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ABSTRACT

The objective of exploratory analysis is to gain a broad
understanding of a problem domain before going into de-
tails for particular cases. Its focus is understanding com-
prehensively the consequences of uncertainty, which re-
quires a good deal more than normal sensitivity analysis.
Such analysis is facilitated by multiresolution, multiper-
spective modeling (MRMPM) structures that are becoming
increasingly practical. A knowledge of related design
principles can help build interfaces to more normal legacy
models, which can also be used for exploration.

1 BACKGROUND

Strategy problems are typically characterized by enormous
uncertainties that should be central in assessment of alterna-
tive courses of action—although individuals and organizations
often suppress those uncertainties and give a bizarre level of
credence to wishful-thinking planning factors and other sim-
plifications (Davis 1994 Ch. 4, Davis, Gompert, and Kugler
1996). In the past, an excuse for downplaying uncertainty
analysis—except for marginal sensitivity analysis around
some “best-estimate” baseline of dubious validity—was the
sheer difficulty of doing better. The time required for setup,
run, and analysis made extensive uncertainty work infeasible.
Today, technology permits extensive uncertainty analysis with
personal computers.

A key to treating uncertainty well is exploratory
analysis (Davis and Hillestad 2001). The objectives of
exploratory analysis include understanding the implications
of uncertainty for the problem at hand and informing the
choice of strategy and subsequent modifications. In
particular, exploratory analysis can help identify strategies
that are flexible, adaptive, and robust. — In successive
sections, this paper describes exploratory analysis; puts it in
context; discusses enabling technology and theory; points to
companion papers applying the ideas; and concludes with
some technology challenges for modeling and simulation.
The paper draws heavily on a forthcoming book (Davis and
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Hillestad 2001) and builds on a much rougher preliminary
presentation of the same material (Davis 2000).

2  EXPLORATORY ANALYSIS
2.1 What Exploratory Analysis Is and Is Not

Exploratory analysis examines the consequences of uncer-
tainty. It can be thought of as sensitivity analysis done right,
but is so different from usual sensitivity analysis as to
deserve a separate name. It is closely related to scenario
space analysis (Davis 1994 Ch. 4) and “exploratory
modeling” (Bankes 1993, Lempert et al. 1996). It is
particularly useful for gaining a broad understanding of a
problem domain before dipping into details. That, in turn,
can greatly assist in the development and choice of
strategies. It can also enhance “capabilities-based planning”
by clarifying when—i.e., in what circumstances and with
what assumptions about all the other factors—a given
capability such as an improved weapon system or enhanced
command and control will likely be sufficient or effective
(Davis, Gompert, and Kugler 1996). This contrasts with
establishing a base-case scenario, and an organizationally
blessed model and data base, and then asking “How does the
outcome change if I have more of this capability?”

2.2 Types of Uncertainty

Uncertainty comes in many forms and it is useful (National
Research Council 1997) to distinguish between input
uncertainties (i.e., parametric uncertainties) and structural
uncertainty. Input uncertainty relates to imprecise know-
ledge of the model’s input values. Structural uncertainty
relates to questions about the form of the model itself: Does
it reflect all the variables on which the real-world
phenomenon purportedly described by the model depends?
Is the analytical form correct? Some uncertainties may be
inherent because they represent stochastic processes. Some
may relate to fuzziness or imprecision, while others reflect
discord among experts. Some relate to knowledge about the



values of well-defined parameters, whereas others refer to
future values that as yet have no true values.

It is convenient to express the uncertainties
parametrically. If unsure about the model’s form, we can
describe this also to some extent with parameters. For
example, parameters may control the relative size of
quadratic and exponential terms in an otherwise linear
model. Or a discrete parameter may be a switch choosing
among distinct analytical forms. Some parameters may
apply to the deterministic aspect of a model, others to a
stochastic aspect. For example, a model might describe the
rate at which Red and Blue suffer attrition in combat
according to a simplistic Lanchester square law:
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where the attrition coefficients for Red and Blue have both
deterministic and stochastic parts, each of which are
subject to uncertainty, as in (illustrating for Blue only)

Ky()= Ky [1 + ¢, N, (t:1.05,)]-

Here the N term is a normal random variable with
mean p and standard deviation o. It represents stochastic
processes occurring within a particular simulated war, e.g.,
from one time period to the next. The means and standard
deviations are ordinary deterministic parameters, as are the
coefficients Ky,, K., ¢;, and c¢,. These have constant values
within a particular war, but at what value they are constant
is uncertain.

So far the equations have represented input uncertainty.
However, suppose there is controversy over using the linear,
square, or some hybrid version of a Lanchester equation.
We could represent this dispute as input, or parametric,
uncertainty by modifying the equation to read

RBOR (1) %” - KB OR ).

Now, by treating the exponents as uncertain parameters,
we could explore both input and structural uncertainties in
the model—at least to some extent. The fly in the ointment
is that nature’s combat equations are much more complex (if
they exist), and we don’t even know their form. Suppose,
merely as an example, that combatant effectiveness decays
exponentially as combatants grow weary. We could not
explore the consequences of different decay times if we did
not even recognize the phenomenon in the equation’s form.
In fact, we often do not know the true system model.
Nonetheless, much can be accomplished by allowing for
diverse effects parametrically.
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2.3 Types of Exploratory Analysis

Exploratory analysis can be conducted in several ways
(Davis and Hillestad 2001). Although most of the methods
have been used in the past (see especially Morgan and
Henrion 1992), they are still not appreciated and are often
poorly understood.

Input exploration (or parametric exploration) involves
conducting model runs across the space of cases defined by
discrete values of the parameters within their plausible
domains. It considers not just excursions taken one-at-a-
time as in normal sensitivity analysis relative to some
presumed base-case set of values, but rather all the cases
corresponding to value combinations defined by an experi-
mental design (or a smaller sample). The results of such
runs, which may number from dozens to hundreds of thou-
sands or more, can be explored interactively with modern
displays. Within perhaps a half-hour, a good analyst doing
such exploration can often gain numerous important
insights that were previously buried. He can understand
not just which variables “matter,” but when. For example,
he may find that the outcome of the analysis may be rather
insensitive to a given parameter for the so-called base case
of assumptions, but quite sensitive for other plausible
assumptions. That is, he may identify in what cases the
parameter is important. To do capabilities-based planning
for complex systems, this can be distinctly nontrivial.

A complement to parametric exploration is
“probabilistic exploration” in which uncertainty about the
input parameters is represented by distribution functions
representing the totality of one’s so-called objective and
subjective knowledge. 1 sometimes use quotes around
“probability” because the distributions are seldom true
frequencies or rigorous Bayesian probabilities, but rather
rough estimates or analytical conveniences.

Using analytical or Monte Carlo methods, the resulting
distribution of outcomes can be calculated. This can
quickly give a sense for whether uncertainty is particularly
important. In contrast to displays of parametric explora-
tion, the output of probabilistic exploration gives little
visual weight to improbable cases in which various inputs
all have unlikely values simultaneously. Probabilistic
exploration can be very useful for a condensed net assess-
ment. Note that this use of probability methods is different
from using them to describe the consequences of a
stochastic process within a given simulation run. Indeed,
one should be cautious about using probabilistic explora-
tion because one can readily confuse variation across an
ensemble of possible cases (e.g., different runs of a war
simulation) with variation within a single case (e.g.,
fluctuation from day to day within a single simulated war).
Also, an unknown constant parameter for a given simulated
war is no longer unknown once the simulation begins and
simulation agents representing commanders should perhaps
observe and act upon the correct values within a few sim-



ulated time periods. Despite these subtleties, probabilistic
exploration can be quite helpful.

The preferred approach treats some uncertainties
parametrically and others with uncertainty distributions.
That is, it is hybrid exploration. It may be appropriate to
parameterize a few key variables that are under one’s own
control (purchases, allocation of resources, and so on),
while treating the uncertainty of other variables through
uncertainty distributions. One may also want also to para-
meterize a few variables characterizing the future context
in which strategy must operate (e.g., short warning time).
There is no general procedure here; instead, the procedure
should be tailored to the problem at hand. In any case, the
result can be a comprehensible summary of how known
classes of uncertainty affect the problem at hand.

Let me give a few examples of what exploratory
analysis can look like. Figure 1 mimics a computer screen
during a parametric exploration of what is required
militarily to defend Kuwait against a future Iraqi invasion
by interdicting the attacker’s movement with aircraft and
missiles (Davis and Carrillo 1997). Each square denotes
the outcome of a particular model case (i.e., a specific
choice of all the input values). The model being used
depends on 10 variables—those on the X, y, and z axes, and
seven listed to the side (the z—axis variable is also listed
there, redundantly). The outcome of a given simulation is
represented by the color (or, in this paper, by the pattern)
of a given square. Thus, a white square represents a good
case in which the attacker penetrates only a few tens of
kilometers before being halted. A black square represents
a bad case in which the attacker penetrates deep into the
region that contains critical oil facilities. The other
patterns represent in-between cases. The number in each
square gives the penetration distance in km.
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Figure 1: Display of Parametric Exploration
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To display results in this way for a sizable scenario
space RAND has often used a program called Data View,
developed at RAND in the mid 1990s by Stephen Bankes
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and James Gillogly. After running the thousands or hun-
dreds of thousands of cases corresponding to an experi-
mental design for parametric exploration, we explore the
outcome space at the computer. We can choose interac-
tively which of the parameters to vary along the x, y, and z
axes of the display. The other parameters then have the
values shown along the right. However, we can click on
their values and change them interactively by selecting
from the menu of values for cases that have been run.

As mentioned above, in about a half an hour of such
interactive work, one can develop a strong sense of how
outcomes vary with combinations of parameter values. This
is much more than traditional sensitivity analysis.
Moreover, one can search out and focus upon the “good”
cases. Figure 1 is merely one schematic snapshot of the
computer screen for choices of parameter values that show
some successes. Most snapshots would be dominated by
black squares because it is difficult to defend Kuwait against
a large threat. Data View is not a commercial product, but
RAND has made it available to government clients and
some other organizations (e.g., allied military staffs).

Other personal-computer tools can be used for the same
purpose and the state of the art for such work is advancing
rapidly. A much improved version of Data View called
CAR™ is under development by Steve Bankes at Evolving
Logic <www.evolvinglogic.com>. For those who
prefer spreadsheet modeling, there are plug-in programs for
Microsoft EXCEL® that provide statistical capabilities and
some means for exploratory analysis. Two are Crystal
Ball® <www.decisioneering.com> and @Risk®
<www.palisade.com/.html/risk.html>. For a
number of reasons such as visual modeling and convenient
array mathematics, I usually prefer the Analytica® modeling
system (the exception is when one needs procedural
programming). Analytica <www.lumina.com> is an
outgrowth of the Demos system developed at Carnegie
Mellon University (Morgan and Henrion, 1992).

Figure 2 shows a screen image from recent work with
Analytica on the same problem treated in Figure 1. In this
case, we have a more traditional graphical display. Out-
come is measured along the Y axis and one of the
independent variables is plotted along the X axis. A
second variable (D-Day shooters) is reflected in the family
of curves. The other independent variables appear in the
rotation boxes at the top. As with Data View, we change
parameter values by clicking on a value and selecting from
a menu of values. Such interactive displays allow us to
“fly through the outcome space” for many independent
parameters, in this case 9. For this number, the display
was still quickly interactive for the given model and comp-
uter (a Macintosh PowerBook G3 with 256 MB of RAM).

So far, the examples have focused on parametric
exploration. Figure 3 illustrates a hybrid exploration
(Davis, et al. 1998). It shows the distribution of simulation
outcomes resulting from having varied most parameter
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Figure 2: Analytica Display of Parametric Exploration
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Figure 3: Analytica Display of “Probabilistic” Exploration

values “probabilistically” across an ensemble of possible
wars, but with warning time and the delay in attacking
armored columns left parametric.

The probabilistic aspect of the calculation assumed,
for example, that the enemy’s movement rate had a
triangular distribution across a particular range of values
and that the suppression of air defenses would either be in
the range of a few days or more like a week, depending on
whether the enemy did or did not have air-defense systems
and tactics that were not part of the best estimate. We
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represented this possibility with a discrete distribution for
the likelihood of such surprises. The two curves in Figure
3 differ in that the one with crosses for markers assumes
that interdiction of moving columns waits for suppression
of air defenses (SEAD). The other curve assumes that
interdiction begins immediately because the aircraft are
assumed stealthy.

This depiction of the problem shows how widely the
outcomes can vary and how the outcome distribution can
be complex. The non-stealthy-aircraft case shows a spike
at the right end where cases pile up because, in the
simulation, the attacker halts at an objective of about
600km. Note that the mean is not a good metric: the
“variance” is huge and the outcome may be multimodal.

These results have been from analyses accomplished
in recent years for the Department of Defense. As we look
to the future, much more is possible with computational
tools. Much better displays are possible for the same
information and, even more exciting, computational tools
can be used to aid in the search process of exploration. For
example, instead of clicking through the regions of the
outcome space, tools could automatically find portions of
the space in which particular outcomes are found. One
could then fine-tune one’s insights by clicking around in
that much more limited region of the outcome space. Or, if
the model is itself driven by the exploration apparatus, then
the apparatus could search for outcomes of interest and
then focus exploration on those regions of the input space.
That is, the experimental design could be an output of the
search rather than an input of the analysis process. These
methods are at the core of the evolving tool mentioned
earlier called CAR (for Computer-Assisted Reasoning).

2 EXPLORATORY ANALYSIS
IN CONTEXT

Exploratory analysis is an exciting development with a
long history with RAND’s RSAS and JICM models. How
ever, it is only one part of a sound approach to analysis
generally. It is worth pausing to emphasize this point.
Figure 4 shows how different types of models and
simulations (including human games) have distinct virtues.
The figure is specialized to military applications, but a
more generic version applies broadly to a wide class of
analysis problems.

Richness of
Reso-  Analytical Decisionlntegra- Pheno- Human
Type Model | lution Agility Breadth support tion mena  actions
Analytical Low
Human game | Low %%
Campaign Med. %////
Entity-level High
Field expt. High
Figure 4: Virtues of a Model and Gaming Family



White rectangles indicate “good;” that is, if a cell of
the matrix is white, then the type model indicated in the
left column is very effective with respect to the attribute
indicated in the cell’s column. In particular, analytical
models (top left corner), which have low resolution, can be
especially powerful with respect to their analytical agility
and breadth. In contrast, they are very poor (black cells)
with respect to recognizing or dealing with the richness of
underlying phenomena, or with the consequences of both
human decisions and behavior. In contrast, field experi-
ments often have very high resolution (they may be using
the real equipment and people), and may be good or very
good for revealing phenomena and reflecting human
issues. They are, however, unwieldy and inappropriate for
studying issues in breadth. The small insets in some of the
cells indicate that the value of the type model for the
particular purpose can often be enhanced a notch or two if
the models include sensible decision algorithms or
knowledge-based models that might be in the form of
expert systems or artificial-intelligence agents.

Figure 4 was developed as part of an exhortation to the
Department of Defense regarding the need to have families
of models and families of analysis (Davis, Bigelow, and
McEver 1999). Unfortunately, government agencies often
focus on a single model such as the venerable TACWAR,
BRAWLER, or JANUS.

The niche of exploratory analysis is the top left hand
corner of the matrix in Figure 4, which emphasizes
analytical agility and breadth of analysis, rather than depth.
However, the technique can be used hierarchically if one
has a suitably modularized system model. One can do top-
level exploration first and then zoom in. This is easier said
than done, however, especially with traditional models.
Specially designed models make things much easier, as
discussed in what follows.

3 TECHNOLOGICAL ENABLERS

3.1 The Curse of Dimensionality

In principle, exploratory analysis can be accomplished with
any model. In practice, it becomes difficult with large
models. If F represents the model, it can be considered to
be simply a complicated function of many variables. How
can we run a computerized version of F to understand its
character? If F has M inputs with uncertain values, then
we could consider N values for each input, construct a full
factorial design (or some subset, using an experimental
design and sampling), run the cases, and thereby have a
characterization. However, the number of such cases
would grow rapidly (as N™ for full-factorial analysis),
which quickly gets out of hand even with big computers.
Quite aside from setup-and-run-time issues, comprehend-
ing and communicating the consequences becomes very
difficult if M is large. Suppose someone asked “Under
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what conditions is F less than the danger point?” Given
sufficiently powerful computers and enough time, we
could create a data base of all the cases, after which we
could respond to the question by spewing out lists of the
cases in which F fell below the danger point. The list,
however, might go on for thousands of pages. What would
we do with the list? This is one manifestation of the curse
of dimensionality.

3.2 The Need for Abstractions

It follows that, even if we have a perfect high-resolution
model, we need abstractions to use it well. And, in the
dominant case in which the high-resolution model is by no
means perfect, we need abstractions that allow us to ponder
the phenomena in meaningful ways, with relatively small
numbers of cognitive chunks. People can reason with 3, 5,
or 10 such cognitive chunks at a time, but not with
hundreds. If the problem is truly complex, we must find
ways to organize our reasoning. That is, we must
decompose the problem by using principles of modularity
and hierarchy. The need for an aspect of hierarchical
organization is inescapable in most systems of interest—
even though the system may be highly distributed and
relatively nonhierarchical in an organizational sense.

A corollary of our need for abstractions is that we need
models that use the various abstractions as inputs. It is not
sufficient merely to display the abstracts as intermediate
outputs (displays) of the ultimate detailed model. The
reasons include the fact that when a decision maker asks a
what-if question using abstractions, there is a 1:n mapping
problem in translating his question into the inputs of a more
detailed model. So also when one obtains macroscopic
empirical information and tries to use it for calibration.
Although analysts can trick the model by selecting a
mapping, doing so can be cumbersome and treacherous. It is
often better if the question can be answered by a model that
accepts the abstractions as inputs.

3.3 Finding the Abstractions

Given the need for abstractions, how do we find them and
how do we exploit them? Some guidelines are emerging
(Davis and Bigelow 1998).

3.3.1 When Conceiving New
Models and Families
With new models, the issue is how to design. Several
options here are as follows:
*  Design the models and model families top down
so that significant abstractions are built in from
the start, but do so with enough understanding of



the microscopics so that the top-down design is
valid.

Design the models and families bottom up, but
with enough top-down insight to assure good
intermediate-level abstractions from the start.

Do cither or both of the above, but with designs
taken from different perspectives.

The list does not include a pure top-down or pure
bottom-up design approach. Only seldom will either
generate a good design of a complex system. Note also the
idea of alternative perspectives. For example, those in
combat arms may conceive military problems differently
than logisticians, and even more differently than historians
attempting a macro-view explanation of events.

3.3.2 When Dealing with Existing Models

Only sometimes do we have the opportunity to design from
scratch. More typically, we must adapt existing models.
Moreover, the model “families” we may have to work with
are often families more on the basis of assertion than
lineage. What do we then do? Some possibilities here are:

Study the model and the questions that users ask
of the model to discover useful abstractions. For
example, inputs X, Y, and Z may enter the
computations only as the product XYZ. Or a
decision maker may ask questions in terms of
concepts like force ratio. For mature models, the
displays that have been added over time provide
insights into useful abstractions.

Apply statistical machinery to search for useful
abstractions. For example, such machinery might
test to see whether the system’s behavior
correlates not just with X,Y, and Z, but with XY,
XZ,YZ, or XYZ.

Idealize the system mathematically and combine
this with physical insight or empirical observation
to guess at the form of aggregate behavior (e.g.,
inverse dependence on one variable, or exponen-
tial dependence on another). Consider approxi-
mations such as an integral being the product of
the effective width of the integration interval and
a representative non-zero value of the integrand.

The first approach is perhaps a natural activity for a
smart modeler and programmer who begins to study an
existing program, but only if he open-minded about the
usefulness of higher-level depictions. The second
approach is an extension of normal statistical analysis. The
third approach is a hybrid that I typically prefer to the
second. It uses one’s understanding of phenomenology,
and theories of system behavior, to gain insights about the
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likely or possible abstractions before cranking statistical
machinery.

3.3.3 The Problem with Occam’s Razor

The principle of Occam’s razor requires that we prefer the
simplest explanation and, thus, the simplest model.
Enthusiasts of statistical approaches tend to interpret this to
mean that one should minimize the number of variables.
They tend to focus on data and to avoid adding variables
for “explanation” if the variables are not needed to predict
the data. In contrast, subject-area phenomenologists may
prefer to enrich the depiction by adding variables that
provide a better picture of cause-effect chains, but go well
beyond what can be supported with meager experimental
data. My own predilection is that of the phenomenologist,
but with MRM designs one can sometimes have one’s cake
and eat it: one can test results empirically by focusing on
the abstract versions of a model, while using richer
versions for deeper explanation.

As an aside, a version of the Occam’s Razor principle
emphasizes use of the explanation that is simplest enough
to explain all there is to explain, but nothing simpler! This
should include phenomena that one “knows about” even if
they are not clearly visible in the limited data. I would add
to this the admonition made decades ago by MIT’s Jay
Forrester that to omit showing a variable explicitly may be
equivalent to assuming its value is unity.

Competition among approaches can be useful. For
example, phenomenologists working a problem may be
convinced that a problem must be described with complex
computer programs having hundreds or thousands of data
elements. A statistical analysis may show that, despite the
model’s apparent richness, the system’s resulting behavior is
driven by something much simpler. This, in turn, may lead
to a reconceptualizing of the problem phenomenologically.
Many analogues exist in physics and engineering.

3.3.4 Connections Between New
and Old Models

Although the discussion in Section 4.3.2 distinguished
sharply between the case of new models and old ones, the
reader may have noticed connections. In essence, working
with existing models should often involve sketching what
the models should be like and how models with different
resolution should connect substantively. That is, working
with existing models may require us to go back to design
issues. Individuals differ, but I, at least, often find it easier
to engage the problem than to engage someone’s else’s
idiosyncratically described solution. Furthermore, I then
have a better understanding of assumptions and
approximations.

With this background, let me now turn to the design of
multiresolution, multiperspective models and families



(Davis and Bigelow 1999). Although this relates most
directly to new models, it is relevant also to working with
legacy models in preparing for exploratory analysis.

3.4 Multiresolution, Multiperspective Modeling
3.4.1 Definition

Multi-resolution modeling (MRM) is building a single
model, a family of models, or both to describe the same
phenomena at different levels of resolution, and to allow
users to input parameters at those different levels
depending on their needs. Variables at level n are
abstractions of variables at level n+1. MRM is sometimes
called variable-or selectable-resolution modeling. Figure 5
illustrates MRM schematically. It indicates that a higher
level model (Model A) itself has more than one level of
resolution. It can be used with either two or four inputs.
However, in addition to its own MRM features, it has input
variables that can either be specified directly or determined
from the outputs of separate higher-resolution models
(models B and C, shown as “on the side,” for use when
needed. In principle, one could attach models B and C in
the software itself—creating a bigger model. However, in
practice there are tradeoffs between doing that or keeping
the more detailed models separate. For larger models and
simulations, a combination single-model/family-of-models
approach is desirable. This balances needs for analytical
agility and complexity management.

Model A

Figure 5: A Multiresolution Family

MRM is not sufficient by itself because of the need for
different abstractions or perspectives in different applica-
tions. That is, different perspectives—analogous to alter-
native representations in physics—are legitimate and
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important. They vary by conception of the system and
choice of variables. Designing for both multiple resolution
and multiple perspectives can be called MRMPM
(pronounced Mr. MIPM).

3.4.2 Mutual Calibration within a Model Family

Given MRMPM models or families, we want to be able to
reconcile the concepts and predictions among levels and
perspectives. It is often assumed that the correct way to do
this is to calibrate upward: treating the information of the
most detailed model as correct and using it to calibrate the
higher-level models. This is often appropriate, but the fact
is that the more detailed models almost always have
omissions and shortcomings. Further, different models of
a family draw upon different sources of information—
ranging from doctrine or even “lore” on one extreme to
physical measurements on a test range at the other.

Figure 6 makes the point that members of a
multiresolution model family should be mutually calibrated
(National Research Council 1997). For example, we may
use low-resolution historical attrition or movement rates to
help calibrate more detailed models predicting attrition and
movement. This is not straightforward and is often done
crudely by applying an overall scaling factor (fudge fac-
tor), rather than correcting the more atomic features of the
detailed model, but it is likely familiar to readers. On the
other hand, much calibration is indeed upward. For exam-
ple, a combat model with attrition coefficients should typi-
cally have adjustments of those coefficients for different
circumstances identified in a more detailed model.

Data Low resolution

—>

—> A

— /av

w \ High Resolution

Figure 6: Mutual Calibration of Models in a Family
3.4.3 Design Considerations

So, given their desirability, how do we build a family of
models? Or, given pre-existing models, how do we sketch
out how they “should” relate before connecting them as
software or using them for mutual calibration? Some
highlights are as follows.

The first design principle is to recognize that there are
limits to how well lower-resolution models can be
consistent with high-resolution models. Approximation is



a central concept from the outset. Several points are

especially important:

Consistency between two models should be
assessed in the context of use. What matters is
not whether they generate the same final state of
the system, but whether they generate
approximately the same results in the application
(e.g., rank ordering of alternatives). This ties into
the well-known concept of experimental frames
(Zeigler, et al. 2000).

Consistency of aggregated and disaggregated
models must also be judged recognizing that low-
resolution models may reflect aggregate-level
knowledge not contained in the detailed model.
Comprehensive  MRM is very difficult or
impossible for complex M&S, but having even
some MRM can be far more useful than having
none at all.

Members of an MRM family will typically be
valid for only portions of the system’s state space.
Parameter values (and even functional forms)
should change with region.

Mechanisms are therefore needed to recognize
different situations and shift models. In simu-
lations, human intervention is one mechanism;
agent-based modeling is another.

Valid MRM will often require stochastic variables
represented by probability distributions. Further,
valid aggregate models must sometimes reflect
correlations among variables that might naively
be seen as probabilistically independent.

With these observations, the ideal for MRM 1is a
hierarchical design for each MRM process, as indicated in
Figure 5.

3.4.4 Desirable Design Attributes

From the considerations we have sketched above, it
follows that models and analysis methodologies for explor-
atory analysis should have a number of characteristics.
First, they should be able to reflect hierarchical
decomposition through multiple levels of resolution and
from alternative perspectives representing different
“aspects” of a system.

Less obviously, they should also include realistic
mechanisms for the natural entities of the system to act,
react, adapt, mutate, and change. These mechanisms
should reflect the relative “fitness” of the original and
emerging entities for the environment in which they are
operating. Many techniques are applicable here, including
game-theoretic methods and others that may be relatively
familiar to readers. However, the most fruitful new
approaches are those typically associated with the term
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agent-based modeling. These include submodels that act
“as the agents for” political leaders and military
commanders or—at the other extreme— infantry privates
on the battlefield or drivers of automobiles on the highway.
In practice, such models need not be exotic: they may
correspond to some relatively simple heuristic decision
rules or to some well-known (though perhaps complex)
operations-research algorithm. But to have such decision
models is quite different from depending on scripts.

Because it is implausible that closed computer models
will be able to meet the above challenge in the foreseeable
future, the family of “models” should allow for human
interaction—whether in human-only seminar games, small-
scale model-supported human gaming, or distributed
interactive simulation. This runs against the grain of much
common practice.

3.4.5 Stochastic Inputs to Higher Level Models

The last item in the above list is often ignored in today’s
day-to-day work. Indeed, too often models that need to be
stochastic are deterministic, with quantitatively serious
consequences (Lucas 2000). Often, workers calibrate a
high-level (aggregate) model using average outcomes of
allegedly “representative” high-resolution scenarios. For
example, a theater-level model’s air model might be
calibrated to results of detailed air-to-air simulation with
Brawler, which treats individual engagement classes (e.g.,
lonl,lon2,...4o0n8). This may appear to establish the
validity of the theater-level model, but in fact the
calibration is treacherous. After all, what kinds of
engagements occur may be a sensitive function of the
sides” command and control systems, strategies, and
weather. The calibrations really need to be accomplished
on a highly study-specific basis.

Furthermore, the higher-level model inputs often need
to be stochastic.  Figure 7 illustrates the concept
schematically for a simple problem. Suppose that a
process (e.g., one computing the losses to aircraft in air-to-
air encounters) depends on XY, S, and W. But suppose
that the outcome of ultimate interest involves many
instances of that process with different values of S and W
(e.g., different per-engagement numbers of Red and Blue
aircraft). An abstraction of the model might depend only
on X,Y, and Z (e.g., overall attrition might depend on only
numbers of Red and Blue aircraft, their relative quality,
and some command and control factor). If the abstraction
shown is to be valid, the variable Z should be consistent
with the higher-resolution results. However, if it does not
depend explicitly on S and W, then there are “hidden
variables” in the problem and Z may appear to be a random
variable, in which case so also would the predicted
outcome F be a random variable. One could ignore this
randomness if the distribution were narrow enough, but it
might not be.
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Figure 7: Input to Higher Level
Model May Be Stochastic

In the past, such calibrations have been rare because
analysts have lacked both theory and tools for doing things
better. The “theory” part includes not having good
descriptions of how the detailed model should relate to the
simplified one. The tool part includes the problem of being
able to define the set of runs that should be done
(representing the integral of Figure 7) and then actually
making those runs.

Ideally, such a calibration would be dynamic within a
simulation. Moreover, it would be easy to adjust the
calibration to represent different assumptions about com-
mand, control, communications, computers, intelligence,
surveillance, and reconnaissance (C4ISR), as well as
tactics. We are nowhere near that happy situation today,

4 RECENT EXPERIENCE
AND CONCLUSIONS

MRMPM is not just idealized theory, but something
usable. Over the last several years, my colleagues and I
have done considerable work related to the problem of
halting an invading army using precision fires from aircraft
and missiles. The most recent aspects of that work
included understanding in some detail how the
effectiveness of such fires are affected by details of terrain,
enemy maneuver tactics, certain aspects of command and
control, and so on. This provided a good test bed for
exploring numerous aspects of MRMPM theory (Davis,
Bigelow, and McEver 2000).

For this work we developed a multiresolution personal-
computer model (PEM), written in Analytica, to understand
and extend to other circumstances the findings from entity-
level simulation of ground maneuver and long-range
precision fires. A major part of that work was learning how
to inform and calibrate PEM to the entity-level work. There
was no possibility, in this instance, of revising the entity-
level model. Nor, in practice, did we have such a good
understanding of the model as to allow us to construct a
comprehensive calibration theory. Instead, we had to
construct a new, more abstract, model and attempt to impose
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some of its abstractions on the data from runs of the entity-
level simulation in prior work, plus some special runs made
for our purposes. The result is a case history with what are
probably some generic lessons learned.

Figure 8 illustrates one aspect of PEM’s design. It
shows the data flow within a PEM module that generates
the impact time (relative to the ideal impact time) for a
salvo of precision weapons aimed at a packet of armored
fighting vehicles observed by surveillance assets at an
earlier time. Other parts of PEM combine information
about packet location versus time and salvo effectiveness
for targets that happen to be within the salvo’s “footprint”
at the time of impact, to estimate effectiveness of precision
weapons. For the salvo-impact-time module, Figure 8
shows how PEM is designed to accept inputs as detailed as
whether there is enroute retargeting of weapons, the
latency time, and weapon flight time. However, it can also
accept more aggregate inputs such as time from last
update. If the input variable Resolution of Time of Last
Update Calculation is set “low,” then Time From Last
Update is specified directly as input; if not, it is calculated
from the lower-level inputs.

This design has proven very useful—both for analysis
itself and for communicating insights to decision makers in
different communities ranging from the C4ISR community to
the programming and analysis community. In particular, the
work clarified how the technology-intensive work of the
C4ISR acquisition community relates to higher-level strategy
problems and analysis of such problems at the theater level.

Explanation
Salvo Impact
Times
Impact Time
Time Offset Commitment
Time
Resoluhoh o Standard Time of
Impact Time ) Descent Time
. Arrival Error
Calculation
Fractional
Prediction
Time of Last Error
Resolution of Update
Last Update
Calculation
lime of Update
List Extra C2 Time
g o Time of Last - .
nroute atency of ‘ N
X Enroute Flight Time
?
Retargeting? Update RSTA data

Figure 8: Multiresolution, Multiperspective Design
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In other reports (McEver, Davis, and Bigelow,
2000a,b), we describe a broader but more abstract model
(EXHALT) that we use for theater-level halt-problem
analysis and experiments to deal with the multi-perspective
problem. One conclusion is that MRMPM work rather
demands a building-block approach that empasizes study-
specific assembly of the precise model needed. Although
we had some success in developing a closed MRMPM
model with alternative user modes representing different
demands for resolution and perspective (e.g., the switches in
Figure 8), it proved impossible to do very much in that
regard: the number of interesting user modes and resolution
combinations simply precludes being able to wire in all the
relevant user modes. Moreover, that explosion of com-
plexity occurs very quickly. At-the-time-assembly from
building blocks, not prior definition, is the stronger
approach. This was as we expected, but even more so.

Fortunately, we were able to construct the models
needed quickly—in hours rather than days or weeks—as
the result of our building-block approach, visual modeling,
use of array mathematics, and strong, modular, design.

We also concluded that current personal computer
tools—as powerful as they are in comparison with those in
past years—are not yet up to the challenge of making the
building-block/assembly  approach  rigorous, under-
standable, controllable, and reproducible without un-
realistically high levels of modeler/analyst discipline.
Thus, there are good challenges ahead for the enabling—
technology community. Also, the search models for
advanced exploratory analysis are not yet well developed.
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