
Proceedings of the 2000 Winter Simulation Conference
J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, eds.

ABSTRACT MODELING FOR ENGINEERING AND
ENGAGEMENT LEVEL SIMULATIONS

Robert M. McGraw
Richard A. MacDonald

RAM Laboratories, Inc.
6540 Lusk Boulevard, Suite C200

San Diego, CA 92121, U.S.A.
ABSTRACT

Today�s industrial and defense communities are
increasingly reliant on the use simulation to reduce cost. At
times, due to their stove-piped nature, these simulations
themselves have resulted in a waste of both time and
money with regard to future simulation development.
Current trends address this problem by promoting the
development of simulation infrastructures that are scalable,
portable, and interoperable over a variety of paradigms.
These infrastructures, such as HLA and SPEEDES, address
cost issues by providing simulation infrastructures that
promote model re-use by managing model interactions
across diverse paradigms, improving scenario
development, and allowing for a scalable distributed
simulation capability.

While these modern simulation infrastructures address
many cost-related issues, they do not fully address issues
related to model re-use. Simulations that utilize model re-
use may result in large complex system models comprised
of a diverse set of subsystem component models covering
varying amounts of detail and fidelity. Often, a complex
simulation that re-uses high fidelity subcomponent models
may result in a more detailed system model than the
simulation objective requires. Simulating such a system
model results in a waste of simulation time with respect to
addressing the simulation goals. These simulation costs,
however, can be reduced through the use of abstract
modeling techniques. These techniques can reduce the
subcomponent model complexity by eliminating, grouping,
or estimating model parameters or variables at a less
detailed level without grossly affecting the simulation
results. Key issues in the abstraction process involve
identifying the variables or parameters than can be
abstracted away for a given simulation objective and
applying the proper abstraction technique to replace those
parameters. This paper presents approaches for both
identifying and replacing these candidate variables.
326
1 INTRODUCTION

In an effort to reduce developmental and simulation costs
while examining complex sets of interactions, present and
future simulation development will consider a wide variety
of modeling domains and paradigms. For example, the
goals for the Joint Modeling and Simulation System
(JMASS) program will be to expanded to support other
Tri-Service domains for engineering and engagement level
modeling. This expansion will result in a simulation system
that supports simulation-based acquisition that
encompasses a variety of simulation domains utilizing a
wide range of commercial tools and application-specific
simulations over diverse computational areas. Supported
programs may require simulation-based acquisition that
supports the design of airframes and power plants,
weapons systems and countermeasures. Other programs
may require simulation-based acquisition that supports the
design of hulls, topside, weapons systems and counter-
measures, as well as the design, integration and testing of
C4ISR systems (Teknowledge Corporation 2000).

Resultant simulations, such as JMASS, will be
comprised of component models of varying degrees of
fidelity and resolution that will be used accurately predict
system performance, scenario and damage assessments,
and mission effectiveness. However, due to these
differences in fidelity and resolution amongst models,
simulation development may be costly in terms of not only
development time but also simulation time (McGraw).

One way to address both the simulation time and
development cost issues is to employ model abstraction
techniques (Sisti 98). Model abstraction techniques reduce
developmental time by allowing re-use of legacy or off-
the-shelf models. Likewise, model abstraction techniques
reduce simulation time by reducing model complexity.

While being an excellent tool to reduce simulation
costs, true model abstraction cannot be achieved by simply
�pulling� complexity out of an existing model. Model
abstraction techniques must retain information that is key

McGraw and MacDonald

to determining the performance of a system. Additionally,
information abstracted out of a complex model must be
properly replaced or characterized in order for the model to
remain consistent with the simulation goals. This paper
addresses a process for identifying key parameters or
variables and replacing or abstracting away that
information for models concerning engineering models.
Section 2 of this paper discusses some of the simulation
objectives that are required engineering and engagement
models. Section 3 of this paper discusses methods for
identifying key parameters or variables that are critical to
the objectives of a simulation. Section 4 of this paper
discusses some of the model abstraction techniques that
can be used to replace the �non-key� model parameters for
models concerning engineering and engagement
simulation. Conclusions from this work are presented in
Section 5.

2 SIMULATION OBJECTIVES

The objective of abstract modeling is to reduce model
complexity without grossly affecting model accuracy with
respect to the simulation objective.

2.1 Engineering Level Simulation Objectives

Engineering level simulations are often concerned with
system performance. The engineering level simulations can
be characterized by the rate at which messages are
processed, the amount the system is utilized, or the
quickness that the system responds to external stimuli.
Specifically, the metrics are characterized as throughput,
utilization, and response time (latency). The definitions of
these metrics are presented by (Lavenberg). Throughput is
defined by the equation:

 (Eq. 1) X = C/T

Where C is the number of completed messages and T
is the total time. The mean service time per message is
defined as:

(Eq. 2) Ts= B /C

Where B is defined as the busy time. The utilization is
thus defined as:

 (Eq. 3) U = XTs.

In other words, the utilization of a component is the
product of its throughput rate and the average service time
per job. Response time is defined as the time spent in the
system. This is also referred to as latency. The response
time is computed as the time that the message has
completed processing subtracted by the time the processing
of that message was initiated.
327
 These performance metrics are delay or latency
dependent. In hardware-based systems modeled by
engineering level simulation, there are two different types
of delay present: explicit delays and implicit delays
(MacDonald). Explicit delays are generally associated with
the underlying hardware subsystems. These delays include
such items as computational delays, processing delays, or
message routing delays. Implicit delays often pertain to
resource contention issues. These delays may be
represented by such items as contention for shared bus
structures internal to the architecture or data links. For a
given component, variance in these delays may result in
multiple potential delay paths that a message may
experience while being processed. An example of a
hardware component with multiple delay paths is depicted
in Figure 1. The delay path that a message may experience
may be dependent upon such parameters as message size,
message type, component settings, and component state. In
assessing the performance of a hardware system, system
analysts are often required to characterize these component
delays and relate the delays to overall system performance.
The determination of these delays, along with how those
delays affect throughput, utilization, and response time, are
typical simulation objectives for engineering level
simulations.

2.2 Engagement Level Simulation Objectives

Engagement Level simulations represent engagements or
encounters between weapons and targets ranging from one-
on-one to few-on-few types of scenarios. Typical
engagement level scenarios may involve target aircraft
with reflecting cross-sections, airborne weapons platforms,
RF environments, and airborne missiles with seeker
capabilities. Typical metrics derived from these simulation
involve determine whether a �hit� or �kill� has occurred
for a given set of calibration data. Or, more precisely,
developing a �hit� or �kill� distribution over a range of
values and calibration data.

Inputs

Figure 1: Multiple Delay Paths in Engineering

 Outputs

McGraw and MacDonald

3 IDENTIFYING PARAMETERS
FOR ABSTRACTION

Model abstraction �captures the essence of the behavior of
a model without all the details of how that behavior is
implemented in code (Sisti).� Simulations using abstracted
models are more concerned with the qualitative results of a
simulation rather than the quantitative results of that
simulation. Fidelity that is necessary at some levels of
modeling may not be necessary to meet modeling and
analysis goals at others. For example, the performance
metrics associated with engineering level simulation
(throughput, utilization and system response) are
concerned with message transfers and latencies. Such
analysis is not concerned with message content or the
actual values associated with various hardware
components. For this reason, detail that is not needed to
meet the performance analysis goals can be dropped from
the model. The process of dropping this unneeded
information is known as abstract modeling. Dropping
unneeded information allows simulation time to be spent
on criteria that is deemed important to the system�s
operation (Sarjoughian). However, dropping any
information may compromise a model�s accuracy. �Key�
information can be determined using a variety of methods.
These methods may range from using a modeler�s or
analysts� �rules-of-thumb� (or heuristics) or by
deterministically determining key parameters using a
sensitivity analysis. Some of these methods include
extremum experimentation, factorial experimentation, and
input sensitization.

3.1 Extremum Experimentation

In the cases where the importance of certain system
parameters and inputs are not known ahead of time,
extremum experiments can be used to identify the key
parameters for a given simulation (Dixon). These
extremum experiments can be used to identify the system
parameters that have the greatest effect on the maximum
and minimum performance of the modeled element.
Extremum experimentation involves the
minimization/maximization of performance metrics (for
example, the latencies) of a system component. This
optimization process is accomplished by applying specific
input vectors to a high fidelity model to identify the input
combinations that result in obtaining the longest and
shortest delay paths. The problem of selecting these input
vectors is often referred to as a discrete optimization
problem (Parker). Solutions for these discrete optimization
problems are not easily obtained. For example, feasible
solution spaces are enormous in size, and the solution
space grows explosively with the number of discrete
choices that need to be resolved. For example, for a model
element that requires 200 independent binary inputs,
32
approximately 2200 or 1060 possible permutations need to be
considered. In order to identify key input parameters for
such systems, full factorial experiments must be used.

3.1.1 Full Factorial Experiments

A full factorial experiment is used to address solutions
where all factors (inputs and parameters) must be
considered. For such an experiment, Πnli experiments
are required, where li is the number of levels required for
factor i. So studying K factors at each of two levels (i.e. if
binary-based inputs were examined) requires 2K
experiments, and for T levels, Tk experiments are required.
For such a full factorial design, however, as K grows large,
the computation expense of performing the full factorial
experiment becomes prohibitive. Thus, in order to reduce
computational requirements, a fractional factorial
experiment should be used (Kheir, Walpole, Hogg).

3.1.2 Fractional Factorial Experiments

The design of a fractional factorial experiment may result
in requiring only one-half, one-fourth, or even fewer
experiments than the full factorial experiment before key
input variables or parameters can be identified. The reason
that this is a viable experimental strategy is that in many
experimental scenarios, certain interactions are negligible.
Full factorial experiments that consider these scenarios
would waste experimental effort. Using such a fractional
factorial experimental process, along with sensitivity
analysis can greatly aid the modeler in identifying key
model parameters.

3.1.2.1 Sensitivity Analysis

Fractional Factorial experiments can be greatly enhanced
through the use of sensitivity analysis. Sensitivity
techniques allow the modeler to assess the influence of
model input variables or parameters on model output
characteristics (i.e. performance) (Iman). These techniques
allow the identification of unimportant, or statistically
insignificant input parameters. These statistically
insignificant inputs are ideal targets for abstraction at less
detailed levels of modeling.
 Sensitivity analyses can be applied to large complex
models displaying the following characteristics: (a) there
are many input and output variables; (b) the time to
simulate the model is excessive; (c) the model cannot be
reduced to a system of equations; (d) discontinuities exist
in model behavior; (e) correlations exist among the input
variables; and (f) the model outputs are nonlinear,
multivariate, time dependent functions of the input
variables (Iman). For such models, the model can be
defined as a function Y= f(X1,....Xk,t) of the independent
variables X1,...,Xk, and possibly time, t. The variables,
8

McGraw and MacDonald

X1...Xk, can represent a variety of phenomena within the
model. For instance, this may include air speed, air
pressure, angle of attack, branch points or different
submodels within a larger model. Sensitivity analysis, as
defined by (Iman), involves the determination of the
change in the response of a model, Y, to changes in
individual model parameters, Xi, and specifications. Thus,
sensitivity analysis is used to identify the main contributors
to the imprecision in Y. However, there does not exist a
single algorithm for sensitivity analysis that can be
followed from start to finish (Iman). The possible models
that need to be considered and the potential problems that
can arise are both too diverse to permit such a simplistic
approach. The most robust approaches, however, utilize the
following two techniques:

1. A Preliminary Variable Assessment
2. A Determination of Relative Variable Importance

3.1.2.2 Preliminary Parameter Assessment

An initial assessment of system parameters is often useful
to determine the most influential inputs for a given
hardware component. For example, if the resources for
measuring inputs are limited, this screening procedure can
be used to determine which inputs should receive the
greatest portion of those experimental resources. Several
commonly used screening techniques are: subjective,
differential sensitivity analysis, one-at-a-time design, rank
order correlation, and adjoint methods.

The subjective methods involve the modelers and
investigators working together to discard inputs thought to
be unimportant. These methods are sometimes referred to
as heuristic methods or rules-of-thumb. This method is the
least scientific and is prone to personal biases, although it
may be necessary to reduce a large number of input
possibilities. The use of this method may necessitate
creating an experiment in which one could check for
inadequacies of the initial screening decisions (Downing).

Differential sensitivity analysis requires that one
calculate the partial derivatives for each input variable. The
sensitivity coefficient aj, is defined as the partial derivative
of Y with respect to the input Xj. That is:

(Eq. 4) aj=∂Y/∂Xj

Assuming that Y is linear in Xj, we can estimate the
sensitivity coefficient by the ratio of the percentage change
in the output Y from its nominal value (the value of the
output when all of the inputs are set at the nominal value)
to the percentage change in the input Xj from its nominal
value and treat aj as an estimate of the sensitivity
coefficient (Downing).

An extension of the differential sensitivity method is
to estimate sensitivity coefficients in the one-at-a-time
32
design, where each input is evaluated at its mean and then
at its mean plus or minus some multiple of its standard
deviation (typically µ + 4σ). The information from the one-
at-a-time design can be used to rank the input variables as
to their effect on the output.

The adjoint method (Conover) provides a rigorous
mathematical method for sensitivity analysis. This method
yields the exact sensitivities by determining the sensitivity
coefficients for any value of the Xj�s. In this case, no
assumption is made about the linearity of the input/output
relationship.

3.1.2.3 Techniques for Determining Relative

Variable Importance

If a technique from the preliminary parameter screen can
be utilized to mark a subset of the input parameters as
important, it is often desirable to rank these parameters in
order of their importance. A number of correlation methods
can be used to rank variables. These methods include the
Pearson product-moment correlation coefficient method,
the Spearman rank correlation coefficient method, the
partial correlation coefficient method, Smirnov tests, and
the use of standardized regression coefficients.

3.2 Extremum Simulation Experiments

for Engineering Level Simulation

Taking into account the various methods for assessing
input parameters and determining their relative importance,
an algorithm has been developed that allows the system
analyst to identify the component variables (parameters)
that will allow for the establishment of performance
bounds on that particular component. Specifically, this
algorithm allows the analyst to identify the variables that
result in the minimization or maximization of performance
parameters. For engineering level simulation, a key
performance metric would be latency. This type of
algorithm is known as a partial enumeration algorithm.

3.2.1 Identifying Performance Controlling Inputs

for the Partial Enumeration Algorithm

For a hardware component with n inputs, the
characteristics of a subset, m, of the n inputs may be known
through heuristic means (Dixon 88). Thus, values are
generated for the m inputs. Given that a subset of the inputs
are known (fixed), the value of a specific unknown input of
the hardware component may, or may not, affect the
component delay. If that input can not effect the
component delay, then the input can be treated as a �don�t
care�. The complexity of the interpreted input data
generation problem is reduced because of the n unknown
hardware inputs, only (n-m) of the inputs need be
considered when testing the targeted component for
9

McGraw and MacDonald

maximum or minimum performance. At this point, a
sensitivity analysis is used to identify the inputs that have
the greatest impact on component performance. The result
of this sensitivity analysis is the partitioning of the
unknown hardware input parameters into two distinct
groups: Performance Controlling Inputs (PCIs) and Non-
Performance Controlling Inputs (NPCIs). Because the
NPCIs do not greatly affect the performance of the
hardware component, these variables (parameters) become
targets for abstraction.

3.2.2 Sensitivity Analysis of Hardware Inputs

Sensitivity analysis is used to partition the hardware inputs
into two disjoint sets: PCIs and NPCIs. The sensitivity
analysis presented is in the form of Bernoulli trials. In
other words, the PCIs are not ranked in order of
importance, they are merely declared as being part of the
set of PCIs, or not part of the set of PCIs. The
implementation of Bernoulli trials consists of the
application of four test vectors to the C4ISR hardware
component inputs. Collectively, all steps required to
implement a single Bernoulli trial on one input will be
referred to as a single-bit-test. The input that is being tested
will be referred to as the input-under-test. There are three
steps in the single-bit-test procedure (MacDonald).

Step 1: Generate two latency test vectors for the
input-under-test. The two latency test
vectors are identical, except that the value
of the bit pertaining to the input-under-test
(a hamming distance of one). In the first
test vector, the input under test is assigned
a value of �0�, while in the second test
vector, the input under test is assigned the
value �1�. All other unknown hardware
inputs are generated from a Bernoulli
distribution where the probability of a bit
being a �1� is set at 50%. The input values,
other than the input-under-test, are
identical in both vectors.

Step 2: Apply the set of four test vectors to the
hardware component.
(a) Apply reset vector. The reset vector

is needed so events on the output
lines of the hardware component are
visible. These output events must be
visible so the latency through the
hardware component can be
measured.

(b) Apply test vector 1 and record
latency. The first latency test vector
generated in step 1 is applied to the
circuit after the reset vector. The
latency for the hardware component
330
is recorded. This latency is referred
to as l1.

(c) Apply reset vector. The reset vector
is re-applied to the hardware
component.

(d) Apply test vector 2 and record
latency. The second latency test
vector generated in step 1 is applied
to the circuit after the reset vector.
The latency for the hardware
component is recorded. This latency
is referred to as l2.

Step 3: Compare the two measured latencies for
equality. In this step, the values of l1 and
l2 are compared. If:

 (Eq. 5) (l2-∆t) <= l1 <=(l2 + ∆t)

then the input is marked as a
performance controlling input. The value
of ∆t is determined by the analyst that is
utilizing the hardware component model.

3.2.2 Example of the Single Bit Test

For the purpose of illustrating the single-bit-test, a simple
example has been developed for the hardware circuit of
Figure 2. All gates of this circuit have a 5 ns. delay. Inputs
i1 and i3 are known inputs (determined by heuristics) while
inputs i2, i4, and i5 are unknown inputs. The test vectors
(step 2) and the corresponding results are shown in Table 1
for input i2. Input i2 is identified as a performance
controlling input after one single-bit-test. For illustrative
purposes, the circuit is tested exhaustively (2n
experiments). The latencies depicted in Table 2 indicate
that all three unknown inputs are performance controlling
inputs. Thus, these inputs should not be abstracted away.

Table 1: Vector Application

Test i1 i2 i3 i4 i5 o1 Delay
reset x x x x x x ---
vector(1) 1 0 1 1 0 1 15 ns
reset x x x x x x ---
vector(2) 1 1 1 1 0 1 20 ns

G5

O1

i1
i2

i3
i4

i5

G4

G3
G2

G1

Figure 2: Schematic of Test Circuit

McGraw and MacDonald

Table 2: Exhaustive Test for Unknown Inputs
Known Inputs Unknown Inputs Delay
i1 i2 i3 i4 i5
1 1 0 0 0 15 ns
1 1 0 0 1 10ns
1 1 0 1 0 15 ns
1 1 0 1 1 10 ns
1 1 1 0 0 15 ns
1 1 1 0 1 10 ns
1 1 1 1 0 20 ns
1 1 1 1 1 10 ns

3.2.3 Performance Controlling Input Sets

All performance controlling inputs are classified as either a
dependent or an independent performance controlling
input. An independent PCI is an input that affects the
performance regardless of the values assigned to the other
hardware inputs. A dependent PCI is an input that affects
the latency of the hardware if and only if there are specific
values on a subset of the other unknown inputs. A
performance controlling set (PCS) is a set consisting of the
input-under-test and a unique subset of the unknown inputs
which, when set correctly, will allow the input under test to
be detected as such (MacDonald). It is important to note
that an unknown hardware input may belong to more than
one performance controlling set. The notation for a PCS is
to list the input-under-test as the first element of the set. A
PCS of size one indicates that the input specified is
independent.
 The concept of performance controlling input sets can
be illustrated using the earlier example of Figure 2. For
example, as seen from Table 2, i5 is an independent
performance controlling input. On the other hand, i2 and i4
are dependent performance controlling inputs. Input i2 acts
as a performance controlling input when {i4 = 1, i5 = 0}.
Similarly i4 acts as a performance controlling input when
{i2 = 1, i5 = 0}. The three performance controlling sets are:
{i5}, {i2,i4,i5}, and {i4,i2,i5}.
 In this example, there is only one set of values that can
be mapped to inputs i2 and i5 that allows the input i4 to be
detected as a PCI. In general, it is possible that there may
be more than one set of values that allow the bit-under-test
to be observed as a PCI. In such cases, it is said that the
PCS contains, a, active input settings. This is designated as
{i;x,y}a, where a is the number of active settings. When
there is only one active setting per set, the subscript is
generally omitted. The explicit input values are not shown
as part of the PCS. The reason the values are not shown is
that both the set size and the number of active input
settings per set are important in determining experimental
confidence.

331
3.3 Justification for the Extremum Algorithm

The extremum algorithm that has been presented is
exponential in complexity. However, the extremum
algorithm is an improvement over full enumeration. For
example, a detailed hardware component with u unknown
inputs would require 2(u+1) test vectors if a full factorial
experiment is used to identify an extremum measurement.
On the other hand, the sensitivity phase of the partial
enumeration algorithm requires 2n tests. If the sensitivity
analyses detects k PCI inputs, a full enumeration of the 2k
patterns is also required. Thus, the partial extremum
algorithm requires 2nu+2k tests. This partial enumeration
algorithm for extremum modeling requires fewer tests than
the full enumeration algorithm as long as k is small in
relation to the number of unknown inputs.

To demonstrate this point for engineering level
simulation involving digital hardware components, a
digital benchmark component, ISCAS-85 C3540 is
examined. The ISCAS-85 circuits are a series of digital
benchmarks used for evaluating algorithms and methods
concerning digital hardware. These benchmarks typically
fall in the categories of simulation, test pattern generation,
and synthesis. Published results for the ISCAS-85 series
can be found in (Devadas). Circuit C3540 has 50 primary
inputs, 23 primary outputs and is comprised of
approximately 1800 gates at the functional hardware level
of modeling. Figure 3 depicts part of the C3540 circuit.
The primary output O271 is connected to four primary
input variables. In other words, the latency metrics
obtained from output O271 depend on only 8% of the
primary inputs. (A case where the controlling inputs is
small relative to the number of overall input variables).
Figures 4 and 5 indicate the number of PCIs detected when
observing other specific C3540 output parameters. As
shown in this particular case for O1450 for Experiment C,
after fixing seven of the fifty input variables/parameters, no
PCIs were detected. Thus, 43 of the unknown input
variables were determined to be statistically insignificant.
For model abstraction purposes, these 43 inputs are ideal
model abstraction candidates.

Figure 3: Partial Schematic for C3540

O271

I9

I6

I7

I8

McGraw and MacDonald

This process can also be applied to the ISCAS-85

benchmark circuit C2670. Circuit C2670 has 233 primary
inputs, 140 primary outputs and is comprised of
approximately 1500 gates. Figure 6 indicates the number of
PCIs detected when observing C2670 output 1098. When
all of the inputs for this circuit are treaded as known, 63 of
the primary inputs are found to be performance controlling.
This number is only 27% of the total number of inputs.
However, exhaustive testing required to identify these
inputs would result in 263 input patterns. As shown, as
model inputs are identified as critical and become known,
the number of performance controlling inputs shrinks
rapidly.

Figure 5: ISCAS-85 Circuit C3540 Output

Output 1596

0

5

10

15

20

25

30

0 5 10 15 20 25 30

Number of PCIs

U
nk

no
w

n
PC

Is

Exp. A
Exp. B
Exp. C
Linear

Figure 4: ISCAS-85 Circuit C3540

Output 1450

0

5

10

15

20

25

30

0 5 10 15 20 25 30

Number of Inputs

U
nk

no
w

n
PC

Is
 Exp. A

Linear
Exp. B
Exp C.
33
3.4 Abstract Modeling Techniques

Once input sensitization techniques have been used to
identify key input parameters, the trivial input parameters
can be abstracted away to reduce model complexity.
Several model abstraction techniques may be used for this
process. These techniques include the use of stochastic
distributions, histograms, data omission, quantizing,
aggregation, and other methods. Some of these abstract
modeling techniques are briefly described below and are
depicted in Figure 7.

3.5 Stochastic Distributions

One technique for developing abstract models of
components would be to employ statistical distributions to
represent the input/output relationship for the modeled
component (MacDonald)(Caughlin). This technique
involves developing a distribution for each model output
with respect to model input values. Statistical means,
variances, and standard deviations can be determined for a

Figure 7: Model Abstraction Methods

OutIn

Model
Component

Stochastic Histogram Metamodel

h = ax + by

Aggregating
Outputs

Lumping
Inputs

0

2

4

6

8

1 2 3 4 5

Output 1098

0
10
20
30
40
50

60
70

0 6 25 37 49 61

Known PCIs

U
nk

no
w

n
PC

Is

Linear
Exp.
Exp.
Exp.

Figure 6: ISCAS-85 Circuit C2670 Output
2

McGraw and MacDonald
variety of distributions and used to represent the input to
output transformation for the modeled component.

3.6 Histograms

Another technique for generating abstract component
models is to use histograms (Sisti). In such an example,
inputs can be generated and applied to existing models
while data is captured at the model outputs. This output
data can be used to generate histograms that relate to the
prospective input stimuli. These histograms can be used to
replace the high fidelity component models.

3.7 Omission

Omission techniques have been presented to abstract
information away that is deemed to be �unimportant�
(Sisti)(Caughlin)(Zeigler). There are several types of
omission methods that can be used to develop abstract
models. Omission abstraction methods may involve
removing variables from the component model. This
process may involve fixing variables to constant values
(such as setting �reset� pins for digital engineering models)
or simply removing variables from a model, such as
removing a degree of freedom variable (i.e. axial spin)
from a missile model when considering engagement level
simulations.

3.8 Quantizing Parameters

Quantizing inputs involves rounding or truncating internal
component or model input variables (Sisti). Quantizing
may also involve grouping variable ranges into classes and
using aggregation techniques. This procedure removes
some of the precision from high fidelity models, but also
removes complexity that may or may not effect
assessments of system performance.

3.9 Look-Up Tables

A fifth technique for generating abstract component
models is to use look-up tables to enter model parameters
(Sisti). In such an example, potential model data and
parameters can be generated in tabular format and used to
replace the behavior of existing models. These tables can
be used to simulate the interaction of the existing high
fidelity model with other components (players) within the
system without requiring the simulation of that component.

3.10 Summary of Abstraction Methods

In order to assess the performance of engineering and
engagement level simulations, system analysts often may
decide to use a number of these abstraction methods to
replace detailed component models. The use of these
33

abstraction methods allows the analyst to omit certain
features of the system structure or represent other features
of the system structure in a gross way. Model abstraction
thus allows the analyst to include only the features that
have a primary effect on performance while reducing
simulation and development time.

4 CONCLUSIONS

This paper presented an approach to identifying candidate
input variables and parameters that can be used to guide
model abstraction. Particularly, this paper presented a
partial enumeration algorithm for extremum experimenta-
tion that can be used in conjunction with performance-
based simulation objectives for engineering and
engagement level simulations. The algorithm involves
techniques that utilize single-bit-tests to identify key
variables with respect to performance. This partial
enumeration algorithm has been demonstrated using
several digital benchmark circuits. This paper also
demonstrates that once the �insignificant� component input
variables and parameters have been identified using the
partial extremum algorithm, those variables can be
abstracted away using a variety of techniques ranging from
stochastic processes, omission, input quantizing and
aggregation, and histograms and lookup tables. The model
abstraction technique selected should be the one that has
the least effect on model accuracy with respect to the
simulation objective. Future work in the area of model
abstraction will concentrate more on engagement level
simualtions.

REFERENCES

Caughlin, D. and A.F. Sisti. �A Summary of Model

Abstraction Techniques,� SPIE Conference for
Enabling Technologies for Simulation Science, April
1997. pp. 2-13.

Conover, W.J. Practical Non-parametric Statistics, 2nd
Edition, John Wiley and Sons, Ed., New York, 1980.

Devadas, S. Keutzer, K., Malik, S., and A. Wang, �Event
Suppression: Improving the Efficiency of Timing
Simulation for Synchronous Digital Circuits�, IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, Vol. 13, No. 6, June 1994, pp.
814-822.

Dixon, J.R. �Interactive Respecification: A Computation
Model for Hierarchical Mechanical System Design�
Proceedings of NSF Engineering Design Research
Conference, Amherst, June, 1988, pp. 491-506.

Dixon, J.R., �Computer-Based Models of Design
Processes: The Evaluation of Designs for Redesign,�
Proceedings of NSF Engineering Design Research
Conference, Amherst, June, 1989, pp. 491-506.
3

McGraw and MacDonald

Downing, D.J. Gardner, R.H., and F.O. Hoffman, �An
Examination of Resp0nse-Surface Methodologies for
Uncertainty Analysis in Assessment Models,�
Technometrics, Vol. 27, No. 2 May 1985, pp. 151-
163.

Hogg, R.V. and E.A. Tanis, Probability and Statistical
Inference, 3rd Edition, Macmillan, 1988.

Iman, R.L., Helton, J.C. and J.E. Campbell, �An Approach
to Sensitivity Analysis of Computer Models: Part II-
Ranking of Input Variables, Response Surface
Validation, Distribution Effect and Technique
Synopsis,� Journal of Quality Technology, Vol. 13,
No. 4, October 1981, pp. 232-240.

Iman, R.L., J.C. Helton, and J.E. Campbell, �An Approach
to Sensitivity Analysis of Computer Models: Part I �
Introduction, Input Variable Selection and Preliminary
Assessment,� Journal of Quality Technology, Vol. 13,
No. 3, July 1981, pp. 174-183.

Kheir, Naim A., Systems Modeling and Computer
Simulation, Marcel Dekker, New York, pp. 179-211,
1988.

Lavenberg, S. S. Computer Performance Modeling
Handbook, New York, New York, Academic Press,
1983.

MacDonald, Richard A. Hybrid Modeling of Systems with
Interpreted Combinational Elements. Ph.D.
Dissertation, University of Virginia. 1995.

McGraw, R. M., MacDonald, R.A., Steinman, J.S.,
Wallace, J.W. and Buchy, D. �Integration of
SPEEDES into the JMASS Architecture,� Summer
Computer Simulation Conference, July 2000.

Parker, R.G., and R.L. Rardin, Discrete Optimization,
Academic Press, San Diego, CA, 1988.

Sarjoughian, H., Ziegler, B., Cellier, F., �Evaluating Model
Abstractions: A Quantitative Approach,� Proceedings
of the SPIE Conference on Enabling Technology for
Simulation Science II, SPIE Vol. 3369, pp. 59-70,
April, 1998.

Sisti, A., �Enabling Technologies for Simulation Science�
White Paper.

Sisti, A., Farr, S. �Model Abstraction Techniques: An
Intuitive Overview�, Proceedings of SCSC �98.

Teknowledge Corporation, Navy Requirements for JMASS
To-Be Technical Reference Architecture, January
2000.

Walpole, R.E. and R.H. Myers, Probability and Statistics
for Engineers and Scientists, 3rd Edition, Macmillan,
1985.

Zeigler, Bernard P. �Review of Theory in Model
Abstraction� SPIE Conference for Enabling
Technologies for Simulation Science, April 1998. pp.
2-13.

334
AUTHOR BIOGRAPHIES

ROBERT M. MCGRAW is co-founder and Vice-
President for Research and Development at RAM
Laboratories in Solana Beach, CA. In his current position,
Dr. McGraw oversees RAM Laboratories efforts
concerning JMASS Risk Reduction and Mixed Resolution
Modeling. Dr. McGraw received his BS degree in Physics
and Electronics Engineering from the University of
Scranton, and his MS and Ph.D. in Electrical Engineering
from the University of Virginia.

RICHARD A. MACDONALD is co-founder and
President of RAM Laboratories, in Solana Beach, CA. Dr.
MacDonald is responsible for overseeing all of RAM
Laboratories development programs involving the JSIMS,
JMASS, EADTB, and AFRL. Dr. MacDonald received his
BS degree in Computer Engineering from University of
Michigan, and his MS and Ph.D. degrees in Electrical
Engineering from the University of Virginia.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

