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ABSTRACT enhance one’anderstandingf a single stochastic system,
then it is often more useful to analyze tHestribution of

| survey several mathematical techniques and results that arecertain random variables, perhaps through density estimation

useful in the context of stochastic simulation. The concepts techniques. Unfortunately, there is not space in this article

are introduced through the study of a simple model of to delve into specific techniques in the theory of density

ambulance operation to ensure clarity, concreteness andestimation. This is a shame, since density estimation is

cohesion. bound to become a more important area of research as users
of simulation become more sophisticated, and the theory
1 INTRODUCTION matures. Nevertheless, many of the techniques presented

here can be applied in such contexts; see Henderson and

The incredibly rich set of mathematical tools and techniques Glynn (1999), for example.
that underlie stochastic simulation is the subject of this In Section 2 | introduce the essential elements of the
paper. Of course, the field is far too large to be covered ambulance model that serves as the underlying thread of the
in a single paper, and so | choose to focus the discussion paper. This then sets the stage for the next two sections of
somewhat. For example, there is no discussion in this the paper, which specialize the model to first the terminating
paper on the vast array of techniques that may be used simulation context, and second, the steady-state context.
for input analysis, uniform and nonuniform random variate In Section 3 we find ourselves in the terminating sim-
generation, sensitivity analysis, and so forth. For excellent ulation context, in which there is a finite time interval over
overviews of these and other topics, see Bratley, Fox and which the simulation will be run. One might then be inter-
Schrage (1987), Law and Kelton (2000), and the tutorials ested in performance measures like the expected utilization
and advanced tutorials in recent proceedings of the Winter of the ambulance, or the expected response time to calls.
Simulation Conference. The primary tool in defining measures such as these is the

Instead, what | attempt to do is to describe a set of strong law of large numbers, which also motivates several
mathematical tools and techniques that can be used to rigor- estimators of the performance measures.
ously define performance measures in both the terminating Of course, in any numerical analysis method, and sim-
and steady-state context. | have also attempted to describeulation is certainly one such method, it is important to
methods that can be used to shed light on the properties of provide error bounds. Such error bounds can be derived
simulation-based estimators of these measures. through the central limit theorem. To apply the central

The emphasis is always on the mathematical results and limit theorem to yield confidence intervals, several con-
techniques that can be used to derive the results. It would stants must be replaced with sample estimates, and one
be very easy to provide a smorgasbord of such results, but should question whether the resulting confidence intervals
such a paper would read like an encyclopedia. Therefore, | are then valid. One approach to establishing this validity
introduce a simple model of ambulance operation that serves is via the continuous mapping theorem.
to unify the discussion, and define several performance The last key idea in Section 3 is one that is often
measures related to this model. useful in simulation analysis. Some performance measures

All of the performance measures described in this paper cannot be written as the expectation of a random variable,
take the form of an expectation of a random variable, or a but may be written as a differentiable function of certain
differentiable function of a finite number of expectations. expectations. In this setting, Taylor's theorem is a very
Such performance measures are useful when the goal is touseful tool that can be used to derive central limit theorems
compare many different stochastic systems, as they provide athat then form the basis for confidence interval construction.
concrete basis for the comparison. However, if the goal is to
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One can also examine the bias properties of estimators in restricted to lie only in the: direction or they direction)
this context using arguments based on Taylor's theorem. fromits present location to the location of the call. Arandom

By imposing different assumptions on the model, one amount of time is then spent at the scene treating the patient,
obtains a steady-state simulation, where the performance independent of all else. After this scene time is complete,
measures are all long-run averages. To rigorously define with probability p (independent of all else), the ambulance
these performance measures, it is necessary to define anis required to transport and admit the patient to the hospital,
appropriate stochastic process with which to work. A great with hospital admission occurring instantaneously once the
deal is known about the class of Markov processes evolving ambulance reaches the hospital, and with probabilitygl
on general (not necessarily countable) state spaces. Inthe ambulance is freed for other work.

Sectio 4 a general state space Markov chain is defined. To
ensure that long-run averages exist, it is necessary to show3 TERMINATING SIMULATION
that this chain is, in a certain sense, positive recurrent.

A very practical approach to establishing that a Markov In this section, we assume that the ambulance only receives
chain is positive recurrent is to use Lyapunov functions, and calls from (say) 7am until 11pm each day. At 11pm, the
this approach is the central mathematical tool illustrated in ambulance completes the call that it is currently serving
Section 4. We use Lyapunov theory to show that certain (if any) and returns to base. We will further assume that
Markov chains are positive recurrent, that our performance if the ambulance is engaged with a call when another call
measures are well-defined, that certain estimators are consis-is received, then some outside agency, such as another
tent and satisfy central limit theorems, and that confidence emergency service, handles the other call. Finally, we
intervals obtained through the method of batch means are assume that the random variables associated with each day
asymptotically valid. An important consideration in the are independent of those for all other days.
steady-state context is that of initialization bias. We also We will be interested in several performance measures
use Lyapunov theory to characterize the magnitude of such relating to ambulance operation as follows.
bias.

The underlying theme of Section 4 is then that Lya- a1 The long-run utilization of the ambulance, i.e., the
punov functions provide an enormously powerful, and easily percentage of time that the ambulance is occupied
applied (at least relative to many other methods!) approach with a call.
to establishing results that underlie steady-state simulation ~ «2 The long-run fraction of calls attended by the am-
methodology. bulance.

Throughout this paper, results are rigorously quoted, and a3 The long-run fraction of calls with response time
references given for the proofs. To simplify the exposition, (time from when the call arrives to when the am-
it is often the case that results are quoted using stronger bulance arrives at the scene) being at mosime
hypotheses than are strictly necessary, but tighter hypotheses units, where the fraction does not take into account
can be found in the references provided. those calls that are handled by the outside agency.

a4 The long-run average response time for those calls
2 A SIMPLE MODEL handled by the ambulance, and not by the outside
agency.

To begin, we describe a very simple model that will serve
as a vehicle for the concepts to follow. The purpose of the
example is therefore simplicity, and certainly not realism,

although with a few straightforward extensions, the model ) ) " -
could be considered to be quite practical. T; < 16, since we will not count any residual time after

Suppose that a single ambulance serves calls in a squarel1PmM needed to complete any call in progress. Aitdays
region. By translating and rescaling units, we may assume tNen, the average utilization of the ambulance is
that the square is centred at the origin, with lower left-hand n
corner at(—1/2,—1/2) and upper right-hand corner at a1(n) = M
(1/2,1/2). For simplicity, we assume that the ambulance 16n
travels at unit speed within the square. The combined
hospital/ambulance base is located at the origin.

Calls arrive (in time) according to a homogeneous
Poisson process with rate The location of the call is
independent of the arrival process, and uniformly distributed
over the square. To serve a call, the ambulance travels in
a Manhattan fashion (i.e., at any given time, movement is
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In order to more carefully define these performance
measures, we proceed as follows. |gtdenote the total
number of hours that the ambulance is busy on dayith

and the long-run utilization; is the limiting value otx1(n).

To ensure that is properly defined, we need to ensure that
this limit exists, and is the same, regardless of the particular
realizationTy, T», ... involved. Observe thatT, : n > 1)

is an i.i.d. sequence of bounded random variables, and so
the strong law of large numbers (SLLN) is applicable.
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Theorem 1 (SLLN) If X1, X>p,...is an i.i.d. se-
guence of random variables with| X1| < oo, then

n
'e
LizaXi — EX; as.
n

asn — oo.

For a proof, see p. 290 of Billingsley (1986).

The SLLN implies that ag — oo, the limit of a1(n)
exists and uniquely defines.

In view of the SLLN, a natural estimator af, is a1(n),
and the SLLN ensures that this estimator converges; to
asn — oo almost surely, i.e., that1(n) is consistent.

Now let us considetry, the long-run fraction of calls
attended by the ambulance. L&t denote the total number
of calls received on day, and letA; denote the number of
those calls attended by the ambulance. Aftedays, the
fraction of calls attended by the ambulance is given by

doim1 A
iz Ni

Dividing both the numerator and denominator of (1)/Ay
and applying the SLLN separately to both the numerator
and denominator, we see that

Z?:l Aj N
s Ni
asn — oo. Note thatE N1, the expected number of calls

received in one day is known, and equal ta.16hus, one
can estimatex by

1)

EAq
o) = —= a.s.
ENq

i1 A

az(n) = 160

But how can one assess the accuracy of the estimators

a1(n) anda2(n)? One answer is via the central limit theorem
(CLT).

Theorem 2 (CLT) If X1, Xo2,... is an i.i.d. se-
guence of random variables witEXf < 00, then

1 n
vn (E ZX,- - EX1> = oN(0,1)

i=1

asn — oo, whereo? = varX1, = denotes weak con-
vergence, andV (0, 1) denotes a standard normal random
variable.

For a proof, see p. 367 of Billingsley (1986).

The CLT basically establishes that the error in the
estimatora(n) is approximately normally distributed with

139

mean 0 and variance? /2561 wheres? = varTy, and this
is the basis for obtaining confidence intervals éar. In
particular, an approximate 95% confidence intervalder
is given by

52

2561

a1(n) £1.9 2

However,s2 must invariably be estimated. The usual
estimator is the sample variance

1 n
> (T = T)?
n—1 Pt

1 < 2 no =2

ET— T2,

n—l,ll n—1"
1=

SN

where T, = n~13"_, T; is the usual sample mean. The
confidence interval that is reported is the same as (2)s#ith
replaced with its sample counterpa,ft But is the modified
confidence interval then valid?

The SLLN implies thai? — s a.s. as — oo. Hence,
by Exercise 29.4 of Billingsley (1986), we have that

). 3)

The natural tool to apply at this point is the continuous
mapping theorem. For a real-valued functibrin R?, let
Dj, denote its set of discontinuities (in‘R

Theorem 3 (Continuous Mapping Theorem)
Let (X, : n > 1) be a sequence of “Rvalued random
variables withX,, = X asn — oo and leth : RY - R
be measurable. IfP(X € D;) = 0, thenh(X,) = h(X)
asn — o0.

For a proof, see p. 391 of Billingsley (1986).

Defineh(x, y) = x/y¥/2, and then apply the continuous
mapping theorem to (3), to obtain that

V2T, — ET N, 1
(#hg )= (g

nY2(T, — ETy)

Sn

= N, 1)

asn — 00, and so the confidence interval procedure outlined
above is indeed valid.

The analysis for the estimatak(n) of ap is similar.

Let us now consider the performance measugeand
ay4. First considens.

Recall that on day, the ambulance responds #y
calls out of a possibl&v;, with the remainder being served
by some outside agency. Fordj < A;, let R;; denote
the response time for thih call handled by the ambulance
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on dayi. Let I(R;; < t*) denote the indicator random
variable that is 1 ifR;; < t*, and O otherwise. Then

To apply this result in our context, le&t; = (Y;, A;),
and defineg(y, a) = y/a. We then find that

A; nY2(az(n) — az) = o N(O, 1),

Yi =) I(Rij <1%)

j=1 where

2  EN-— a3A1)?
 (EAp?

denotes the number of calls that the ambulance reached in
at mostt* time units on dayi. Over the firstz days, the

fraction of calls with response time at mastis then Using the SLLN, one can easily show tha? can be

ply "y, consistently estimated by
nTY A
and the strong law of large numbers implies thatn)
converges almost surely s = EY1/EA1. _ and the same continuous mapping argument used for the

So how can one assess the accuracy of the estimator gstimatorsx; (n) anda(n) establishes that
a3(n)? Certainly, the standard central limit theorem cannot
be applied, becausg(n) is aratio of sample means of i.i.d.
observations. We first consider a strongly related question,
and then return to the problem at hand.

Suppose thak1, X», ... is an i.i.d. sequence of ran-
dom variables with finite meapw = EX;1. Let X, =
n~13""_, X; denote the sample mean./lfs continuous at
w, it follows thatz(X,) — h(un) a.s. a1 — oco. So how
does the erroh(X,) — (1) behave, for larga? Note that
for largen, X, will be very close tou, and so the asymp-
totic behaviour of the error should depend only on the local
behaviour ofr. Indeed, ifh is appropriately differentiable,
then Taylor's theorem implies that

4)

a3(n) = o I (Y — aa(n)Ap)?

sy = ,
! =1y A;)?

az(n) £ 1.96s,//n

is an approximate 95% confidence interval @
The estimator

A;
s A

can be handled in exactly the same fashion.

Taylor's theorem can also be used to examine the bias
properties of the estimatotg(n) andw(n). In particular,
using our previous notation, Taylor's theorem implies that

ay(n) =

PO = 1) = G = ), h(X) — h(u) ~ B () (X — 1) + %h”(a)(ffn — w2

and so if theX;'s have finite variance, then
Taking expectations, we find that
n (X)) —h(w) xR ntP(X, - ) L
= 7N Eh(Xy) — h(u) ~ Sh"Gvarxa/n,
asn — oo, wheren? = h'(n)? var X.

This intuitive argument can be formalized, and also
generalized to higher dimensions to obtain the following
result, sometimes referred to as the delta method.

Theorem 4  Suppose thatX, : n > 1) is an i.i.d.
sequence of Rvalued random variables with || X113 < oco.

i.e., we have an explicit expression for the asymptotic bias.
As before, this argument can be formalized, and generalized
to higher dimensions.

Theorem 5  Suppose thatX, : n > 1) is an i.i.d.
sequence of Rvalued random variables witE||X1||‘21 < o0.
Letu = E X1 denote their common mean, and fetdenote

Letu = E X1 denote their common mean, and letdenote

their common covariance matrix. L&, denote the sample
mean ofX1,...,X,. If h : R - R is continuously
differentiable in a neighbourhood pfwith non zero gradient
at u, then

nY2(h(X,) — h(w) = oN(O, 1)

asn — 0o, whereo? = g’Ag, and g = Vh(w).
For a proof, see p. 122 of Serfling (1980).
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their common covariance matrix. L&, denote the sample
mean ofX4q, ..., X,. If h : R? - R is such that:(X,,) is
bounded for alk with probability 1, and twice continuously
differentiable in a neighbourhood ¢f, then

. 1 Y4
n(Eh(Xy) = h(w) = 5 iJX_jlvzh(mi,A,;;

asn — o0.
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The proof is a slight modification of Theorem 7 in in a similar fashion in this section. The 3 performance
Glynn and Heidelberger (1990). measures given above all involve the term “long-run”. In

We would like to apply this result to both of the es- order that such long-run measures exist, it is first necessary
timatorsas(n) and a4(n). The only condition that is not that the ambulance model be stable. In order to be able
obviously satisfied is thai(X,) is bounded for alk with to make statements about the stability, or lack thereof, of
probability 1. In both cases, we také€x, y) = x/y. Note the model, it is first necessary to define an appropriate
that az(n) = h(Y,, A,) < 1. Foraas(n), observe that the stochastic process from which our performance measures
sum of the response times on any day is bounded by 16 can be derived. Statements about the stability of the model
hours, plus any response time that carries over the end of really relate to the stability of the stochastic process.
the 16 hour day. Since the ambulance takes at most 2 hours There are typically a host of stochastic processes that
to travel from anywhere in the square to anywhere else, the may be defined from the elements of a simulation. The
sum of the response times on any day is bounded by 18. choice of stochastic process depends partly on the per-
This then allows us to conclude thai(n) is also bounded formance measures in question. Given that two of our

with probability 1. measures are related to response time, it is natural to con-
We have therefore established that the bias in the esti- sider a stochastic process that yields information on response
matorsas(n) andaa(n) is of the ordem 1. times. Furthermore, for mathematical convenience, it is of-
It is reasonable to ask whether this bias is sufficient to ten helpful to ensure that one’s stochastic process is Markov.
noticeably affect the performance of the confidence intervals Forn > 1, let T, denote the time at which theth call
produced earlier for a given runlength Recall that the is received, withTp = 0. Forn > 1, let W,, be theresidual
widths of the confidence intervals are of the order/2. workload of the ambulance at tim&,+, i.e., immediately

Thus, the bias decreases at a (much) faster asymptotic rateafter thenth call is received. By residual workload at

than the width of the confidence intervals, and so unless some timer, we mean the amount of time required for the

runlengths are quite small, it is reasonable to neglect bias. ambulance to complete any current call, along with calls
that might also be queued at timeWe defineWp = 0.

4 STEADY-STATE SIMULATION Unfortunately,(W,, : n > 0) is not a Markov process,
because the response time for a future call, and hence the

We now turn to useful mathematical techniques and results workload, depends on the location of the ambulance when the

for steady-state simulation analysis. For this purpose, we ambulance clears the previous workload. So if we also keep

will modify the assumptions of the previous section on track of the location coordinates of the ambulaggg, Y,)

the dynamics of the ambulance model. In particular, in at the instant at which the workloa@, is first cleared,

addition to the assumptions given in Section 2, we assume then the resulting procesd = (Z, : n > 0) is Markov,

that the ambulance operates 24 hours a day, 7 days a weekwhere Z, = (W,, X,,, Y,,). We defineXqg = Yo =0, i.e,,

Furthermore, calls that arrive while the ambulance is busy the ambulance begins at the hospital.

are queued, and answered in first-in first-out order. Once The proces¥ is a general state space Markov chain,

the current call is complete, the ambulance then attends and evolves on the state space

to the next call. Recall that a call is completed either at

the scene (with probability & p), or when the ambulance S =10, 00) x [—1, 1]°.
drops the patient off at the hospital (with probabilty.
For this model, 3 of the previous 4 performance mea- The first step in ensuring that our “long-run” perfor-

sures are still relevant, but because the ambulance is now mance measures are defined is to establishZhexhibits

handling all calls, the fraction of calls answered by the some form of positive recurrence. One way to achieve this

ambulance(az) is no longer of interest. For convenience, is to verify that the chaiX satisfies the following condition,

and also to refine the statement of the performance measureswhich certainly deserves some explanation!

to our new setting, we restate the performance measures. To avoid a potential confusion between general results

and those for our particular model, we will state general
B1  The long-run utilization of the ambulance, i.e., the results in terms of a Markov chai® = (®, : n > 0)
percentage of time that the ambulance is occupied evolving on a state spacg

with a call. The Lyapunov Condition There exists aB < S,
B2 The long-run fraction of calls with response time positive scalarsz < 1,b, and 8, an integerm > 1, a
being at most* time units. probability distributiong on S, and a functionV : & —
B3 The long-run average response time. [1, oo) such that
In the previous section we attempted to rigorously 1. P(d, €-|Po=2z) > d¢p() forall ze B, and
define the suggested performance measures, and also to 2. E(V(®q)|®g = z) < aV(z) + bl (z € B) for all
derive asymptotic results that lay at the heart of confidence zeS.

interval methodology for estimating them. We will proceed
141
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The Lyapunov condition (sometimes called a Foster-
Lyapunov condition) is a stronger condition than we really
require, but it simplifies the presentation considerably. The
functionV is called a Lyapunov (think of energy) function.

The second requirement basically states that when the chain

@ lies outside of the seB, the energy in the system tends
to decrease, and when the chain lies insklethe energy

in the system cannot become too big on the next step. This
condition implies that the seB gets hit infinitely often.

Of course, if one take® = S, the entire state space, then
this requirement is trivially satisfied. The first condition is
needed to ensure that the gtis not too “big”.

In any case, the point is that if a chaib satisfies
the Lyapunov condition, thed is appropriately positive
recurrent. The precise statement is as follows.

Theorem 6  If a discrete time Markov chai® is
aperiodic and satisfies the Lyapunov condition, then s
uniformly ergodic. In particular® has a unique stationary
probability distribution.

For a proof, see Theorem 16.0.1 of Meyn and Tweedie
(1993).

So the question then is, does our ch&irsatisfy the
Lyapunov condition? The answer is yes, and it is instructive
to go through a proof. However, on a first reading one
may skip the following development up to the statement of
Proposition 7 without loss of continuity.

For many systems, the functioh may be taken to be
e’?, wherev is some measure of the work in the system.
In fact, as we now show, one may tak&w, x, y) = e”%
for some yet to be determined constant- 0.

Consider what happens on a single transition of the
chain Z, starting from the point{w, x, y). There will be
some delayr say, until the next call is received, and during
this time the workload decreases at unit rate, at least until
it hits zero. At the instant that the new call arrives, we
add the timen1 required for the ambulance to travel to
the new call. We also add the time required to treat the
patient at the scend/ say. A Bernoulli random variable
& with P(¢ = 1) = p, indicates whether the patient needs
transport to the hospitgdé = 1), or not(é¢ = 0). If £ =1,
then the workload also includes the travel timgto the
hospital.

In summary then, the new workloddl; is given by

Wi=[w—tl"+n1+U+é&n,

where[x]* = max{x, 0}, andt, U and¢ are independent
of each other and ofy1, n2).
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Soifz = (w, x,y), thenE[V(Z1)|Zo = z] is given by

E@"Zo = (w, x,y))
Ee}/(nl+U+Snz)Eeylw*rl+

EeYMmtU+En2) (poyw=1 4 py — ¢ <))
e’V E eV (m+U+En2—1) 1+ Ee)/(f—w))

INIATA

ewaey(2+U+lft) 1+ efwaeyt)
Vw)g(y)(L+e ""Ee"T),

(®)

where the functiow is defined appropriately. Equation (5)
follows since the ambulance travels at unit rate, and the
distances it can travel are such that< 2, andn, < 1.
(Recall that the ambulance travels distances as measured
by the Manhattan metric.)

Assuming thate?V is finite in a neighbourhood of 0,
i.e., U has a moment generating function defined near O,
then we have thap(0) = 1, and

¢'(0) = E(U+3—-1).

So if EU +3 < 1/, then¢’(0) < 0, and sop(y) < 1
for y in some neighbourhood of 0. Now, we also require
that Ee¥" < oo, which is true fory < A, sincetr has an
exponential distribution with rat@. So chooses € (0, A)

so that¢ (y) < 1. We then have that

EV(ZD)|Zo=z] = V(w)p(y)(L+e "VEe’T).
Now, there is som& > 0 such that ifw > K, then
d()A+e "VEET) < 1,

since Ee¥™ < oo and¢(y) < 1. Furthermore, fow < K
we have that

E[V(Z1)|Zo = 7] < e’ K+3+0) o,

Thus, if we takeB = [0, K] x [—1, 1)?, then the second
requirement in the Lyapunov condition is met.

It remains to check the first requirement. Observe
that if the time till the next call is large enough, then the
ambulance will have reached its base after serving all calls.
In particular, ift > K + 1, then independent of € B,
the next call will be served immediately by the ambulance
from the base. If we lelp denote the distribution of1
under this scenario, then we immediately have that for all
7 € B,

P(z,-) = e " K+Dg(),
and the first requirement in the Lyapunov condition is sat-
isfied.
In summary then, we have established tAasatisfies
the Lyapunov condition. It is straight-forward to show that
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Z is aperiodic, and so we arrive at the following result. where, fori > 0, 7;;,.1 denotes the time between thé and
Recall thatU is a generic service time (time spent at the (i + 1)th arrival. Now, the SLLN for i.i.d. random variables

scene), and represents a generic interarrival time. implies that the denominator convergesitol. We would

Proposition 7 If U possesses a moment generating like to apply the MCSLLN to the numerator, but it is not
functioninaneighbourhood of 0, atl/+3 < Et, thenthe yet in an appropriate form. However, using a simple device
chain Z is V-uniformly ergodic, wheré/ (w, x, y) = ", we can fix this difficulty. In essence, we are going to apply
for somey > 0. filtering; see Glasserman (1993). We have that

The stability condition
E min{w, 11} wP(ty > w)+ Etil (11 < w)

AL - e,

EU+3<ET

has a very nice interpretation in terms of the model. The
left-hand side of the inequality gives an upper bound on the
expected amount of work (time at the scepdravel time
to the scenet travel time from the scene to the hospital)
brought in by an arriving call, whereas the right-hand side
gives the expected amount of time that the ambulance has
between calls to deal with this work. This condition can Ngtice thatgi(n) is in exactly the form that we need to
certainly be weakened by being more careful about defining apply the MCSLLN, with f(w, x, y) = 1 — e~**, which
how much work each call brings to the system, but this is is bounded. and so we find tr’1a£
not something that we will pursue further. ’
The main point is that Proposition 7 giveasily verifi-
able conditions under which the system is stable. While it
may have appeared somewhat difficult to verify the Lyapunov
condition, the argument used is actually quite straightfor-
ward, and we will see that the payoff is easily worth the )
effort. Based on this result, we can now define our perfor- Turning now to the performance measugsand g,
mance measures rigorously, and also construct estimatorsf"St note that both measures are related to the response

that we can prove are consistent and satisfy central limit times of the ambulance to c.alls: The response titpeof
the ambulance to theth call is given, forn > 1, by

and so we replace (6) by

n—1

_} _ AW
ﬂ1<n>—n§(1 e M, @)

B1(n) — p1 a.s.

asn — oo. This then is a rigorous definition ¢f;, and
also a proof that the estimatgi (n) is (strongly) consistent.

theorems.

As in Section 3, the rigorous definition of all of our per-
formance measures is based on the strong law of large num- Ry = [Wa1—l™ +m
bers. For simplicity, we state this theorem under stronger = W, —-U, —&n2n),
hypotheses than are really necessary.

Theorem 8 (MCSLLN) Suppose thatb is a V- where W, is the workload just after thath call arrives,
uniformly ergodic Markov chain on state space with n1(n) is the time required for the ambulance to travel to
stationary probability distributionr. Let f : S — R be a the location of thenth call, U, is the service time at the
real-valued function oi. If 7| f| = [ | f(x)|7(dx) < oo, nth call, &, is the indicator variable that is 1 if the patient
then needs to be transported to hospital, apdr) is the time

= required for the ambulance to travel to the hospital from

b Zf(cbi) — nf as. the location of thesth call.

i3 Observe that we cannot writ, as a (deterministic)
asn — co. function of Z,,. We could apply a filtering method as above,

For a proof, see Theorem 17.0.1 of Meyn and Tweedie but it is instructive to adopt a different approach. Suppose
(1993). that we append additional information to the procéss
Let us return now to the performance measures we C'€ating a new Markov chaid = (Z(n) : n > 0). In
outlined earlier. First, consides;, the utilisation of the particular, let
ambulance. The actual utilisation of the ambulance over -
the time interval[O, T;,), i.e., up until the time of thesth Z(n) = (Wy, Xu, Y, Uy, &n).

arrival is B
4 Using the same methods as before, we can showZhat

-1 ; %0 . o " .
n”> > iz Min{Wi, Tiva) ©6) V-uniformly ergodic and aperiodic, whekéis the function
nL Yy i

V(w, x, y,u,&) =e"".
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We now have thar, = r(Z,) say, where the function
r(-) is defined by

r(w"xv )’»M’%) =w—-u _Ed((-xv y): (O$ O))

and d is the function returning the (Manhattan) distance
between its two arguments.

The fraction of the firsk calls for which the response
time is less than* is

1 n .
Ba(n) = ;;I(Rl- <1, (8)

and the MCSLLN immediately implies tha(n) — B2
a.s. am — oo, thus both definingd, and proving that the
estimatorp,(n) is consistent.

The mean response time over the fitstalls is

n

Ba(n) = % Y R = % > (2.
i=1

i=1

9)

To apply the MCSLLN, we need to show thatifis the
stationary distribution ofZ, thensr < co. The following
result is extremely useful in this regard.

Proposition 9  Suppose that the Lyapunov condition
holds for a Markov chairb on state spacé with stationary
probability distributionsz. Then for any functiorf : S — R
with | f(z)| < V(@Y% forall z € S, nf < oo.

For a proof, see Lemma 17.5.1 of Meyn and Tweedie
(1993).

To apply this result to the chaif, note that ifz =
(w, x, y,u, £), thenV (z)¥2 = ¢7»/2 so that? possesses
an exponential moment iw. Hence the stationary mean
workload is also finite, implying thatr < oo, sincer(z) <
w. Finally then, we may conclude th@g(n) — B3 a.s.
asn — oo, thus definingBs and proving thatgz(n) is
consistent.

We summarize the above discussion with the following
proposition.

Proposition 10  For i = 1,2, 3, the performance
measureg;, are well-defined, and the estimatg@gn) are
strongly consistent (a8 — o0).

So we now turn to the error in the estimators. As

before, this can be assessed through confidence intervals

that derive from a central limit theorem. Again, in order for
simplicity, we state the Markov chain central limit theorem
under stronger conditions than are strictly necessary.

For a functionf : § — R with | f| < oo, let f(-) =
f()—nf. Also, letE, denote the expectation operator over
the path space of a Markov chain under initial distribution
.
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Theorem 11 (MCCLT) Suppose that the chaid
satisfies the Lyapunov condition and is aperiodic. Then,
for any functionf : S — R with f(z)2 < V(z) for all z,

n—1

Vn (% Yo f(@) - nf) = oN(0, 1),

i=0

wherer is the stationary probability distribution o, and

0% = Ex[f(90)"1+2)_ Ex[f(®0) f(®0)].  (10)

k=1

For a proof, see Theorem 17.0.1 of Meyn and Tweedie
(1993).

We immediately obtain the following result.

Proposition 12  We have that

Vn(Bi(n) — B;) = oiN(0, 1)

asn — oo, for appropriately definedrl.z.

Thus, we see that just as in the terminating simulation
case, the error in the estimat@; (n) is approximately
normally distributed with mean 0 and varian@lé/n.

This result serves as a foundation for constructing con-
fidence intervals fors;. One approach is to estima,t:e;2
directly using the regenerative method, which is certainly
easily applied to our example. But the method of batch
means is, at least currently, more widely applicable, and the
preferred method in commercial simulation software, and
so we instead consider this approach.

Suppose that we have a sample path @1, ..., ®,_1.
Divide this sample path inte: batches of sizé, where
for convenience we assume that= mb, so that thekth

batch consists of observatiodsy_1)p., ..., Prp—1. Now,
fork=1,...,m, let M; be the sample mean over thth
batch, i.e.,
1 k-1
MkZZ- Z (@),
i=(k—1)b

and letM,, denote the sample mean of thebatch means
Ma, ..., M,. Finally, let

1 m
2 _ YRy
So= gl(Mk M)

denote the sample variance of th#.'s. The method of
batch means provides a confidence intervalsfgr of the
form M,, + ts,,//m, for some constant, and relies on
the assumption that for large, (M,, — 7 f)/(sm//m) iS
approximately-distributed, withm — 1 degrees of freedom.
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The MCCLT above implies that as — oo with m,
the number of batches, held fixed, all of the batch means
are asymptotically normally distributed with meanf, and
varianceno?/n. If each of the batch means are also asymp-

Notice that we have already established that the con-
ditions of Theorem 13 hold for all of our estimatggn).
Thus, we immediately arrive at the conclusion that the
method of batch means will yield asymptotically valid con-

totically independent, then a standard result (see p. 173) of fidence intervals for each of the performance measgiresy
Rice (1988) for example) shows that the above confidence and gs.

interval methodology is valid.
But how can we be sure that this asymptotic indepen-
dence of the batch means will hold? A sufficient condition

As in the terminating simulation case, the performance
of these confidence interval procedures for fimitenay be
negatively impacted by bias. Of course, the bias depends

that supplies both the asymptotic independence, together on the initial distributionu say of the chaind. Let E,

with asymptotic normality, is that the chaid satisfy a
functional central limit theorem; see Glynn and Iglehart
(1990), from which much of the following discussion is
adapted.

Definition 1 Let ® be a Markov chain on state
spaceS, and let f : S — R. Define the continuous time
processY = (Y(¢):t > 0) byY (1) = &|;). ForO<r <1,
let

nt
Y, (1) =n_l/ F(Y(s))ds
0
and set

L (1) = nY2(Y, (1) — k1),

for some constant. We say thatb satisfies a functional
central limit theorem (FCLT) if there exists an> 0 such
that ¢, = nB asn — oo, where B denotes a standard
Brownian motion.

Observe that ifd satisfies a FCLT, then thgth batch
meanM; can be expressed as

m[Yy(j/m) — Yu((j — 1)/m)]
K+ 2m(g, (G/m) — & ((G — 1)/m).

M;

Since the increments of Brownian motion are normally dis-
tributed, the FCLT then implies that tid¢;’s are asymptoti-
cally normally distributed with meanand variancenn?/n,
which is a conclusion that we had already reached. But the
increments of Brownian motion are also independent, which
implies that theM;’s are asymptotically independent, and

this is the final result needed to ensure that the batch means

confidence methodology outlined above is asymptotically
valid.

So when can we be sure thétsatisfies a FCLT? One
sufficient condition is the following result.

Theorem 13  Suppose thab satisfies the Lyapunov
condition, andf is such thatf(z)2 < V(z) for all z. If
the constant? defined in (10) above is positive, th@n
satisfies a functional central limit theorem with= = f,
and n? = o2

For a proof, see Theorems 17.4.4 and 17.5.3 of Meyn
and Tweedie (1993).
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denote the expectation operator over the path space of the
chain @ under initial distributionx. Then the bias in the
estimatorg; (n) is given by E, g;(n) — g, fori =1,2,3.

Let us first focus attention oy (n). Let f(w, x, y) =
1— e~ **. Borrowing a technique from Glynn (1995), we
see that the bias if1(n) under initial distributionu is

n—1

1
Ey= Y (f(Zi) —nf)
ni:O

1 = 1 =
~Ey gmz,») —7f) = ~Ey ;pf(zi) —7f)

S tom™
n

provided that

¢=Eu) (f(Z)—nf) < 0.

i=0

11)

So the bias in the estimat@s (n) will be of the order
n~1if (11) holds. This result holds in great generality. We
in fact have the following result.

Theorem 14  Suppose thab satisfies the Lyapunov
condition and is aperiodic. Let be the stationary prob-
ability distribution of ®. If f(z)2 < V(z) for all z, and
uwV < oo, then

c=Eu Y (f(®)—7f) <00,

i=0
and so

n—1

1
Eu Y f(@) —xf == +0(",

i=0

asn — oo, whereg < 1.

The proof of this result is a straightforward extension
of Theorem 16.0.1 of Meyn and Tweedie (1993).

We can conclude from this result that if the initial
conditions are chosen appropriately (e.g.,Z§ and Zg
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are chosen to be deterministic), then the bias of our three
estimators is of the order—2.

Since the width of the batch mean confidence intervals
is of the ordern—%2, and the bias in the estimators is of
the ordem 1, it follows that bias will typically only be an
important factor for small sample sizes.
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