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ABSTRACT

Computation of power control calculations is one of the most
time-consuming aspects of simulating wireless communica-

tion systems. These calculations are critical to understand-

ing how a wireless network will perform, and so cannot
be conveniently ignored. Power-control calculations imple-
ment solutions to discretized differential equations, and so
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The power control laws we have studied were introduced
and studied by Foschini and Miljanic (1993,1994,1995) and
Foschini et al (1994a,1994b) in the context of schemes where
each connection is assigned a small band of frequencies—
called a channel—within which its communication occurs).
Intuitively, each transmitter-receiver pair seeks to maintain
a target quality of signal, measured in terms of dignal-
to-noiseratio (or SNR) at the receiver. “Noise” is really

are essentially time-stepped. In a previous paper (Perrone signal degradation, and derives from a variety of sources

and Nicol, (1998)) we proposed a technique fioterval
jumping that allows for substantially many time-steps to be
jumped over, thereby reducing the amount of computation

(internal (thermal) noise, shadow-fading, distance, external
interference). One we are most concerned with is external
interference from other signals being broadcast concurrently

needed to achieve the same state as would straightforward (co-channel interference), either using this same frequency

time-stepping. The technique involves identification of a
region of simulation time during which no channel assign-

ments change due to limits on transmitter power, and a
“jump” over that region. In this paper we examine the

cost/benefit tradeoffs between policies which seek to mini-
mize the work done to identify a jump interval, and the cost
of computing those policies. We find that a tiered dynamic
programming approach yields policies that very nearly min-
imize the searching overhead, while enjoying substantively
lower computation costs than does the policy which strictly
minimizes the searching overhead.

1 INTRODUCTION

Modern wireless communication systems adaptively com-

band (some distance away), or “spill-over” from adjacent
frequency bands (adjacent-channel interference). The trans-
mitter changes its power level evefyunits of time, during
which the SNR can be measured at the receiver. At the very
beginning of a time-step, the transmitter learns the SNR
observed during the last time-step, and adjusts its power to
achieve the desired SNR, assuming that the signal degra-
dation in the current time-step is equal to that in the last
time-step. However, a transmitter has a maximum power
level. If a sequence of a few time-steps go by in which
the target SNR cannot be achieved owing to this power
limitation, the wireless system seeks an alternative channel
in the hope that the interference level will be lower there.
From this description it is clear that power control is
a distributive adaptive dance, with each transmitter using

pute the power level each transmitter uses. Since wireless the recent past as a guess of the near future in order to set
communication is broadcast, the stronger the power, the far- its power level. Such networks work because the system
ther the signal reachesyerywhere However, the stronger is engineered so that power levels do not change rapidly.
the power, the larger is the potential for a given signal to Noise due to interference changes in part because partici-
interfere with other concurrent wireless communications. pants are mobile, so that those moving away from a tower
Adaptive systems therefore seek to adjust each transmitter’s require increasing levels of power. A radical change in
power to use what is needed to communicate effectively, and the interference observed by some communications occurs
no more. Good treatments of these and other problems in when some channel allocation changes, a user either just
wireless communication are found in Balston and Macario begins to use a new channel, or a user ceases to use an
(1993), Stiber (1996), Webb (1998), and Asha (1994). existing channel. We call this eritical eventin the simu-
lation. Critical events arise either from the discrete portion
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of the simulation (e.g., call arrivals/departures governed by and so on until successively computed power vectors are
stochastic sampling), or may be triggered by the contin- numerically very much alike. Because we compute the

uous (time-stepped) portion of the simulation. The latter

power vector without time-stepping, we call this method

situation occurs when the power assignment is such that an interval jump Assuming that both methods compute

for a sufficiently long period of time, some communica-

nearly the same result, the latter one will be more efficient

tion pair cannot achieve their target SNR, and change the than the former one if it requires fewer thariterations to
channel assignment, accordingly. Critical events caused by achieve convergence. In practice convergence is achieved

some transmitter reaching maximum power cannot easily

in a small number of iterations, say, 5 to 10. Our earlier

be predicted, whereas critical events caused by scheduledwork showed the very significant performance gains that

call arrival/departures can be predicted, with pre-sampling
of random number streams.

In our earlier work we noticed that Foschini’s distributed
power control law is a fixed point computation in a high
dimensional vector space, in the following way. We can
describe the assignment of &ll transmitter powers at the
i"" time step as a vectd?;, whosej’" component gives the
transmitted power of thg!” transmitter in the system. We
formally describe the collection of all contributions to signal

are possible using interval jumping.

If interval [a, b] is chosen so that the state of the power
vector at timez is known, and time is the earliest next time
of a known call arrival/departure, then we hope to be able
to computepP, efficiently with an interval jump. However,
we must be concerned with the possibility that the power
vector induces a critical event somewhere withinb], for
we cannot jump over a critical event. If interval jumping
is to work, we must efficiently determine if a critical event

degradation other than external interference (e.g., distance) occurs in[a, b], and if so, where.

as a vector of constants Then we formally describe the
power update law a#,, a function fromR” — R, so
that P;11 = Fy(P;). The fact thatF,, for normal definitions
of « is a fixed-point function means that for any two initial
starting states’ and S’, repeated application af, pushes
towards the same resuR. That is, if P; is thei’ power
vector computed starting wittPp = S and P/ is the i’
power vector computed starting withy = §’, then asi
grows large thenP; and P/ approachP. It turns out that
we can exploit this powerful property of the power update
law to accelerate a simulation, by completely skipping over
some time-steps.

The technique we describe is useful when the power

To address this problem we exploit one further property
of the power control law—if a source of signal degradation
increases the level of degradation, (e.g., the mobile moves
farther away from the base station) then the transmitter
correspondingly increases the power level. What this means
in practice is that even if degradation vectgr is costly
to compute, if we can easily compute a degradation vector
o), that dominatesy; (in the sense that every component
of noise is at least as bad asdp), then every component
of Fa;(Pi/) will be at least as largé,, (P;), as we iterate
towards their respective fixed point values. Wiidg means
is that if none of the power vectors encountered computing
towards the fixed point oﬁ’?a;{ have any component that

levels used are not interesting in and of themselves, except to exceeds the allowed power limit, than none of the power
detect when critical events caused by power levels occur. For vectors encountered computing towards the fixed point of

instance, our technique will not help a simulation that tracks

power consumption in battery operated devices, because

there the actual power used must be computed.

To see how the fixed-point property helps us, consider
an interval[a, b] of simulation time, discretized inte + 1
points. We denote these points by definig= a + k(b —
a)/n,fork =0,1,...,n. Astime passes in the simulation,
the environmental characteristics that contribute to signal
degradation evolve; for each time we let«; denote the
characteristics affecting the power control lawxgtexcept

F,, do either.

The action of starting with stat8y and computing the
fixed point ofFa;{ is called aprobe During every iteration
of a probe we update every power level and compute anew
every SNR at every receiver. Witli transmitters, each
capable of interfering with each othed,(7") computation
is needed to compute the interference at a single receiver;
each iteration of probe cost9(7?) time. Each iteration
we check each new power level for violation of its maximal
level. In the the case that any power level achieves this

for interference due to power levels. We assume that these level, the probe ends immediately and is saidfab. If
a;'s can be computed in advance, if needed, as a function of otherwise the probsucceedswe know that we can interval

predictable (pre-sampled) mobility. Now for any time-step
X, consider two separate ways of computing the power
vector P, used at that time-step. Both methods start with
the same known power vect®y, at time-stepcg. The first
method computesP; = Fu,(Po), P2 = F,,(P1), and so

on until computingPy = Fy, ,(Px—1). The second method
doesn’ttime-step atall, ititeratively appli€s, , to compute
the fixed point, i.e.,P{ = Fy_,(Po), P = Fy_,(P)),
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jump froma to x; safely, because no power-law induced
critical event can occur in intervdd, x;].

The problem we consider in this paper is now accessible:
given interval [a, b], to devise an effective strategy for
scheduling probes so as to find the latest psjrfior which
the probe fails. We can then interval jump framo x;_1.
Note that a failed probe at time, does not imply the
existence of a critical event at that time, only the possibility
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of one. Our overall strategy is to follow the following
sequence:

1. |If the correct power vector is known at time
find the earliest next scheduled critical event (or a
lower bound on it), say at tima,

Apply probes in[a, b] to determine the earliest
point x;, for which the probe fails;

Compute the actual degradation veatgr,, and
compute the fixed point ofy, , as the power
vector at timex;_1;

Time-step through; and up toK time-steps be-
yond that searching for a power-law induced critical
event. If one occurs, simulate it, and return to step
1. If one does not occur ik steps, return to step
1. In both cases the new value afis the new
time associated with the last known power vector.

Before considering the problem of effective probe
scheduling we should note that we have skimmed over
an important issue, the construction of fictitious systems
that give rise to artificially poor degradation vectars.
There are tradeoffs here left to explore. A very tight but
computationally expensive method may increase the reach
of a probe into[a, b], but cost more than the extra probes
required by a looser degradation vector. Consideration of
these trade-offs is beyond the scope of this paper.

2 PROBE SCHEDULING

The high cost of applying a probe motivates us to find a
jump interval, while minimizing the computation expended
on probing. In effect, we need a probe scheduling policy.
The probe scheduling problem we consider is formulated
as follows. We are given intervdl, b], discretized as
described before inta + 1 points{x;}. The smallesk for
which the probe fails at; is modeled as a random variable
S; if no probe fails over[a, b] we defineS = co. The
distribution ofS is allowed to be general. The execution cost
of probingx is defined to be a functiogy whose argument is
the number of time-steps betweenand the largest known

time-step beyond which we will not consider probing (with
x, = b initially). Thus the initial state of the search is
(0,n). From any search statg, j) (with i < j) a probe
point is selected, say af, and the probe is applied. If it
fails the new state isi, k); if it succeeds the new state is
(k, j) (although the special casesiof j+1 ork = j are
slightly different). The probability of the probe failing &t
from state(i, j) is denotedyi".—this can be computed from
first principles given the distribution function éfand need
not be explained here. The execution cost of probing at
from state(i, j) is denotedp (i, k). Cost functionC* (i, j)
gives the minimal cost of the optimal schedule, starting in
state(i, j) and given a probe &t C(i, j) = ming{C* (i, j)}

is the minimal cost of the optimal schedule starting in state
(i, j). The structure ofC*(i, j) is given by

0, for i=j
o, k), for k= ,
j—i=1
o3, k) +
Ck(i,j) — q{‘j C(i, k-1, for k=j ,
j—i>1
¢, k) + qf Cl k) +
(1 —gq) Clk, ), for k< j ,
j—i>1

The first case says that wheén= j we need not probe
since (i, i) is a terminal state. The second case says that
from state(i, i + 1) we have only to probe a1 and then
enter a terminal state. The third case says that from state
(i, k), probing atk either succeeds and puts us in terminal
state(k, k), or fails, leaving us with intervali, k — 1) left
to search. The last case considers the two possibilities that
occur when(i, j) has more that two points, and an interior
point is probed.

Brute force solution of this equation requirés(n®)
time and O (n?) space, recalling that is the number of
equidistant points coveringu, b]. Usual techniques for
reducing this cost rely on special properties of the functions
involved, such ag andq{‘j. In our application we have no

time-step which has already passed the probe (and whoseParticular hope for nice structure for these functions and

state serves as the starting state for the probe )atThe
dependence on this difference supports the possibility that
further temporal separation betwegnand the point of the
last known power-vector may require more iterations from
the fixed-point algorithm. The probe scheduling problem
is to find a schedule of probes that minimizes the expected
execution cost of performing the search.

It is not difficult to see that this problem can be ap-
proached using dynamic programming. Téiate of the
search is described by a pdit j), wherex; is the largest
time-step known to have passed the probe (endy defi-
nition is known to pass the probe), arg is the smallest
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are therefore relegated to the straightforward solution. This
is the root cause of the problem we consider in this paper.

Power control updates occur at a time-scale of millisec-
onds, whereas call arrival/departures occur at a time-scale
of minutes. For small sized update increments then, the
number of time-steps to the next scheduled critical event (
may be large. This fact makes solution of the DP equation
above entirely impractical. Another difficulty is the estima-
tion of the probability distribution ofS. We are presently
researching the latter problem and will not discuss it further
except to say that the experiments we describe here consider
a variety of forms that distribution might take.
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The scheduling strategy we propose is based on the variations due to larger probe costs when computing a

observation that reducingoy half reduces the computational
work of solving the DP equation by a factor of eight. By
solving a series of small DP problems, we can find the
same earliest critical point that the optimal schedule finds,
with a slightly larger probe execution cost, but with a

fixed point starting with degradation conditions that are
significantly unlike those experienced at the last known fixed-
point (atx;). We also consider two families of stochastic
models for placement ofg. One family is the conditional
uniform—uwith probability p we havea < § < b, and

radically reduced schedule computation cost—so much so conditioned on this event the distribution ovgr, b] is

that computing the schedule dynamically is feasible. Our

uniform. The second family is defined in terms of an linearly

goal is to be able to compute and use a probe scheduling increasing hazard rate function o\et »]. The slope of the

policy on-the-fly, for every interval we seek to jump. To
do this the computation cost of finding the policy must be
small.

For simplicity we work with powers-of-two numbers
of points and assume the original problem has 2L +1
points, and le be any integer divisor of.. Rather than
discretizea, b] with 2L 41 points,§ apart, discretize it more
coarsely with 2 + 1 points, 2~ apart. We construct and
solve the smaller DP problem, and use the optimal probe
schedule to identify the earliest point on the coarse grid
that fails the probe, say gp. On the fine grid letcg be
the earliest point where the probe fails; we have then that
ip < xs < jo, Whereip is the the point that immediately
precedesj in the coarse grid. Solution and application of
the coarse-grained problem vyields for us an interval that
containsxs. We then discretizehis interval with 2/ + 1
points that are 2-245 apart, and repeat the process, finding
an interval[i1, j1] that containsxg. Continuing in this
fashion we solve./d smaller DP problems in such a way
that we are guaranteed to find the same pejthat the

hazard rate function is the parameter; a slope may be steep
enough to ensure that< S < b, or may be shallow enough

to allow S > b. We will characterize different members of
this family by the probability of: < S < b—mapping this
characterization to the appropriate hazard rate function is a
straightforward technical exercise.

We first look at the cost of computing different probe
scheduling policies. The experiment was run on an SGI
Origin 2000 with a 180MHz clock. This experiment mea-
sured the cost of a priori calculation of the hierarchical
policy, which is even more costly than a dynamic version
that would calculate the policy only over those intervals that
the search process shows must be considered. Figure 1(a)
plots the policy computation execution time as a function
of the number of levelsi(/d), on a problem witlh = 4097
points on the fine grid. A conditional uniform distribution
with p = 0.5 modelsS. We see a huge difference, between
a six hour running time for the optimal policy calculation
and a 50 millisecond running time for the policy that dis-
cretizes each interval into three points. The computational

optimal search would have done. We trade one expensive savings here are enormous. The question is how good the

DP computation on2+ 1 points forL /d DP computations,
each on 2 4 1 points.

It is worth noting that this method actually describes
a family of solution strategies, depending an At one
extreme—whend = L—there is only one level and so
the solution method is simply computation of the optimal
strategy. At the other extreme—wheh= 1—each level
has only three points (two endpoints and a middle), which
leads to a policy that is close to (but not identical to) binary

quickly computed policy is relative to optimal, and relative

to the easy and intuitive binary search policy. Figure 1(b)
plots the ratio of the mean tiered policy probe cost to that
of binary search (applied to the fine grid). Several lines are
plotted, for various probabilities of finding a critical event

in the interval. The plots shown assume that the probe cost
increases logarithmically in the jump distance and that the
critical event distribution is conditional uniform. We have
studied variations on these assumptions and all the results are

search. Between these extremes we have a spectrum ofquantitatively similar to those shown. Two basic messages

policies whose execution costs increase with increaging

come out of this graph. One is that relative performance

as does performance measured in terms of mean probing costis insensitive to the number of levels employed, and the

needed to findcg. The remainder of the paper considers
this tradeoff, looking at various models of critical point
placement probability and different probe costs.

3 EXPERIMENTS

other is that relative performance depends very much on the
likelihood p of finding a critical event in the interval. The
basic difference between binary search and the tiered policy
is that wherp is low, the tiered policy has knowledge of this
and can encourage probes at the right end of the interval.

A successful probe nedr in interval [a, b] quickly leads
We now report on experiments conducted to evaluate the to a terminal condition, in fewer steps than required by the
feasibility of using a tiered search-strategy solution approach binary search. However, if a critical event does appear in
dynamically. Our experiments consider two different models [a, b], then the tiered policy will have to do much of the
of probe cosi (i, j) : constant ¢ (i, j) = ¢ for all i < j), same honing in on it that the binary search does, and so the
and logarithmic ¢ (i, j) = alog(j —i + 1) for all i < j)). costs become more similar. The difference works to our
The logarithmic model is included to allow for qualitative  advantage, for wireless systems are engineered to minimize
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Policy Execution Time for 4096 points, Cost Model = Fixed, Uniform PMF 4096 points, Cost Model = Log, Uniform PMF
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Figure 1: Policy Calculation Cost, and Performance Relative to Binary Search

unscheduled channel re-assignments, which are preciselypoints in a subinterval are more efficient at honing in the

the critical events we are concerned about encountering in point. Between these two extremes the relative performance

[a, b]. In the common case then, the added effort of man- of these policies “cross over” at various points.

aging the tiered policy offers substantial reduction in probe As a final note on this data, we see that the variations

costs over binary search. in our assumptions about probe cost and distribution of the
We next compare the performance of tiered policy sched- critical point placement have only a second order effect on

ules to optimum. The graphs in Figure 2 work through the relative performance. This is encouraging, because we are

four combinations of probe cost and critical event placement looking only at models of these facets anyway. Relative

distribution possible under our experimental assumptions. insensitivity between our assumed models suggests that

Each line is plotted as a function of the probability that whatever the real behavior might be, it too will be relatively

the interval contains a critical event; the dependent variable insensitive in these same ways (provided of course that it

is the ratio of the mean probe cost of the tiered policy to is not terribly different from our assumptions).

the mean probe cost of the optimal policy. Two interesting

things emerge from all of these graphs. First and foremost, 4 FUTURE WORK

it is evident that the performance degradation due to using

a tiered policy rather than optimal is almost always less The study reported here is theoretical, in the sense that it is

than 10% in these experiments, usually much less. Given concerned entirely with models of a wireless communication

the significant performance advantage over binary search in network behavior. We are working to incorporate interval

the common case, this observation demonstrates the utility jumping and probe scheduling into a wireless simulator and

of the proposed approach. The second interesting feature evaluate these policies in that more real context.

of this data is its shape. When the probability of seeing a A significant piece of the problem is to determine how

critical event is low, the policies with more levels (hence to model the probability distribution of the critical event

fewer points involved in a policy calculation) perform better placement. Our results show that the relative utility and

than policies with fewer levels (with the exception of course performance of the tiered policy is sensitive to the probability

of the 1 level policy, which is optimal). We have noted the of finding an critical event in the interval. It will likely be

reason for this behavior already—on a coarse grid there is necessary that in a deployed system we be able to estimate

strong encouragement to probe the rightmost point, becausethis probability from run-time observations.

if it passes the probe we immediately enter a terminal state.

The policies with more levels are more likely to enter a 5 CONCLUSIONS

terminal state before descending all the way to the bottom

level. However, if the probability of encountering a critical  Interval jumping is atechnique we've developed to accelerate

eventin the interval is large, then the policies that have more the simulation of a class of frequency-multiplexed wireless
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4096 point interval, Cost Log, Uniform PMF
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Figure 2: Performance Relative to Optimal

communication systems. A critical problem is to compute stochastic models of model behavior that are similar to those
a schedule of probes that reveal how large an interval the assumed by our policy.
simulation may jump. This paper proposes and studies a
family of policies that solve a sequence of optimization ACKNOWLEDGMENTS
problems. We observe that the computational cost of this
method is not large, that the schedules it produces are in This research was supported in part by NSF grants ANI-98-
common circumstances significantly better than the naive 08964, EIA-98-02068 and DARPA contract N66001-96-C-
binary search technique, but are not significantly worse 8530.
than the optimal schedule. Collectively this suggests that the
method is valuable, provided that in practice we can construct
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