on the basis of their expected custome
transit times,θA andθB — the smallerθ -value corresponds
to the better system. Suppose we have at our dispos
estimatorsθ̂A and θ̂B for θA andθB , respectively. We will
declareA as the better system if̂θA < θ̂B . If θ̂A and
θ̂B are simulated independently, then the variance of the
difference,

Var(θ̂A − θ̂B) = Var(θ̂A)+Var(θ̂B),

could be very large; in this case, our declaration migh
lack conviction. If we could reduceVar(θ̂A− θ̂B), then we
could be much more confident about our declaration. B
using common random numbers, we can sometimes indu
a high positive correlation between the point estimatorsθ̂A
and θ̂B . Then we have

Var(θ̂A − θ̂B) = Var(θ̂A)+Var(θ̂B)− 2Cov(θ̂A, θ̂B)

< Var(θ̂A)+Var(θ̂B),

and we obtain a savings in variance.

5.3 Antithetic Random Numbers

Alternatively, if we can inducenegativecorrelation between
two unbiased estimators,θ̂1 and θ̂2, for some parameterθ ,
then the unbiased estimator(θ̂1 + θ̂2)/2 might have low
variance.

Most simulation texts (see §6) give advice on how to
run the simulations of the competing systems so as to i
duce positive or negative correlation between them. Th
consensus is that, if conducted properly, common rando
numbers and antithetic random numbers can lead to treme
dous variance reductions.

5.4 Ranking, Selection, and Multiple Comparisons

Ranking, selection, and multiple comparisons methods for
another class of statistical techniques used to compare
ternative systems. Here, the experimenter is interested
selecting the best of a number (≥ 2) of competing processes.
In addition, the experimenter might want to correctly selec
the best process with a certain high probability, especially
the best process is significantly better than its competitor
These methods are simple to use, fairly general, and int
itively appealing. There is a great deal of literature on th
subject; the reader could start by looking at the discussio
in Bechhofer, Santner, and Goldsman (1995) and Law an
Kelton (2000) before graduating to the more mathematic
references cited therein.
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6 CONCLUSIONS

Proper analysis of output is one of the most importan
aspects of any simulation study. Since simulation output i
never i.i.d. normal, the experimenter must be careful whe
making conclusions about such data. Indeed, the purpo
of this tutorial has been to inform the experimenter abou
some of the issues and techniques relevant to conducti
valid analyses.

There are many interesting sides of output analysis th
we have not had space to discuss in this paper, e.g., mul
variate parameter estimation, sequential methods, and oth
variance reduction techniques. Fortunately, a number of e
cellent general resources are available that devote substan
discussion to the subject, e.g., Banks (1998), Banks, Ca
son, and Nelson (1995), Bratley, Fox, and Schrage (1987
Fishman (1978), Law and Kelton (2000), and anyProceed-
ings of the annual Winter Simulation Conference — for
instance, Alexopoulos and Seila (2000) in this volume.
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