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ABSTRACT

Today�s industrial and defense communities are
increasingly reliant on the use simulation to reduce cost. At
times, due to their stove-piped nature, these simulations
themselves have resulted in a waste of both time and
money with regard to future simulation development.
Current trends address this problem by promoting the
development of simulation infrastructures that are scalable,
portable, and interoperable over a variety of paradigms.
These infrastructures, such as HLA and SPEEDES, address
cost issues by providing simulation infrastructures that
promote model re-use by managing model interactions
across diverse paradigms, improving scenario
development, and allowing for a scalable distributed
simulation capability.

While these modern simulation infrastructures address
many cost-related issues, they do not fully address issues
related to model re-use. Simulations that utilize model re-
use may result in large complex system models comprised
of a diverse set of subsystem component models covering
varying amounts of detail and fidelity. Often, a complex
simulation that re-uses high fidelity subcomponent models
may result in a more detailed system model than the
simulation objective requires. Simulating such a system
model results in a waste of simulation time with respect to
addressing the simulation goals. These simulation costs,
however, can be reduced through the use of abstract
modeling techniques. These techniques can reduce the
subcomponent model complexity by eliminating, grouping,
or estimating model parameters or variables at a less
detailed level without grossly affecting the simulation
results. Key issues in the abstraction process involve
identifying the variables or parameters than can be
abstracted away for a given simulation objective and
applying the proper abstraction technique to replace those
parameters. This paper presents approaches for both
identifying and replacing these candidate variables.
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1 INTRODUCTION

In an effort to reduce developmental and simulation costs
while examining complex sets of interactions, present and
future simulation development will consider a wide variety
of modeling domains and paradigms. For example, the
goals for the Joint Modeling and Simulation System
(JMASS) program will be to expanded to support other
Tri-Service domains for engineering and engagement level
modeling. This expansion will result in a simulation system
that supports simulation-based acquisition that
encompasses a variety of simulation domains utilizing a
wide range of commercial tools and application-specific
simulations over diverse computational areas. Supported
programs may require simulation-based acquisition that
supports the design of airframes and power plants,
weapons systems and countermeasures. Other programs
may require simulation-based acquisition that supports the
design of hulls, topside, weapons systems and counter-
measures, as well as the design, integration and testing of
C4ISR systems (Teknowledge Corporation 2000).

Resultant simulations, such as JMASS, will be
comprised of component models of varying degrees of
fidelity and resolution that will be used accurately predict
system performance, scenario and damage assessments,
and mission effectiveness. However, due to these
differences in fidelity and resolution amongst models,
simulation development may be costly in terms of not only
development time but also simulation time (McGraw).

One way to address both the simulation time and
development cost issues is to employ model abstraction
techniques (Sisti 98). Model abstraction techniques reduce
developmental time by allowing re-use of legacy or off-
the-shelf models. Likewise, model abstraction techniques
reduce simulation time by reducing model complexity.

While being an excellent tool to reduce simulation
costs, true model abstraction cannot be achieved by simply
�pulling� complexity out of an existing model. Model
abstraction techniques must retain information that is key
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to determining the performance of a system. Additionally, 
information abstracted out of a complex model must be 
properly replaced or characterized in order for the model to 
remain consistent with the simulation goals. This paper 
addresses a process for identifying key parameters or 
variables and replacing or abstracting away that 
information for models concerning engineering models. 
Section 2 of this paper discusses some of the simulation 
objectives that are required engineering and engagement 
models. Section 3 of this paper discusses methods for 
identifying key parameters or variables that are critical to 
the objectives of a simulation. Section 4 of this paper 
discusses some of the model abstraction techniques that 
can be used to replace the �non-key� model parameters for 
models concerning engineering and engagement 
simulation. Conclusions from this work are presented in 
Section 5. 

 
2 SIMULATION OBJECTIVES 
 
The objective of abstract modeling is to reduce model 
complexity without grossly affecting model accuracy with 
respect to the simulation objective.  
 
2.1 Engineering Level Simulation Objectives 
 
Engineering level simulations are often concerned with 
system performance. The engineering level simulations can 
be characterized by the rate at which messages are 
processed, the amount the system is utilized, or the 
quickness that the system responds to external stimuli. 
Specifically, the metrics are characterized as throughput, 
utilization, and response time (latency). The definitions of 
these metrics are presented by (Lavenberg). Throughput is 
defined by the equation: 
    
  (Eq. 1) X = C/T 
  

Where C is the number of completed messages and T 
is the total time. The mean service time per message is 
defined as: 

 
(Eq. 2)  Ts= B /C 

Where B is defined as the busy time. The utilization is 
thus defined as: 
    
  (Eq. 3)  U = XTs. 
 

In other words, the utilization of a component is the 
product of its throughput rate and the average service time 
per job. Response time is defined as the time spent in the 
system. This is also referred to as latency. The response 
time is computed as the time that the message has 
completed processing subtracted by the time the processing 
of that message was initiated.  
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 These performance metrics are delay or latency 
dependent. In hardware-based systems modeled by 
engineering level simulation, there are two different types 
of delay present: explicit delays and implicit delays 
(MacDonald). Explicit delays are generally associated with 
the underlying hardware subsystems. These delays include 
such items as computational delays, processing delays, or 
message routing delays. Implicit delays often pertain to 
resource contention issues. These delays may be 
represented by such items as contention for shared bus 
structures internal to the architecture or data links. For a 
given component, variance in these delays may result in 
multiple potential delay paths that a message may 
experience while being processed. An example of a 
hardware component with multiple delay paths is depicted 
in Figure 1. The delay path that a message may experience 
may be dependent upon such parameters as message size, 
message type, component settings, and component state. In 
assessing the performance of a hardware system, system 
analysts are often required to characterize these component 
delays and relate the delays to overall system performance. 
The determination of these delays, along with how those 
delays affect throughput, utilization, and response time, are 
typical simulation objectives for engineering level 
simulations. 

 
2.2 Engagement Level Simulation Objectives 
 
Engagement Level simulations represent engagements or 
encounters between weapons and targets ranging from one-
on-one to few-on-few types of scenarios. Typical 
engagement level scenarios may involve target aircraft 
with reflecting cross-sections, airborne weapons platforms, 
RF environments, and airborne missiles with seeker 
capabilities. Typical metrics derived from these simulation 
involve determine whether a �hit� or �kill� has occurred 
for a given set of calibration data. Or, more precisely, 
developing a �hit� or �kill� distribution over a range of 
values and calibration data.  

Inputs 

Figure 1:  Multiple Delay Paths in Engineering 

 Outputs 
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3 IDENTIFYING PARAMETERS  
FOR ABSTRACTION 

 
Model abstraction �captures the essence of the behavior of 
a model without all the details of how that behavior is 
implemented in code (Sisti).� Simulations using abstracted 
models are more concerned with the qualitative results of a 
simulation rather than the quantitative results of that 
simulation. Fidelity that is necessary at some levels of 
modeling may not be necessary to meet modeling and 
analysis goals at others. For example, the performance 
metrics associated with engineering level simulation 
(throughput, utilization and system response) are 
concerned with message transfers and latencies. Such 
analysis is not concerned with message content or the 
actual values associated with various hardware 
components. For this reason, detail that is not needed to 
meet the performance analysis goals can be dropped from 
the model. The process of dropping this unneeded 
information is known as abstract modeling. Dropping 
unneeded information allows simulation time to be spent 
on criteria that is deemed important to the system�s 
operation (Sarjoughian). However, dropping any 
information may compromise a model�s accuracy. �Key� 
information can be determined using a variety of methods. 
These methods may range from using a modeler�s or 
analysts� �rules-of-thumb� (or heuristics) or by 
deterministically determining key parameters using a 
sensitivity analysis. Some of these methods include 
extremum experimentation, factorial experimentation, and 
input sensitization. 
 
3.1 Extremum Experimentation 
 
In the cases where the importance of certain system 
parameters and inputs are not known ahead of time, 
extremum experiments can be used to identify the key 
parameters for a given simulation (Dixon). These 
extremum experiments can be used to identify the system 
parameters that have the greatest effect on the maximum 
and minimum performance of the modeled element. 
Extremum experimentation involves the 
minimization/maximization of performance metrics (for 
example, the latencies) of a system component. This 
optimization process is accomplished by applying specific 
input vectors to a high fidelity model to identify the input 
combinations that result in obtaining the longest and 
shortest delay paths. The problem of selecting these input 
vectors is often referred to as a discrete optimization 
problem (Parker). Solutions for these discrete optimization 
problems are not easily obtained.  For example, feasible 
solution spaces are enormous in size, and the solution 
space grows explosively with the number of discrete 
choices that need to be resolved. For example, for a model 
element that requires 200 independent binary inputs, 
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approximately 2200 or 1060 possible permutations need to be 
considered. In order to identify key input parameters for 
such systems, full factorial experiments must be used. 
 
3.1.1 Full Factorial Experiments 
 
A full factorial experiment is used to address solutions 
where all factors (inputs and parameters) must be 
considered. For such an experiment,  Πnli  experiments 
are required, where li is the number of levels required for 
factor i. So studying K factors at each of two levels (i.e. if 
binary-based inputs were examined) requires 2K 
experiments, and for T levels, Tk experiments are required. 
For such a full factorial design, however, as K grows large, 
the computation expense of performing the full factorial 
experiment becomes prohibitive. Thus, in order to reduce 
computational requirements, a fractional factorial 
experiment should be used (Kheir, Walpole, Hogg). 
 
3.1.2 Fractional Factorial Experiments 

 
The design of a fractional factorial experiment may result 
in requiring only one-half, one-fourth, or even fewer 
experiments than the full factorial experiment before key 
input variables or parameters can be identified. The reason 
that this is a viable experimental strategy is that in many 
experimental scenarios, certain interactions are negligible. 
Full factorial experiments that consider these scenarios 
would waste experimental effort. Using such a fractional 
factorial experimental process, along with sensitivity 
analysis can greatly aid the modeler in identifying key 
model parameters. 

 
3.1.2.1 Sensitivity Analysis 
 
Fractional Factorial experiments can be greatly enhanced 
through the use of sensitivity analysis. Sensitivity 
techniques allow the modeler to assess the influence of 
model input variables or parameters on model output 
characteristics (i.e. performance) (Iman). These techniques 
allow the identification of unimportant, or statistically 
insignificant input parameters. These statistically 
insignificant inputs are ideal targets for abstraction at less 
detailed levels of modeling. 
 Sensitivity analyses can be applied to large complex 
models displaying the following characteristics: (a) there 
are many input and output variables; (b) the time to 
simulate the model is excessive; (c) the model cannot be 
reduced to a system of equations; (d) discontinuities exist 
in model behavior; (e) correlations exist among the input 
variables; and (f) the model outputs are nonlinear, 
multivariate, time dependent functions of the input 
variables (Iman). For such models, the model can be 
defined as a function Y= f(X1,....Xk,t) of the independent 
variables X1,...,Xk, and possibly time, t. The variables, 
8
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X1...Xk, can represent a variety of phenomena within the 
model. For instance, this may include air speed, air 
pressure, angle of attack, branch points or different 
submodels within a larger model. Sensitivity analysis, as 
defined by (Iman), involves the determination of the 
change in the response of a model, Y, to changes in 
individual model parameters, Xi, and specifications. Thus, 
sensitivity analysis is used to identify the main contributors 
to the imprecision in Y. However, there does not exist a 
single algorithm for sensitivity analysis that can be 
followed from start to finish (Iman). The possible models 
that need to be considered and the potential problems that 
can arise are both too diverse to permit such a simplistic 
approach. The most robust approaches, however, utilize the 
following two techniques: 
 

1. A Preliminary Variable Assessment 
2. A Determination of Relative Variable Importance 

 
3.1.2.2 Preliminary Parameter Assessment 
 
An initial assessment of system parameters is often useful 
to determine the most influential inputs for a given 
hardware component. For example, if the resources for 
measuring inputs are limited, this screening procedure can 
be used to determine which inputs should receive the 
greatest portion of those experimental resources. Several 
commonly used screening techniques are: subjective, 
differential sensitivity analysis, one-at-a-time design, rank 
order correlation, and adjoint methods.  

The subjective methods involve the modelers and 
investigators working together to discard inputs thought to 
be unimportant. These methods are sometimes referred to 
as heuristic methods or rules-of-thumb. This method is the 
least scientific and is prone to personal biases, although it 
may be necessary to reduce a large number of input 
possibilities. The use of this method may necessitate 
creating an experiment in which one could check for 
inadequacies of the initial screening decisions (Downing). 

Differential sensitivity analysis requires that one 
calculate the partial derivatives for each input variable. The 
sensitivity coefficient aj, is defined as the partial derivative 
of Y with respect to the input Xj. That is: 

 
(Eq. 4)  aj=∂Y/∂Xj 
 

Assuming that Y is linear in Xj, we can estimate the 
sensitivity coefficient by the ratio of the percentage change 
in the output Y from its nominal value (the value of the 
output when all of the inputs are set at the nominal value) 
to the percentage change in the input Xj from its nominal 
value and treat aj as an estimate of the sensitivity 
coefficient (Downing).  

An extension of the differential sensitivity method is 
to estimate sensitivity coefficients in the one-at-a-time 
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design, where each input is evaluated at its mean and then 
at its mean plus or minus some multiple of its standard 
deviation (typically µ + 4σ). The information from the one-
at-a-time design can be used to rank the input variables as 
to their effect on the output. 

The adjoint method (Conover) provides a rigorous 
mathematical method for sensitivity analysis. This method 
yields the exact sensitivities by determining the sensitivity 
coefficients for any value of the Xj�s. In this case, no 
assumption is made about the linearity of the input/output 
relationship.  
 
3.1.2.3 Techniques for Determining Relative  

Variable Importance 
 
If a technique from the preliminary parameter screen can 
be utilized to mark a subset of the input parameters as 
important, it is often desirable to rank these parameters in 
order of their importance. A number of correlation methods 
can be used to rank variables. These methods include the 
Pearson product-moment correlation coefficient method, 
the Spearman rank correlation coefficient method, the 
partial correlation coefficient method, Smirnov tests, and 
the use of standardized regression coefficients. 
 
3.2 Extremum Simulation Experiments  

for Engineering Level Simulation 
 
Taking into account the various methods for assessing 
input parameters and determining their relative importance, 
an algorithm has been developed that allows the system 
analyst to identify the component variables (parameters) 
that will allow for the establishment of performance 
bounds on that particular component. Specifically, this 
algorithm allows the analyst to identify the variables that 
result in the minimization or maximization of performance 
parameters. For engineering level simulation, a key 
performance metric would be latency.  This type of 
algorithm is known as a partial enumeration algorithm. 
 
3.2.1 Identifying Performance Controlling Inputs  

for the Partial Enumeration Algorithm 
 
For a hardware component with n inputs, the 
characteristics of a subset, m, of the n inputs may be known 
through heuristic means (Dixon 88). Thus, values are 
generated for the m inputs. Given that a subset of the inputs 
are known (fixed), the value of a specific unknown input of 
the hardware component may, or may not, affect the 
component delay. If that input can not effect the 
component delay, then the input can be treated as a �don�t 
care�. The complexity of the interpreted input data 
generation problem is reduced because of the n unknown 
hardware inputs, only (n-m) of the inputs need be 
considered when testing the targeted component for 
9
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maximum or minimum performance. At this point, a 
sensitivity analysis is used to identify the inputs that have 
the greatest impact on component performance. The result 
of this sensitivity analysis is the partitioning of the 
unknown hardware input parameters into two distinct 
groups: Performance Controlling Inputs (PCIs) and Non-
Performance Controlling Inputs (NPCIs). Because the 
NPCIs do not greatly affect the performance of the 
hardware component, these variables (parameters) become 
targets for abstraction. 
 
3.2.2  Sensitivity Analysis of Hardware Inputs 
 
Sensitivity analysis is used to partition the hardware inputs 
into two disjoint sets: PCIs and NPCIs. The sensitivity 
analysis presented is in the form of Bernoulli trials. In 
other words, the PCIs are not ranked in order of 
importance, they are merely declared as being part of the 
set of PCIs, or not part of the set of PCIs. The 
implementation of Bernoulli trials consists of the 
application of four test vectors to the C4ISR hardware 
component inputs. Collectively, all steps required to 
implement a single Bernoulli trial on one input will be 
referred to as a single-bit-test. The input that is being tested 
will be referred to as the input-under-test. There are three 
steps in the single-bit-test procedure (MacDonald). 
 

Step 1:   Generate two latency test vectors for the 
input-under-test. The two latency test 
vectors are identical, except that the value 
of the bit pertaining to the input-under-test 
(a hamming distance of one). In the first 
test vector, the input under test is assigned 
a value of �0�, while in the second test 
vector, the input under test is assigned the 
value �1�. All other unknown hardware 
inputs are generated from a Bernoulli 
distribution where the probability of a bit 
being a �1� is set at 50%. The input values, 
other than the input-under-test, are 
identical in both vectors. 

Step 2:   Apply the set of four test vectors to the 
hardware component. 
(a) Apply reset vector. The reset vector 

is needed so events on the output 
lines of the hardware component are 
visible. These output events must be 
visible so the latency through the 
hardware component can be 
measured.  

(b) Apply test vector 1 and record 
latency. The first latency test vector 
generated in step 1 is applied to the 
circuit after the reset vector. The 
latency for the hardware component 
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is recorded. This latency is referred 
to as l1. 

(c) Apply reset vector. The reset vector 
is re-applied to the hardware 
component. 

(d) Apply test vector 2 and record 
latency. The second latency test 
vector generated in step 1 is applied 
to the circuit after the reset vector. 
The latency for the hardware 
component is recorded. This latency 
is referred to as l2. 

Step 3:   Compare the two measured latencies for 
equality. In this step, the values of l1 and 
l2 are compared. If: 

 
         (Eq. 5) (l2-∆t) <= l1 <=(l2 + ∆t) 

 
then the input is marked as a 
performance controlling input. The value 
of ∆t is determined by the analyst that is 
utilizing the hardware component model. 

 
3.2.2 Example of the Single Bit Test 
 
For the purpose of illustrating the single-bit-test, a simple 
example has been developed for the hardware circuit of 
Figure 2. All gates of this circuit have a 5 ns. delay. Inputs 
i1 and i3 are known inputs (determined by heuristics) while 
inputs i2, i4, and i5 are unknown inputs. The test vectors 
(step 2) and the corresponding results are shown in Table 1 
for input i2. Input i2 is identified as a performance 
controlling input after one single-bit-test. For illustrative 
purposes, the circuit is tested exhaustively (2n 
experiments). The latencies depicted in Table 2 indicate 
that all three unknown inputs are performance controlling 
inputs. Thus, these inputs should not be abstracted away. 

 
Table 1: Vector Application 

Test i1 i2 i3 i4 i5 o1 Delay 
reset x x x x x x --- 
vector(1) 1 0 1 1 0 1 15 ns 
reset x x x x x x --- 
vector(2) 1 1 1 1 0 1 20 ns 

G5 

O1 

i1 
i2 
 
i3 
i4 
 
i5 

 

G4 

G3 
G2 

G1 

Figure 2:  Schematic of Test Circuit 
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Table 2: Exhaustive Test for Unknown Inputs 
Known Inputs    Unknown Inputs               Delay 
i1 i2 i3 i4 i5  
1 1 0 0 0 15 ns 
1 1 0 0 1 10ns 
1 1 0 1 0 15 ns 
1 1 0 1 1 10 ns 
1 1 1 0 0 15 ns 
1 1 1 0 1 10 ns 
1 1 1 1 0 20 ns 
1 1 1 1 1 10 ns 

 
3.2.3 Performance Controlling Input Sets 
 
All performance controlling inputs are classified as either a 
dependent or an independent performance controlling 
input. An independent PCI is an input that affects the 
performance regardless of the values assigned to the other 
hardware inputs. A dependent PCI is an input that affects 
the latency of the hardware if and only if there are specific 
values on a subset of the other unknown inputs. A 
performance controlling set (PCS) is a set consisting of the 
input-under-test and a unique subset of the unknown inputs 
which, when set correctly, will allow the input under test to 
be detected as such (MacDonald). It is important to note 
that an unknown hardware input may belong to more than 
one performance controlling set. The notation for a PCS is 
to list the input-under-test as the first element of the set. A 
PCS of size one indicates that the input specified is 
independent. 
 The concept of performance controlling input sets can 
be illustrated using the earlier example of Figure 2. For 
example, as seen from Table 2, i5 is an independent 
performance controlling input. On the other hand, i2 and i4 
are dependent performance controlling inputs.  Input i2 acts 
as a performance controlling input when {i4 = 1, i5 = 0}. 
Similarly i4 acts as a performance controlling input when 
{i2 = 1, i5 = 0}. The three performance controlling sets are: 
{i5}, {i2,i4,i5}, and {i4,i2,i5}.  
 In this example, there is only one set of values that can 
be mapped to inputs i2 and i5 that allows the input i4 to be 
detected as a PCI. In general, it is possible that there may 
be more than one set of values that allow the bit-under-test 
to be observed as a PCI. In such cases, it is said that the 
PCS contains, a, active input settings. This is designated as 
{i;x,y}a, where a is the number of active settings. When 
there is only one active setting per set, the subscript is 
generally omitted. The explicit input values are not shown 
as part of the PCS. The reason the values are not shown is 
that both the set size and the number of active input 
settings per set are important in determining experimental 
confidence. 
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3.3 Justification for the Extremum Algorithm 
 
The extremum algorithm that has been presented is 
exponential in complexity. However, the extremum 
algorithm is an improvement over full enumeration. For 
example, a detailed hardware component with u unknown 
inputs would require 2(u+1) test vectors if a full factorial 
experiment is used to identify an extremum measurement. 
On the other hand, the sensitivity phase of the partial 
enumeration algorithm requires 2n tests. If the sensitivity 
analyses detects k PCI inputs, a full enumeration of the 2k 
patterns is also required. Thus, the partial extremum 
algorithm requires 2nu+2k tests. This partial enumeration 
algorithm for extremum modeling requires fewer tests than 
the full enumeration algorithm as long as k is small in 
relation to the number of unknown inputs.  

To demonstrate this point for engineering level 
simulation involving digital hardware components, a 
digital benchmark component, ISCAS-85 C3540 is 
examined. The ISCAS-85 circuits are a series of digital 
benchmarks used for evaluating algorithms and methods 
concerning digital hardware. These benchmarks typically 
fall in the categories of simulation, test pattern generation, 
and synthesis.  Published results for the ISCAS-85 series 
can be found in (Devadas). Circuit C3540 has 50 primary 
inputs, 23 primary outputs and is comprised of 
approximately 1800 gates at the functional hardware level 
of modeling. Figure 3 depicts part of the C3540 circuit. 
The primary output O271 is connected to four primary 
input variables. In other words, the latency metrics 
obtained from output O271 depend on only 8% of the 
primary inputs. (A case where the controlling inputs is 
small relative to the number of overall input variables). 
Figures 4 and 5 indicate the number of PCIs detected when 
observing other specific C3540 output parameters. As 
shown in this particular case for O1450 for Experiment C, 
after fixing seven of the fifty input variables/parameters, no 
PCIs were detected. Thus, 43 of the unknown input 
variables were determined to be statistically insignificant. 
For model abstraction purposes, these 43 inputs are ideal 
model abstraction candidates. 

Figure 3: Partial Schematic for C3540 

O271 

I9 

I6 

I7 

I8 
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This process can also be applied to the ISCAS-85 

benchmark circuit C2670. Circuit C2670 has 233 primary 
inputs, 140 primary outputs and is comprised of 
approximately 1500 gates. Figure 6 indicates the number of 
PCIs detected when observing C2670 output 1098. When 
all of the inputs for this circuit are treaded as known, 63 of 
the primary inputs are found to be performance controlling. 
This number is only 27% of the total number of inputs. 
However, exhaustive testing required to identify these 
inputs would result in 263 input patterns. As shown, as 
model inputs are identified as critical and become known, 
the number of performance controlling inputs shrinks 
rapidly. 

Figure 5: ISCAS-85 Circuit C3540 Output 
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Figure 4: ISCAS-85 Circuit C3540 
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3.4 Abstract Modeling Techniques 
  
Once input sensitization techniques have been used to 
identify key input parameters, the trivial input parameters 
can be abstracted away to reduce model complexity. 
Several model abstraction techniques may be used for this 
process. These techniques include the use of stochastic 
distributions, histograms, data omission, quantizing, 
aggregation, and other methods. Some of these abstract 
modeling techniques are briefly described below and are 
depicted in Figure 7. 
 

 
3.5  Stochastic Distributions 
 
One technique for developing abstract models of 
components would be to employ statistical distributions to 
represent the input/output relationship for the modeled 
component (MacDonald)(Caughlin). This technique 
involves developing a distribution for each model output 
with respect to model input values. Statistical means, 
variances, and standard deviations can be determined for a 

Figure 7: Model Abstraction Methods 
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Figure 6: ISCAS-85 Circuit C2670 Output 
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variety of distributions and used to represent the input to 
output transformation for the modeled component.  
 
3.6  Histograms 
 
Another technique for generating abstract component 
models is to use histograms (Sisti). In such an example, 
inputs can be generated and applied to existing models 
while data is captured at the model outputs. This output 
data can be used to generate histograms that relate to the 
prospective input stimuli. These histograms can be used to 
replace the high fidelity component models. 
 
3.7  Omission 
 
Omission techniques have been presented to abstract 
information away that is deemed to be �unimportant� 
(Sisti)(Caughlin)(Zeigler). There are several types of 
omission methods that can be used to develop abstract 
models. Omission abstraction methods may involve 
removing variables from the component model. This 
process may involve fixing variables to constant values 
(such as setting �reset� pins for digital engineering models) 
or simply removing variables from a model, such as 
removing a degree of freedom variable (i.e. axial spin) 
from a missile model when considering engagement level 
simulations.  
 
3.8  Quantizing Parameters 
 
Quantizing inputs involves rounding or truncating internal 
component or model input variables (Sisti). Quantizing 
may also involve grouping variable ranges into classes and 
using aggregation techniques. This procedure removes 
some of the precision from high fidelity models, but also 
removes complexity that may or may not effect 
assessments of system performance. 
 
3.9  Look-Up Tables 
 
A fifth technique for generating abstract component 
models is to use look-up tables to enter model parameters 
(Sisti). In such an example, potential model data and 
parameters can be generated in tabular format and used to 
replace the behavior of existing models. These tables can 
be used to simulate the interaction of the existing high 
fidelity model with other components (players) within the 
system without requiring the simulation of that component. 
 
3.10  Summary of Abstraction Methods  
 
In order to assess the performance of engineering and 
engagement level simulations, system analysts often may 
decide to use a number of these abstraction methods to 
replace detailed component models. The use of these 
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abstraction methods allows the analyst to omit certain 
features of the system structure or represent other features 
of the system structure in a gross way. Model abstraction 
thus allows the analyst to include only the features that 
have a primary effect on performance while reducing 
simulation and development time. 
 
4 CONCLUSIONS 
 
This paper presented an approach to identifying candidate 
input variables and parameters that can be used to guide 
model abstraction. Particularly, this paper presented a 
partial enumeration algorithm for extremum experimenta-
tion that can be used in conjunction with performance-
based simulation objectives for engineering and 
engagement level simulations. The algorithm involves 
techniques that utilize single-bit-tests to identify key 
variables with respect to performance. This partial 
enumeration algorithm has been demonstrated using 
several digital benchmark circuits. This paper also 
demonstrates that once the �insignificant� component input 
variables and parameters have been identified using the 
partial extremum algorithm, those variables can be 
abstracted away using a variety of techniques ranging from 
stochastic processes, omission, input quantizing and 
aggregation, and histograms and lookup tables. The model 
abstraction technique selected should be the one that has 
the least effect on model accuracy with respect to the 
simulation objective. Future work in the area of model 
abstraction will concentrate more on engagement level 
simualtions.  
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