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ABSTRACT

I survey several mathematical techniques and results that
useful in the context of stochastic simulation. The concep
are introduced through the study of a simple model
ambulance operation to ensure clarity, concreteness
cohesion.

1 INTRODUCTION

The incredibly rich set of mathematical tools and techniqu
that underlie stochastic simulation is the subject of th
paper. Of course, the field is far too large to be cover
in a single paper, and so I choose to focus the discuss
somewhat. For example, there is no discussion in th
paper on the vast array of techniques that may be us
for input analysis, uniform and nonuniform random varia
generation, sensitivity analysis, and so forth. For excelle
overviews of these and other topics, see Bratley, Fox a
Schrage (1987), Law and Kelton (2000), and the tutoria
and advanced tutorials in recent proceedings of the Win
Simulation Conference.

Instead, what I attempt to do is to describe a set
mathematical tools and techniques that can be used to rig
ously define performance measures in both the terminat
and steady-state context. I have also attempted to desc
methods that can be used to shed light on the properties
simulation-based estimators of these measures.

The emphasis is always on the mathematical results a
techniques that can be used to derive the results. It wo
be very easy to provide a smorgasbord of such results,
such a paper would read like an encyclopedia. Therefore
introduce a simple model of ambulance operation that ser
to unify the discussion, and define several performan
measures related to this model.

All of the performance measures described in this pap
take the form of an expectation of a random variable, or
differentiable function of a finite number of expectations
Such performance measures are useful when the goal i
compare many different stochastic systems, as they provid
concrete basis for the comparison. However, if the goal is
137
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enhance one’sunderstandingof a single stochastic system
then it is often more useful to analyze thedistribution of
certain random variables, perhaps through density estimat
techniques. Unfortunately, there is not space in this artic
to delve into specific techniques in the theory of densi
estimation. This is a shame, since density estimation
bound to become a more important area of research as u
of simulation become more sophisticated, and the theo
matures. Nevertheless, many of the techniques presen
here can be applied in such contexts; see Henderson
Glynn (1999), for example.

In Section 2 I introduce the essential elements of th
ambulance model that serves as the underlying thread of
paper. This then sets the stage for the next two sections
the paper, which specialize the model to first the terminati
simulation context, and second, the steady-state contex

In Section 3 we find ourselves in the terminating sim
ulation context, in which there is a finite time interval ove
which the simulation will be run. One might then be inter
ested in performance measures like the expected utilizat
of the ambulance, or the expected response time to ca
The primary tool in defining measures such as these is
strong law of large numbers, which also motivates seve
estimators of the performance measures.

Of course, in any numerical analysis method, and sim
ulation is certainly one such method, it is important t
provide error bounds. Such error bounds can be deriv
through the central limit theorem. To apply the centra
limit theorem to yield confidence intervals, several con
stants must be replaced with sample estimates, and
should question whether the resulting confidence interv
are then valid. One approach to establishing this validi
is via the continuous mapping theorem.

The last key idea in Section 3 is one that is ofte
useful in simulation analysis. Some performance measu
cannot be written as the expectation of a random variab
but may be written as a differentiable function of certai
expectations. In this setting, Taylor’s theorem is a ve
useful tool that can be used to derive central limit theorem
that then form the basis for confidence interval constructio
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One can also examine the bias properties of estimators
this context using arguments based on Taylor’s theorem

By imposing different assumptions on the model, on
obtains a steady-state simulation, where the performa
measures are all long-run averages. To rigorously defi
these performance measures, it is necessary to define
appropriate stochastic process with which to work. A gre
deal is known about the class of Markov processes evolv
on general (not necessarily countable) state spaces.
Section 4 a general state space Markov chain is defined.
ensure that long-run averages exist, it is necessary to s
that this chain is, in a certain sense, positive recurrent.

A very practical approach to establishing that a Marko
chain is positive recurrent is to use Lyapunov functions, a
this approach is the central mathematical tool illustrated
Section 4. We use Lyapunov theory to show that certa
Markov chains are positive recurrent, that our performan
measures are well-defined, that certain estimators are con
tent and satisfy central limit theorems, and that confiden
intervals obtained through the method of batch means
asymptotically valid. An important consideration in th
steady-state context is that of initialization bias. We al
use Lyapunov theory to characterize the magnitude of su
bias.

The underlying theme of Section 4 is then that Ly
punov functions provide an enormously powerful, and eas
applied (at least relative to many other methods!) approa
to establishing results that underlie steady-state simulat
methodology.

Throughout this paper, results are rigorously quoted, a
references given for the proofs. To simplify the expositio
it is often the case that results are quoted using stron
hypotheses than are strictly necessary, but tighter hypothe
can be found in the references provided.

2 A SIMPLE MODEL

To begin, we describe a very simple model that will ser
as a vehicle for the concepts to follow. The purpose of t
example is therefore simplicity, and certainly not realism
although with a few straightforward extensions, the mod
could be considered to be quite practical.

Suppose that a single ambulance serves calls in a sq
region. By translating and rescaling units, we may assu
that the square is centred at the origin, with lower left-ha
corner at (−1/2,−1/2) and upper right-hand corner a
(1/2,1/2). For simplicity, we assume that the ambulanc
travels at unit speed within the square. The combin
hospital/ambulance base is located at the origin.

Calls arrive (in time) according to a homogeneou
Poisson process with rateλ. The location of the call is
independent of the arrival process, and uniformly distribut
over the square. To serve a call, the ambulance travels
a Manhattan fashion (i.e., at any given time, movement
13
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restricted to lie only in thex direction or they direction)
from its present location to the location of the call. A random
amount of time is then spent at the scene treating the patie
independent of all else. After this scene time is complet
with probabilityp (independent of all else), the ambulanc
is required to transport and admit the patient to the hospit
with hospital admission occurring instantaneously once t
ambulance reaches the hospital, and with probability 1−p
the ambulance is freed for other work.

3 TERMINATING SIMULATION

In this section, we assume that the ambulance only receiv
calls from (say) 7am until 11pm each day. At 11pm, th
ambulance completes the call that it is currently servin
(if any) and returns to base. We will further assume th
if the ambulance is engaged with a call when another c
is received, then some outside agency, such as anot
emergency service, handles the other call. Finally, w
assume that the random variables associated with each
are independent of those for all other days.

We will be interested in several performance measur
relating to ambulance operation as follows.

α1 The long-run utilization of the ambulance, i.e., the
percentage of time that the ambulance is occupie
with a call.

α2 The long-run fraction of calls attended by the am
bulance.

α3 The long-run fraction of calls with response time
(time from when the call arrives to when the am
bulance arrives at the scene) being at mostt∗ time
units, where the fraction does not take into accou
those calls that are handled by the outside agen

α4 The long-run average response time for those ca
handled by the ambulance, and not by the outsid
agency.

In order to more carefully define these performanc
measures, we proceed as follows. LetTi denote the total
number of hours that the ambulance is busy on dayi, with
Ti ≤ 16, since we will not count any residual time afte
11pm needed to complete any call in progress. Aftern days
then, the average utilization of the ambulance is

α1(n) =
∑n
i=1 Ti

16n
,

and the long-run utilizationα1 is the limiting value ofα1(n).
To ensure thatα1 is properly defined, we need to ensure tha
this limit exists, and is the same, regardless of the particu
realizationT1, T2, . . . involved. Observe that(Tn : n ≥ 1)
is an i.i.d. sequence of bounded random variables, and
the strong law of large numbers (SLLN) is applicable.
8
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Theorem 1 (SLLN) If X1, X2, . . . is an i.i.d. se-
quence of random variables withE|X1| <∞, then∑n

i=1Xi

n
→ EX1 a.s.

as n→∞.
For a proof, see p. 290 of Billingsley (1986).
The SLLN implies that asn→∞, the limit of α1(n)

exists and uniquely definesα1.
In view of the SLLN, a natural estimator ofα1 is α1(n),

and the SLLN ensures that this estimator converges toα1
asn→∞ almost surely, i.e., thatα1(n) is consistent.

Now let us considerα2, the long-run fraction of calls
attended by the ambulance. LetNi denote the total number
of calls received on dayi, and letAi denote the number of
those calls attended by the ambulance. Aftern days, the
fraction of calls attended by the ambulance is given by∑n

i=1Ai∑n
i=1Ni

. (1)

Dividing both the numerator and denominator of (1) byn,
and applying the SLLN separately to both the numerato
and denominator, we see that∑n

i=1Ai∑n
i=1Ni

→ α2 = EA1

EN1
a.s.

asn→∞. Note thatEN1, the expected number of calls
received in one day is known, and equal to 16λ. Thus, one
can estimateα2 by

α2(n) =
∑n
i=1Ai

16λn
.

But how can one assess the accuracy of the estimat
α1(n) andα2(n)? One answer is via the central limit theorem
(CLT).

Theorem 2 (CLT) If X1, X2, . . . is an i.i.d. se-
quence of random variables withEX2

1 <∞, then

√
n

(
1

n

n∑
i=1

Xi − EX1

)
⇒ σN(0,1)

as n → ∞, whereσ 2 = varX1, ⇒ denotes weak con-
vergence, andN(0,1) denotes a standard normal random
variable.

For a proof, see p. 367 of Billingsley (1986).
The CLT basically establishes that the error in th

estimatorα1(n) is approximately normally distributed with
139
s

mean 0 and variances2/256n wheres2 = varT1, and this
is the basis for obtaining confidence intervals forα1. In
particular, an approximate 95% confidence interval forα1
is given by

α1(n)± 1.96

√
s2

256n
. (2)

However,s2 must invariably be estimated. The usua
estimator is the sample variance

s2
n =

1

n− 1

n∑
i=1

(Ti − T̄n)2

= 1

n− 1

n∑
i=1

T 2
i −

n

n− 1
T̄ 2
n ,

where T̄n = n−1∑n
i=1 Ti is the usual sample mean. The

confidence interval that is reported is the same as (2) withs2

replaced with its sample counterparts2
n. But is the modified

confidence interval then valid?
The SLLN implies thats2

n → s2 a.s. asn→∞. Hence,
by Exercise 29.4 of Billingsley (1986), we have that(

n1/2(T̄n − ET1)

s2
n

)
⇒

(
sN(0,1)
s2

)
. (3)

The natural tool to apply at this point is the continuous
mapping theorem. For a real-valued functionh in IRd , let
Dh denote its set of discontinuities (in IRd ).

Theorem 3 (Continuous Mapping Theorem)
Let (Xn : n ≥ 1) be a sequence of IRd valued random
variables withXn ⇒ X as n → ∞ and let h : IRd → IR
be measurable. IfP(X ∈ Dh) = 0, thenh(Xn) ⇒ h(X)

as n→∞.
For a proof, see p. 391 of Billingsley (1986).
Defineh(x, y) = x/y1/2, and then apply the continuous

mapping theorem to (3), to obtain that

n1/2(T̄n − ET1)

sn
⇒ N(0,1)

asn→∞, and so the confidence interval procedure outline
above is indeed valid.

The analysis for the estimatorα2(n) of α2 is similar.
Let us now consider the performance measuresα3 and

α4. First considerα3.
Recall that on dayi, the ambulance responds toAi

calls out of a possibleNi , with the remainder being served
by some outside agency. For 1≤ j ≤ Ai , let Rij denote
the response time for thej th call handled by the ambulance
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on day i. Let I (Rij ≤ t∗) denote the indicator random
variable that is 1 ifRij ≤ t∗, and 0 otherwise. Then

Yi =
Ai∑
j=1

I (Rij ≤ t∗)

denotes the number of calls that the ambulance reache
at mostt∗ time units on dayi. Over the firstn days, the
fraction of calls with response time at mostt∗ is then

α3(n) = n−1∑n
i=1 Yi

n−1
∑n
i=1Ai

. (4)

and the strong law of large numbers implies thatα3(n)

converges almost surely toα3 = EY1/EA1.
So how can one assess the accuracy of the estim

α3(n)? Certainly, the standard central limit theorem cann
be applied, becauseα3(n) is aratio of sample means of i.i.d.
observations. We first consider a strongly related quest
and then return to the problem at hand.

Suppose thatX1, X2, . . . is an i.i.d. sequence of ran
dom variables with finite meanµ = EX1. Let X̄n =
n−1∑n

i=1Xi denote the sample mean. Ifh is continuous at
µ, it follows thath(X̄n)→ h(µ) a.s. asn→∞. So how
does the errorh(X̄n)−h(µ) behave, for largen? Note that
for largen, X̄n will be very close toµ, and so the asymp-
totic behaviour of the error should depend only on the lo
behaviour ofh. Indeed, ifh is appropriately differentiable,
then Taylor’s theorem implies that

h(X̄n)− h(µ) ≈ h′(µ)(X̄n − µ),

and so if theXi ’s have finite variance, then

n1/2(h(X̄n)− h(µ)) ≈ h′(µ)n1/2(X̄n − µ)
⇒ ηN(0,1)

asn→∞, whereη2 = h′(µ)2 varX1.
This intuitive argument can be formalized, and al

generalized to higher dimensions to obtain the followi
result, sometimes referred to as the delta method.

Theorem 4 Suppose that(Xn : n ≥ 1) is an i.i.d.
sequence of IRd valued random variables withE‖X1‖22 <∞.
Letµ = EX1 denote their common mean, and let3 denote
their common covariance matrix. LetX̄n denote the sample
mean ofX1, . . . , Xn. If h : IRd → IR is continuously
differentiable in a neighbourhood ofµwith non zero gradient
at µ, then

n1/2(h(X̄n)− h(µ)) ⇒ σN(0,1)

as n→∞, whereσ 2 = g′3g, andg = ∇h(µ).
For a proof, see p. 122 of Serfling (1980).
140
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To apply this result in our context, letXi = (Yi, Ai),
and defineg(y, a) = y/a. We then find that

n1/2(α3(n)− α3) ⇒ σN(0,1),

where

σ 2 = E(Y1− α3A1)
2

(EA1)2
.

Using the SLLN, one can easily show thatσ 2 can be
consistently estimated by

s2
n =

n−1∑n
i=1(Yi − α3(n)Ai)

2

(n−1
∑n
i=1Ai)

2
,

and the same continuous mapping argument used for
estimatorsα1(n) andα2(n) establishes that

α3(n)± 1.96sn/
√
n

is an approximate 95% confidence interval forα3.
The estimator

α4(n) =
∑n
i=1

∑Ai
j=1Rij∑n

i=1Ai

can be handled in exactly the same fashion.
Taylor’s theorem can also be used to examine the b

properties of the estimatorsα3(n) andα4(n). In particular,
using our previous notation, Taylor’s theorem implies tha

h(X̄n)− h(µ) ≈ h′(µ)(X̄n − µ)+ 1

2
h′′(µ)(X̄n − µ)2.

Taking expectations, we find that

Eh(X̄n)− h(µ) ≈ 1

2
h′′(µ) varX1/n,

i.e., we have an explicit expression for the asymptotic bia
As before, this argument can be formalized, and generaliz
to higher dimensions.

Theorem 5 Suppose that(Xn : n ≥ 1) is an i.i.d.
sequence of IRd valued random variables withE‖X1‖42 <∞.
Letµ = EX1 denote their common mean, and let3 denote
their common covariance matrix. LetX̄n denote the sample
mean ofX1, . . . , Xn. If h : IRd → IR is such thath(X̄n) is
bounded for alln with probability 1, and twice continuously
differentiable in a neighbourhood ofµ, then

n(Eh(X̄n)− h(µ))→ 1

2

d∑
i,j=1

∇2h(µ)ij3ij

as n→∞.
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The proof is a slight modification of Theorem 7 in
Glynn and Heidelberger (1990).

We would like to apply this result to both of the es
timatorsα3(n) and α4(n). The only condition that is not
obviously satisfied is thath(X̄n) is bounded for alln with
probability 1. In both cases, we takeh(x, y) = x/y. Note
that α3(n) = h(Ȳn, Ān) ≤ 1. For α4(n), observe that the
sum of the response times on any day is bounded by
hours, plus any response time that carries over the end
the 16 hour day. Since the ambulance takes at most 2 ho
to travel from anywhere in the square to anywhere else,
sum of the response times on any day is bounded by
This then allows us to conclude thatα4(n) is also bounded
with probability 1.

We have therefore established that the bias in the e
matorsα3(n) andα4(n) is of the ordern−1.

It is reasonable to ask whether this bias is sufficient
noticeably affect the performance of the confidence interv
produced earlier for a given runlengthn. Recall that the
widths of the confidence intervals are of the ordern−1/2.
Thus, the bias decreases at a (much) faster asymptotic
than the width of the confidence intervals, and so unle
runlengths are quite small, it is reasonable to neglect bi

4 STEADY-STATE SIMULATION

We now turn to useful mathematical techniques and resu
for steady-state simulation analysis. For this purpose,
will modify the assumptions of the previous section o
the dynamics of the ambulance model. In particular,
addition to the assumptions given in Section 2, we assu
that the ambulance operates 24 hours a day, 7 days a w
Furthermore, calls that arrive while the ambulance is bu
are queued, and answered in first-in first-out order. On
the current call is complete, the ambulance then atten
to the next call. Recall that a call is completed either
the scene (with probability 1− p), or when the ambulance
drops the patient off at the hospital (with probabilityp).

For this model, 3 of the previous 4 performance me
sures are still relevant, but because the ambulance is n
handling all calls, the fraction of calls answered by th
ambulance(α2) is no longer of interest. For convenience
and also to refine the statement of the performance meas
to our new setting, we restate the performance measure

β1 The long-run utilization of the ambulance, i.e., th
percentage of time that the ambulance is occupi
with a call.

β2 The long-run fraction of calls with response time
being at mostt∗ time units.

β3 The long-run average response time.

In the previous section we attempted to rigorous
define the suggested performance measures, and als
derive asymptotic results that lay at the heart of confiden
interval methodology for estimating them. We will procee
141
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in a similar fashion in this section. The 3 performance
measures given above all involve the term “long-run”. In
order that such long-run measures exist, it is first necessa
that the ambulance model be stable. In order to be ab
to make statements about the stability, or lack thereof, o
the model, it is first necessary to define an appropriat
stochastic process from which our performance measure
can be derived. Statements about the stability of the mod
really relate to the stability of the stochastic process.

There are typically a host of stochastic processes tha
may be defined from the elements of a simulation. The
choice of stochastic process depends partly on the pe
formance measures in question. Given that two of ou
measures are related to response time, it is natural to co
sider a stochastic process that yields information on respon
times. Furthermore, for mathematical convenience, it is of
ten helpful to ensure that one’s stochastic process is Marko

For n ≥ 1, let Tn denote the time at which thenth call
is received, withT0 = 0. Forn ≥ 1, letWn be theresidual
workloadof the ambulance at timeTn+, i.e., immediately
after the nth call is received. By residual workload at
some timet , we mean the amount of time required for the
ambulance to complete any current call, along with calls
that might also be queued at timet . We defineW0 = 0.

Unfortunately,(Wn : n ≥ 0) is not a Markov process,
because the response time for a future call, and hence t
workload, depends on the location of the ambulance when th
ambulance clears the previous workload. So if we also kee
track of the location coordinates of the ambulance(Xn, Yn)

at the instant at which the workloadWn is first cleared,
then the resulting processZ = (Zn : n ≥ 0) is Markov,
whereZn = (Wn,Xn, Yn). We defineX0 = Y0 = 0, i.e.,
the ambulance begins at the hospital.

The processZ is a general state space Markov chain,
and evolves on the state space

S = [0,∞)× [−1,1]2.

The first step in ensuring that our “long-run” perfor-
mance measures are defined is to establish thatZ exhibits
some form of positive recurrence. One way to achieve thi
is to verify that the chainZ satisfies the following condition,
which certainly deserves some explanation!

To avoid a potential confusion between general result
and those for our particular model, we will state genera
results in terms of a Markov chain8 = (8n : n ≥ 0)
evolving on a state spaceS.

The Lyapunov Condition There exists aB ⊆ S,
positive scalarsa < 1, b, and δ, an integerm ≥ 1, a
probability distributionϕ on S, and a functionV : S →
[1,∞) such that

1. P(8m ∈ ·|80 = z) ≥ δϕ(·) for all z ∈ B, and
2. E(V (81)|80 = z) ≤ aV (z) + bI (z ∈ B) for all

z ∈ S.
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The Lyapunov condition (sometimes called a Foste
Lyapunov condition) is a stronger condition than we real
require, but it simplifies the presentation considerably. T
functionV is called a Lyapunov (think of energy) function
The second requirement basically states that when the ch
8 lies outside of the setB, the energy in the system tend
to decrease, and when the chain lies insideB, the energy
in the system cannot become too big on the next step. T
condition implies that the setB gets hit infinitely often.
Of course, if one takesB = S, the entire state space, then
this requirement is trivially satisfied. The first condition i
needed to ensure that the setB is not too “big”.

In any case, the point is that if a chain8 satisfies
the Lyapunov condition, then8 is appropriately positive
recurrent. The precise statement is as follows.

Theorem 6 If a discrete time Markov chain8 is
aperiodic and satisfies the Lyapunov condition, then it isV -
uniformly ergodic. In particular,8 has a unique stationary
probability distribution.

For a proof, see Theorem 16.0.1 of Meyn and Tweed
(1993).

So the question then is, does our chainZ satisfy the
Lyapunov condition? The answer is yes, and it is instructi
to go through a proof. However, on a first reading on
may skip the following development up to the statement
Proposition 7 without loss of continuity.

For many systems, the functionV may be taken to be
eγ v, wherev is some measure of the work in the system
In fact, as we now show, one may takeV (w, x, y) = eγw
for some yet to be determined constantγ > 0.

Consider what happens on a single transition of th
chainZ, starting from the point(w, x, y). There will be
some delay,τ say, until the next call is received, and durin
this time the workload decreases at unit rate, at least u
it hits zero. At the instant that the new call arrives, w
add the timeη1 required for the ambulance to travel to
the new call. We also add the time required to treat t
patient at the scene,U say. A Bernoulli random variable
ξ with P(ξ = 1) = p, indicates whether the patient need
transport to the hospital(ξ = 1), or not (ξ = 0). If ξ = 1,
then the workload also includes the travel timeη2 to the
hospital.

In summary then, the new workloadW1 is given by

W1 = [w − τ ]+ + η1+ U + ξη2,

where[x]+ = max{x,0}, andτ , U and ξ are independent
of each other and of(η1, η2).
-

t
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So if z = (w, x, y), thenE[V (Z1)|Z0 = z] is given by

E(eγW1|Z0 = (w, x, y))
= Eeγ (η1+U+ξη2)Eeγ [w−τ ]+

≤ Eeγ (η1+U+ξη2) (Eeγ (w−τ) + P(w − τ ≤ 0))

≤ eγwEeγ (η1+U+ξη2−τ) (1+ Eeγ (τ−w))
≤ eγwEeγ (2+U+1−τ) (1+ e−γwEeγ τ ) (5)

= V (w)φ(γ )(1+ e−γwEeγ τ ),

where the functionφ is defined appropriately. Equation (5)
follows since the ambulance travels at unit rate, and th
distances it can travel are such thatη1 ≤ 2, andη2 ≤ 1.
(Recall that the ambulance travels distances as measu
by the Manhattan metric.)

Assuming thateγU is finite in a neighbourhood of 0,
i.e., U has a moment generating function defined near 0
then we have thatφ(0) = 1, and

φ′(0) = E(U + 3− τ).

So if EU + 3 < 1/λ, thenφ′(0) < 0, and soφ(γ ) < 1
for γ in some neighbourhood of 0. Now, we also require
that Eeγτ < ∞, which is true forγ < λ, sinceτ has an
exponential distribution with rateλ. So chooseγ ∈ (0, λ)
so thatφ(γ ) < 1. We then have that

E[V (Z1)|Z0 = z] ≤ V (w)φ(γ )(1+ e−γwEeγ τ ).

Now, there is someK > 0 such that ifw > K, then

φ(γ )(1+ e−γwEeγ τ ) < 1,

sinceEeγτ <∞ andφ(γ ) < 1. Furthermore, forw ≤ K
we have that

E[V (Z1)|Z0 = z] ≤ eγ (K+3+U) <∞.

Thus, if we takeB = [0,K] × [−1,1]2, then the second
requirement in the Lyapunov condition is met.

It remains to check the first requirement. Observ
that if the time till the next call is large enough, then the
ambulance will have reached its base after serving all call
In particular, if τ > K + 1, then independent ofz ∈ B,
the next call will be served immediately by the ambulanc
from the base. If we letϕ denote the distribution ofZ1
under this scenario, then we immediately have that for a
z ∈ B,

P(z, ·) ≥ e−λ(K+1)ϕ(·),
and the first requirement in the Lyapunov condition is sat
isfied.

In summary then, we have established thatZ satisfies
the Lyapunov condition. It is straight-forward to show tha
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Z is aperiodic, and so we arrive at the following resul
Recall thatU is a generic service time (time spent at th
scene), andτ represents a generic interarrival time.

Proposition 7 If U possesses a moment generatin
function in a neighbourhood of 0, andEU+3< Eτ , then the
chainZ is V -uniformly ergodic, whereV (w, x, y) = eγw,
for someγ > 0.

The stability condition

EU + 3< Eτ

has a very nice interpretation in terms of the model. Th
left-hand side of the inequality gives an upper bound on t
expected amount of work (time at the scene+ travel time
to the scene+ travel time from the scene to the hospital
brought in by an arriving call, whereas the right-hand sid
gives the expected amount of time that the ambulance
between calls to deal with this work. This condition ca
certainly be weakened by being more careful about defini
how much work each call brings to the system, but this
not something that we will pursue further.

The main point is that Proposition 7 giveseasily verifi-
able conditions under which the system is stable. While
may have appeared somewhat difficult to verify the Lyapun
condition, the argument used is actually quite straightfo
ward, and we will see that the payoff is easily worth th
effort. Based on this result, we can now define our perfo
mance measures rigorously, and also construct estima
that we can prove are consistent and satisfy central lim
theorems.

As in Section 3, the rigorous definition of all of our per
formance measures is based on the strong law of large nu
bers. For simplicity, we state this theorem under strong
hypotheses than are really necessary.

Theorem 8 (MCSLLN) Suppose that8 is a V -
uniformly ergodic Markov chain on state spaceS with
stationary probability distributionπ . Let f : S → IR be a
real-valued function onS. If π |f | = ∫S |f (x)|π(dx) <∞,
then

1

n

n−1∑
i=1

f (8i)→ πf a.s.

as n→∞.
For a proof, see Theorem 17.0.1 of Meyn and Tweed

(1993).
Let us return now to the performance measures w

outlined earlier. First, considerβ1, the utilisation of the
ambulance. The actual utilisation of the ambulance ov
the time interval[0, Tn), i.e., up until the time of thenth
arrival is

n−1∑n−1
i=0 min{Wi, τi+1}

n−1
∑n−1
i=0 τi+1

, (6)
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where, fori ≥ 0, τi+1 denotes the time between theith and
(i+1)th arrival. Now, the SLLN for i.i.d. random variables
implies that the denominator converges toλ−1. We would
like to apply the MCSLLN to the numerator, but it is not
yet in an appropriate form. However, using a simple devic
we can fix this difficulty. In essence, we are going to apply
filtering; see Glasserman (1993). We have that

Emin{w, τ1} = wP(τ1 > w)+ Eτ1I (τ1 ≤ w)
= λ−1(1− e−λw),

and so we replace (6) by

β1(n) = 1

n

n−1∑
i=0

(1− e−λWi ). (7)

Notice thatβ1(n) is in exactly the form that we need to
apply the MCSLLN, withf (w, x, y) = 1− e−λw, which
is bounded, and so we find that

β1(n)→ β1 a.s.

as n → ∞. This then is a rigorous definition ofβ1, and
also a proof that the estimatorβ1(n) is (strongly) consistent.

Turning now to the performance measuresβ2 andβ3,
first note that both measures are related to the respon
times of the ambulance to calls. The response timeRn of
the ambulance to thenth call is given, forn ≥ 1, by

Rn = [Wn−1− τn]+ + η1(n)

= Wn − Un − ξnη2(n),

whereWn is the workload just after thenth call arrives,
η1(n) is the time required for the ambulance to travel to
the location of thenth call, Un is the service time at the
nth call, ξn is the indicator variable that is 1 if the patient
needs to be transported to hospital, andη2(n) is the time
required for the ambulance to travel to the hospital from
the location of thenth call.

Observe that we cannot writeRn as a (deterministic)
function ofZn. We could apply a filtering method as above,
but it is instructive to adopt a different approach. Suppos
that we append additional information to the processZ,
creating a new Markov chaiñZ = (Z̃(n) : n ≥ 0). In
particular, let

Z̃(n) = (Wn,Xn, Yn, Un, ξn).

Using the same methods as before, we can show thatZ̃ is
Ṽ -uniformly ergodic and aperiodic, wherẽV is the function

Ṽ (w, x, y, u, ξ) = eγw.
3
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We now have thatRn = r(Z̃n) say, where the function
r(·) is defined by

r(w, x, y, u, ξ) = w − u− ξd((x, y), (0,0))

and d is the function returning the (Manhattan) distanc
between its two arguments.

The fraction of the firstn calls for which the response
time is less thant∗ is

β2(n) = 1

n

n∑
i=1

I (Ri ≤ t∗), (8)

and the MCSLLN immediately implies thatβ2(n) → β2
a.s. asn→∞, thus both definingβ2 and proving that the
estimatorβ2(n) is consistent.

The mean response time over the firstn calls is

β3(n) = 1

n

n∑
i=1

Ri = 1

n

n∑
i=1

r(Z̃i). (9)

To apply the MCSLLN, we need to show that ifπ̃ is the
stationary distribution ofZ̃, then π̃r <∞. The following
result is extremely useful in this regard.

Proposition 9 Suppose that the Lyapunov condition
holds for a Markov chain8 on state spaceS with stationary
probability distributionπ . Then for any functionf : S → IR
with |f (z)| ≤ V (z)1/2 for all z ∈ S, πf <∞.

For a proof, see Lemma 17.5.1 of Meyn and Tweed
(1993).

To apply this result to the chaiñZ, note that ifz =
(w, x, y, u, ξ), then Ṽ (z)1/2 = eγw/2, so thatπ̃ possesses
an exponential moment inw. Hence the stationary mean
workload is also finite, implying that̃πr <∞, sincer(z) ≤
w. Finally then, we may conclude thatβ3(n) → β3 a.s.
as n → ∞, thus definingβ3 and proving thatβ3(n) is
consistent.

We summarize the above discussion with the followin
proposition.

Proposition 10 For i = 1,2,3, the performance
measuresβi , are well-defined, and the estimatorsβi(n) are
strongly consistent (asn→∞).

So we now turn to the error in the estimators. A
before, this can be assessed through confidence interv
that derive from a central limit theorem. Again, in order fo
simplicity, we state the Markov chain central limit theorem
under stronger conditions than are strictly necessary.

For a functionf : S → IR with π |f | <∞, let f̄ (·) =
f (·)−πf . Also, letEπ denote the expectation operator ove
the path space of a Markov chain under initial distributio
π .
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Theorem 11 (MCCLT) Suppose that the chain8
satisfies the Lyapunov condition and is aperiodic. Then
for any functionf : S → IR with f (z)2 ≤ V (z) for all z,

√
n

(
1

n

n−1∑
i=0

f (8i)− πf
)
⇒ σN(0,1),

whereπ is the stationary probability distribution of8, and

σ 2 = Eπ [f̄ (80)
2] + 2

∞∑
k=1

Eπ [f̄ (80)f̄ (8k)]. (10)

For a proof, see Theorem 17.0.1 of Meyn and Tweedi
(1993).

We immediately obtain the following result.
Proposition 12 We have that

√
n(βi(n)− βi) ⇒ σiN(0,1)

as n→∞, for appropriately definedσ 2
i .

Thus, we see that just as in the terminating simulatio
case, the error in the estimatorβi(n) is approximately
normally distributed with mean 0 and varianceσ 2

i /n.
This result serves as a foundation for constructing con

fidence intervals forβi . One approach is to estimateσ 2
i

directly using the regenerative method, which is certainl
easily applied to our example. But the method of batc
means is, at least currently, more widely applicable, and th
preferred method in commercial simulation software, an
so we instead consider this approach.

Suppose that we have a sample path80,81, . . . , 8n−1.
Divide this sample path intom batches of sizeb, where
for convenience we assume thatn = mb, so that thekth
batch consists of observations8(k−1)b, . . . , 8kb−1. Now,
for k = 1, . . . , m, let Mk be the sample mean over thekth
batch, i.e.,

Mk = 1

b

kb−1∑
i=(k−1)b

f (8i),

and letM̄m denote the sample mean of them batch means
M1, . . . ,Mm. Finally, let

s2
m =

1

m− 1

m∑
i=1

(Mk − M̄m)
2

denote the sample variance of theMk ’s. The method of
batch means provides a confidence interval forπf of the
form M̄m ± tsm/√m, for some constantt , and relies on
the assumption that for largen, (M̄m − πf )/(sm/√m) is
approximatelyt-distributed, withm−1 degrees of freedom.
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The MCCLT above implies that asn → ∞ with m,
the number of batches, held fixed, all of the batch mea
are asymptotically normally distributed with meanπf , and
variancemσ 2/n. If each of the batch means are also asymp
totically independent, then a standard result (see p. 173)
Rice (1988) for example) shows that the above confiden
interval methodology is valid.

But how can we be sure that this asymptotic indepen
dence of the batch means will hold? A sufficient conditio
that supplies both the asymptotic independence, togeth
with asymptotic normality, is that the chain8 satisfy a
functional central limit theorem; see Glynn and Iglehar
(1990), from which much of the following discussion is
adapted.

Definition 1 Let 8 be a Markov chain on state
spaceS, and letf : S → IR. Define the continuous time
processY = (Y (t) : t ≥ 0) byY (t) = 8btc. For 0 ≤ t ≤ 1,
let

Ȳn(t) = n−1
∫ nt

0
f (Y (s)) ds

and set

ζn(t) = n1/2(Ȳn(t)− κt),
for some constantκ. We say that8 satisfies a functional
central limit theorem (FCLT) if there exists anη > 0 such
that ζn ⇒ ηB as n → ∞, whereB denotes a standard
Brownian motion.

Observe that if8 satisfies a FCLT, then thej th batch
meanMj can be expressed as

Mj = m[Ȳn(j/m)− Ȳn((j − 1)/m)]
= κ + n−1/2m(ζn(j/m)− ζn((j − 1)/m).

Since the increments of Brownian motion are normally dis
tributed, the FCLT then implies that theMj ’s are asymptoti-
cally normally distributed with meanκ and variancemη2/n,
which is a conclusion that we had already reached. But t
increments of Brownian motion are also independent, whic
implies that theMj ’s are asymptotically independent, and
this is the final result needed to ensure that the batch mea
confidence methodology outlined above is asymptotical
valid.

So when can we be sure that8 satisfies a FCLT? One
sufficient condition is the following result.

Theorem 13 Suppose that8 satisfies the Lyapunov
condition, andf is such thatf (z)2 ≤ V (z) for all z. If
the constantσ 2 defined in (10) above is positive, then8
satisfies a functional central limit theorem withκ = πf ,
and η2 = σ 2.

For a proof, see Theorems 17.4.4 and 17.5.3 of Mey
and Tweedie (1993).
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Notice that we have already established that the co
ditions of Theorem 13 hold for all of our estimatorsβi(n).
Thus, we immediately arrive at the conclusion that th
method of batch means will yield asymptotically valid con
fidence intervals for each of the performance measuresβ1, β2
andβ3.

As in the terminating simulation case, the performanc
of these confidence interval procedures for finiten may be
negatively impacted by bias. Of course, the bias depen
on the initial distributionµ say of the chain8. Let Eµ
denote the expectation operator over the path space of
chain8 under initial distributionµ. Then the bias in the
estimatorβi(n) is given byEµβi(n)− βi , for i = 1,2,3.

Let us first focus attention onβ1(n). Let f (w, x, y) =
1− e−λw. Borrowing a technique from Glynn (1995), we
see that the bias inβ1(n) under initial distributionµ is

Eµ
1

n

n−1∑
i=0

(f (Zi)− πf )

= 1

n
Eµ

∞∑
i=0

(f (Zi)− πf )− 1

n
Eµ

∞∑
i=n
(f (Zi)− πf )

= c

n
+ o(n−1)

provided that

c = Eµ
∞∑
i=0

(f (Zi)− πf ) <∞. (11)

So the bias in the estimatorβ1(n) will be of the order
n−1 if (11) holds. This result holds in great generality. We
in fact have the following result.

Theorem 14 Suppose that8 satisfies the Lyapunov
condition and is aperiodic. Letπ be the stationary prob-
ability distribution of8. If f (z)2 ≤ V (z) for all z, and
µV <∞, then

c = Eµ
∞∑
i=0

(f (8i)− πf ) <∞,

and so

Eµ
1

n

n−1∑
i=0

f (8i)− πf = c

n
+O(qn),

as n→∞, whereq < 1.
The proof of this result is a straightforward extensio

of Theorem 16.0.1 of Meyn and Tweedie (1993).
We can conclude from this result that if the initia

conditions are chosen appropriately (e.g., ifZ0 and Z̃0



Henderson

e

ls

f

t

t

y:

g

e
t

nt
are chosen to be deterministic), then the bias of our thre
estimators is of the ordern−1.

Since the width of the batch mean confidence interva
is of the ordern−1/2, and the bias in the estimators is of
the ordern−1, it follows that bias will typically only be an
important factor for small sample sizes.
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