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ABSTRACT

Computation of power control calculations is one of the mo
time-consuming aspects of simulating wireless communic
tion systems. These calculations are critical to understan
ing how a wireless network will perform, and so canno
be conveniently ignored. Power-control calculations impl
ment solutions to discretized differential equations, and
are essentially time-stepped. In a previous paper (Perro
and Nicol, (1998)) we proposed a technique forinterval
jumping, that allows for substantially many time-steps to b
jumped over, thereby reducing the amount of computati
needed to achieve the same state as would straightforw
time-stepping. The technique involves identification of
region of simulation time during which no channel assign
ments change due to limits on transmitter power, and
“jump” over that region. In this paper we examine th
cost/benefit tradeoffs between policies which seek to min
mize the work done to identify a jump interval, and the co
of computing those policies. We find that a tiered dynam
programming approach yields policies that very nearly mi
imize the searching overhead, while enjoying substantive
lower computation costs than does the policy which strict
minimizes the searching overhead.

1 INTRODUCTION

Modern wireless communication systems adaptively com
pute the power level each transmitter uses. Since wirele
communication is broadcast, the stronger the power, the f
ther the signal reaches,everywhere. However, the stronger
the power, the larger is the potential for a given signal
interfere with other concurrent wireless communication
Adaptive systems therefore seek to adjust each transmitte
power to use what is needed to communicate effectively, a
no more. Good treatments of these and other problems
wireless communication are found in Balston and Macar
(1993), Stüber (1996), Webb (1998), and Asha (1994).
n
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The power control laws we have studied were introduce
and studied by Foschini and Miljanic (1993,1994,1995) an
Foschini et al (1994a,1994b) in the context of schemes whe
each connection is assigned a small band of frequencies
called a channel—within which its communication occurs
Intuitively, each transmitter-receiver pair seeks to mainta
a target quality of signal, measured in terms of thesignal-
to-noiseratio (or SNR) at the receiver. “Noise” is really
signal degradation, and derives from a variety of sourc
(internal (thermal) noise, shadow-fading, distance, extern
interference). One we are most concerned with is extern
interference from other signals being broadcast concurren
(co-channel interference), either using this same frequen
band (some distance away), or “spill-over” from adjacen
frequency bands (adjacent-channel interference). The tra
mitter changes its power level everyδ units of time, during
which the SNR can be measured at the receiver. At the ve
beginning of a time-step, the transmitter learns the SN
observed during the last time-step, and adjusts its power
achieve the desired SNR, assuming that the signal deg
dation in the current time-step is equal to that in the la
time-step. However, a transmitter has a maximum pow
level. If a sequence of a few time-steps go by in whic
the target SNR cannot be achieved owing to this pow
limitation, the wireless system seeks an alternative chann
in the hope that the interference level will be lower there

From this description it is clear that power control is
a distributive adaptive dance, with each transmitter usin
the recent past as a guess of the near future in order to
its power level. Such networks work because the syste
is engineered so that power levels do not change rapid
Noise due to interference changes in part because part
pants are mobile, so that those moving away from a tow
require increasing levels of power. A radical change i
the interference observed by some communications occ
when some channel allocation changes, a user either j
begins to use a new channel, or a user ceases to use
existing channel. We call this acritical eventin the simu-
lation. Critical events arise either from the discrete portio
5
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of the simulation (e.g., call arrivals/departures governed
stochastic sampling), or may be triggered by the cont
uous (time-stepped) portion of the simulation. The latt
situation occurs when the power assignment is such t
for a sufficiently long period of time, some communica
tion pair cannot achieve their target SNR, and change
channel assignment, accordingly. Critical events caused
some transmitter reaching maximum power cannot eas
be predicted, whereas critical events caused by schedu
call arrival/departures can be predicted, with pre-sampli
of random number streams.

In our earlier work we noticed that Foschini’s distribute
power control law is a fixed point computation in a hig
dimensional vector space, in the following way. We ca
describe the assignment of allT transmitter powers at the
ith time step as a vectorPi , whosej th component gives the
transmitted power of thej th transmitter in the system. We
formally describe the collection of all contributions to signa
degradation other than external interference (e.g., distan
as a vector of constantsα. Then we formally describe the
power update law asFα, a function fromRT → RT , so
thatPi+1 = Fα(Pi). The fact thatFα for normal definitions
of α is a fixed-point function means that for any two initia
starting statesS andS′, repeated application ofFα pushes
towards the same resultP. That is, if Pi is the ith power
vector computed starting withP0 = S and P ′i is the ith

power vector computed starting withP0 = S′, then asi
grows large thenPi andP ′i approachP. It turns out that
we can exploit this powerful property of the power upda
law to accelerate a simulation, by completely skipping ov
some time-steps.

The technique we describe is useful when the pow
levels used are not interesting in and of themselves, excep
detect when critical events caused by power levels occur.
instance, our technique will not help a simulation that trac
power consumption in battery operated devices, beca
there the actual power used must be computed.

To see how the fixed-point property helps us, consid
an interval[a, b] of simulation time, discretized inton+ 1
points. We denote these points by definingxk = a+ k(b−
a)/n, for k = 0,1, . . . , n. As time passes in the simulation
the environmental characteristics that contribute to sign
degradation evolve; for each timexi we let αi denote the
characteristics affecting the power control law atxi , except
for interference due to power levels. We assume that th
αi ’s can be computed in advance, if needed, as a function
predictable (pre-sampled) mobility. Now for any time-ste
xk, consider two separate ways of computing the pow
vectorPk used at that time-step. Both methods start wi
the same known power vectorP0, at time-stepx0. The first
method computesP1 = Fα0(P0), P2 = Fα1(P1), and so
on until computingPk = Fαk−1(Pk−1). The second method
doesn’t time-step at all, it iteratively appliesFαk−1 to compute
the fixed point, i.e.,P ′1 = Fαk−1(P0), P ′2 = Fαk−1(P

′
1),
42
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and so on until successively computed power vectors a
numerically very much alike. Because we compute th
power vector without time-stepping, we call this metho
an interval jump. Assuming that both methods compute
nearly the same result, the latter one will be more efficie
than the former one if it requires fewer thank iterations to
achieve convergence. In practice convergence is achiev
in a small number of iterations, say, 5 to 10. Our earlie
work showed the very significant performance gains th
are possible using interval jumping.

If interval [a, b] is chosen so that the state of the powe
vector at timea is known, and timeb is the earliest next time
of a known call arrival/departure, then we hope to be ab
to computePn efficiently with an interval jump. However,
we must be concerned with the possibility that the powe
vector induces a critical event somewhere within[a, b], for
we cannot jump over a critical event. If interval jumping
is to work, we must efficiently determine if a critical even
occurs in[a, b], and if so, where.

To address this problem we exploit one further proper
of the power control law—if a source of signal degradatio
increases the level of degradation, (e.g., the mobile mov
farther away from the base station) then the transmitt
correspondingly increases the power level. What this mea
in practice is that even if degradation vectorαk is costly
to compute, if we can easily compute a degradation vect
α′k that dominatesαk (in the sense that every componen
of noise is at least as bad as inαk), then every component
of Fα′k (P

′
i ) will be at least as largeFαk (Pi), as we iterate

towards their respective fixed point values. Whatthismeans
is that if none of the power vectors encountered computin
towards the fixed point ofFα′k have any component that
exceeds the allowed power limit, than none of the powe
vectors encountered computing towards the fixed point
Fαk do either.

The action of starting with stateP0 and computing the
fixed point ofFα′k is called aprobe. During every iteration
of a probe we update every power level and compute ane
every SNR at every receiver. WithT transmitters, each
capable of interfering with each other,O(T ) computation
is needed to compute the interference at a single receiv
each iteration of probe costsO(T 2) time. Each iteration
we check each new power level for violation of its maxima
level. In the the case that any power level achieves th
level, the probe ends immediately and is said tofail. If
otherwise the probesucceeds, we know that we can interval
jump from a to xk safely, because no power-law induced
critical event can occur in interval[a, xk].

The problem we consider in this paper is now accessibl
given interval [a, b], to devise an effective strategy for
scheduling probes so as to find the latest pointxk for which
the probe fails. We can then interval jump froma to xk−1.
Note that a failed probe at timexk does not imply the
existence of a critical event at that time, only the possibilit
6
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of one. Our overall strategy is to follow the following
sequence:

1. If the correct power vector is known at timea,
find the earliest next scheduled critical event (or
lower bound on it), say at timeb,

2. Apply probes in[a, b] to determine the earliest
point xk, for which the probe fails;

3. Compute the actual degradation vectorαk−1, and
compute the fixed point ofFαk−1 as the power
vector at timexk−1;

4. Time-step throughxk and up toK time-steps be-
yond that searching for a power-law induced critica
event. If one occurs, simulate it, and return to ste
1. If one does not occur inK steps, return to step
1. In both cases the new value ofa is the new
time associated with the last known power vecto

Before considering the problem of effective prob
scheduling we should note that we have skimmed ov
an important issue, the construction of fictitious system
that give rise to artificially poor degradation vectorsα′k.
There are tradeoffs here left to explore. A very tight bu
computationally expensive method may increase the rea
of a probe into[a, b], but cost more than the extra probe
required by a looser degradation vector. Consideration
these trade-offs is beyond the scope of this paper.

2 PROBE SCHEDULING

The high cost of applying a probe motivates us to find
jump interval, while minimizing the computation expende
on probing. In effect, we need a probe scheduling polic
The probe scheduling problem we consider is formulate
as follows. We are given interval[a, b], discretized as
described before inton+ 1 points{xi}. The smallestk for
which the probe fails atxk is modeled as a random variable
S; if no probe fails over[a, b] we defineS = ∞. The
distribution ofS is allowed to be general. The execution cos
of probingxk is defined to be a functionφ whose argument is
the number of time-steps betweenxk and the largest known
time-step which has already passed the probe (and wh
state serves as the starting state for the probe atxk). The
dependence on this difference supports the possibility th
further temporal separation betweenxk and the point of the
last known power-vector may require more iterations fro
the fixed-point algorithm. The probe scheduling proble
is to find a schedule of probes that minimizes the expect
execution cost of performing the search.

It is not difficult to see that this problem can be ap
proached using dynamic programming. Thestate of the
search is described by a pair(i, j), wherexi is the largest
time-step known to have passed the probe (andx0 by defi-
nition is known to pass the probe), andxj is the smallest
42
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time-step beyond which we will not consider probing (with
xn = b initially). Thus the initial state of the search is
(0, n). From any search state(i, j) (with i < j ) a probe
point is selected, say atxk, and the probe is applied. If it
fails the new state is(i, k); if it succeeds the new state is
(k, j) (although the special cases ofi = j +1 or k = j are
slightly different). The probability of the probe failing atk
from state(i, j) is denotedqkij—this can be computed from
first principles given the distribution function ofS and need
not be explained here. The execution cost of probing atk

from state(i, j) is denotedφ(i, k). Cost functionCk(i, j)
gives the minimal cost of the optimal schedule, starting i
state(i, j) and given a probe atk; C(i, j) = mink{Ck(i, j)}
is the minimal cost of the optimal schedule starting in stat
(i, j). The structure ofCk(i, j) is given by

Ck(i, j) =



0, for i = j
φ(i, k), for k = j ,

j − i = 1
φ(i, k) +
qkij C(i, k − 1), for k = j ,

j − i > 1
φ(i, k) + qkij C(i, k) +
(1− qkij ) C(k, j), for k < j ,

j − i > 1

The first case says that wheni = j we need not probe
since (i, i) is a terminal state. The second case says th
from state(i, i+1) we have only to probe atxi+1 and then
enter a terminal state. The third case says that from sta
(i, k), probing atk either succeeds and puts us in termina
state(k, k), or fails, leaving us with interval(i, k − 1) left
to search. The last case considers the two possibilities th
occur when(i, j) has more that two points, and an interior
point is probed.

Brute force solution of this equation requiresO(n3)

time andO(n2) space, recalling thatn is the number of
equidistant points covering[a, b]. Usual techniques for
reducing this cost rely on special properties of the function
involved, such asφ andqkij . In our application we have no
particular hope for nice structure for these functions an
are therefore relegated to the straightforward solution. Th
is the root cause of the problem we consider in this pape

Power control updates occur at a time-scale of millisec
onds, whereas call arrival/departures occur at a time-sca
of minutes. For small sized update increments then, th
number of time-steps to the next scheduled critical event (n)
may be large. This fact makes solution of the DP equatio
above entirely impractical. Another difficulty is the estima-
tion of the probability distribution ofS. We are presently
researching the latter problem and will not discuss it furthe
except to say that the experiments we describe here consi
a variety of forms that distribution might take.
7
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The scheduling strategy we propose is based on t
observation that reducingnby half reduces the computational
work of solving the DP equation by a factor of eight. By
solving a series of small DP problems, we can find th
same earliest critical point that the optimal schedule find
with a slightly larger probe execution cost, but with a
radically reduced schedule computation cost—so much
that computing the schedule dynamically is feasible. O
goal is to be able to compute and use a probe schedul
policy on-the-fly, for every interval we seek to jump. To
do this the computation cost of finding the policy must b
small.

For simplicity we work with powers-of-two numbers
of points and assume the original problem hasn = 2L + 1
points, and letd be any integer divisor ofL. Rather than
discretize[a, b]with 2L+1 points,δ apart, discretize it more
coarsely with 2d +1 points, 2L−dδ apart. We construct and
solve the smaller DP problem, and use the optimal pro
schedule to identify the earliest point on the coarse gr
that fails the probe, say atj0. On the fine grid letxS be
the earliest point where the probe fails; we have then th
i0 < xS ≤ j0, where i0 is the the point that immediately
precedesj0 in the coarse grid. Solution and application o
the coarse-grained problem yields for us an interval th
containsxS . We then discretizethis interval with 2d + 1
points that are 2L−2dδ apart, and repeat the process, findin
an interval [i1, j1] that containsxS . Continuing in this
fashion we solveL/d smaller DP problems in such a way
that we are guaranteed to find the same pointxS that the
optimal search would have done. We trade one expens
DP computation on 2L+1 points forL/d DP computations,
each on 2d + 1 points.

It is worth noting that this method actually describe
a family of solution strategies, depending ond. At one
extreme—whend = L—there is only one level and so
the solution method is simply computation of the optima
strategy. At the other extreme—whend = 1—each level
has only three points (two endpoints and a middle), whic
leads to a policy that is close to (but not identical to) binar
search. Between these extremes we have a spectrum
policies whose execution costs increase with increasingd,
as does performance measured in terms of mean probing c
needed to findxS . The remainder of the paper consider
this tradeoff, looking at various models of critical poin
placement probability and different probe costs.

3 EXPERIMENTS

We now report on experiments conducted to evaluate t
feasibility of using a tiered search-strategy solution approa
dynamically. Our experiments consider two different mode
of probe costφ(i, j) : constant (φ(i, j) = c for all i < j ),
and logarithmic (φ(i, j) = α log(j − i + 1) for all i < j)).
The logarithmic model is included to allow for qualitative
42
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variations due to larger probe costs when computing
fixed point starting with degradation conditions that ar
significantly unlike those experienced at the last known fixe
point (at xi). We also consider two families of stochastic
models for placement ofxS . One family is the conditional
uniform—with probability p we havea < S ≤ b, and
conditioned on this event the distribution over[a, b] is
uniform. The second family is defined in terms of an linearl
increasing hazard rate function over[a, b]. The slope of the
hazard rate function is the parameter; a slope may be ste
enough to ensure thata < S ≤ b, or may be shallow enough
to allow S > b. We will characterize different members of
this family by the probability ofa < S ≤ b—mapping this
characterization to the appropriate hazard rate function is
straightforward technical exercise.

We first look at the cost of computing different probe
scheduling policies. The experiment was run on an SG
Origin 2000 with a 180MHz clock. This experiment mea
sured the cost of a priori calculation of the hierarchica
policy, which is even more costly than a dynamic versio
that would calculate the policy only over those intervals tha
the search process shows must be considered. Figure 1
plots the policy computation execution time as a functio
of the number of levels (L/d), on a problem withn = 4097
points on the fine grid. A conditional uniform distribution
with p = 0.5 modelsS. We see a huge difference, between
a six hour running time for the optimal policy calculation
and a 50 millisecond running time for the policy that dis
cretizes each interval into three points. The computation
savings here are enormous. The question is how good
quickly computed policy is relative to optimal, and relative
to the easy and intuitive binary search policy. Figure 1(b
plots the ratio of the mean tiered policy probe cost to th
of binary search (applied to the fine grid). Several lines a
plotted, for various probabilities of finding a critical even
in the interval. The plots shown assume that the probe co
increases logarithmically in the jump distance and that th
critical event distribution is conditional uniform. We have
studied variations on these assumptions and all the results
quantitatively similar to those shown. Two basic messag
come out of this graph. One is that relative performanc
is insensitive to the number of levels employed, and th
other is that relative performance depends very much on t
likelihood p of finding a critical event in the interval. The
basic difference between binary search and the tiered pol
is that whenp is low, the tiered policy has knowledge of this
and can encourage probes at the right end of the interv
A successful probe nearb in interval [a, b] quickly leads
to a terminal condition, in fewer steps than required by th
binary search. However, if a critical event does appear
[a, b], then the tiered policy will have to do much of the
same honing in on it that the binary search does, and so
costs become more similar. The difference works to ou
advantage, for wireless systems are engineered to minim
8
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unscheduled channel re-assignments, which are precis
the critical events we are concerned about encountering
[a, b]. In the common case then, the added effort of ma
aging the tiered policy offers substantial reduction in pro
costs over binary search.

We next compare the performance of tiered policy sche
ules to optimum. The graphs in Figure 2 work through th
four combinations of probe cost and critical event placeme
distribution possible under our experimental assumptio
Each line is plotted as a function of the probability tha
the interval contains a critical event; the dependent varia
is the ratio of the mean probe cost of the tiered policy
the mean probe cost of the optimal policy. Two interestin
things emerge from all of these graphs. First and foremo
it is evident that the performance degradation due to us
a tiered policy rather than optimal is almost always le
than 10% in these experiments, usually much less. Giv
the significant performance advantage over binary search
the common case, this observation demonstrates the ut
of the proposed approach. The second interesting feat
of this data is its shape. When the probability of seeing
critical event is low, the policies with more levels (henc
fewer points involved in a policy calculation) perform bette
than policies with fewer levels (with the exception of cours
of the 1 level policy, which is optimal). We have noted th
reason for this behavior already—on a coarse grid there
strong encouragement to probe the rightmost point, beca
if it passes the probe we immediately enter a terminal sta
The policies with more levels are more likely to enter
terminal state before descending all the way to the botto
level. However, if the probability of encountering a critica
event in the interval is large, then the policies that have mo
42
ly
in
-
e

-

t
s.
t
le

t,
g
s
n
in
ity
re
a

is
se
e.

m

e

points in a subinterval are more efficient at honing in th
point. Between these two extremes the relative performan
of these policies “cross over” at various points.

As a final note on this data, we see that the variation
in our assumptions about probe cost and distribution of th
critical point placement have only a second order effect o
relative performance. This is encouraging, because we a
looking only at models of these facets anyway. Relativ
insensitivity between our assumed models suggests th
whatever the real behavior might be, it too will be relatively
insensitive in these same ways (provided of course that
is not terribly different from our assumptions).

4 FUTURE WORK

The study reported here is theoretical, in the sense that it
concerned entirely with models of a wireless communicatio
network behavior. We are working to incorporate interva
jumping and probe scheduling into a wireless simulator an
evaluate these policies in that more real context.

A significant piece of the problem is to determine how
to model the probability distribution of the critical event
placement. Our results show that the relative utility an
performance of the tiered policy is sensitive to the probabilit
of finding an critical event in the interval. It will likely be
necessary that in a deployed system we be able to estim
this probability from run-time observations.

5 CONCLUSIONS

Interval jumping is a technique we’ve developed to accelera
the simulation of a class of frequency-multiplexed wireles
9
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communication systems. A critical problem is to compu
a schedule of probes that reveal how large an interval
simulation may jump. This paper proposes and studie
family of policies that solve a sequence of optimizatio
problems. We observe that the computational cost of t
method is not large, that the schedules it produces ar
common circumstances significantly better than the na
binary search technique, but are not significantly wo
than the optimal schedule. Collectively this suggests that
method is valuable, provided that in practice we can const
430
stochastic models of model behavior that are similar to tho
assumed by our policy.
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