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ABSTRACT 
 
Models, similar to other intellectual properties, are 
increasingly being treated as commodities worthy of 
protection.  Providing ownership for models is key for 
promoting model reusability, composability, and 
distributed simulation. However, to date, it appears no 
principled approach has been developed to support 
ownership of models.  Instead, individuals such as 
modelers and legal personnel employ ad hoc means to 
obtain and (re)use models developed and owned by others.  
In this article, we briefly describe access control 
capabilities offered by computer languages, operating 
systems, and HLA ownership management services. The 
examinations of such methods suggest the need for formal 
ownership specification. The article discusses, in an 
informal setting, requirements for model ownership from 
the point of view of increasing demand and necessity for 
model reuse, distributed simulation, and future trends for 
collaborative model development. We develop concepts for 
model ownership suitable for collaborative model 
development and distributed execution. Based on the 
developed concepts, we present an approach, within the 
DEVS modeling & simulation framework, for specifying 
model ownership. The article closes with the consideration 
of the proposed approach for the Collaborative DEVS 
Modeling environment and a brief discussion of HLA 
services relevant to model ownership. 
 
1 INTRODUCTION 
 
For many years, research inquires and emphasis in 
distributed computing, and distributed simulation in 
particular, has been on advancing computational, 
communication, time management, and load-balancing 
techniques.  Recently, other basic research inquiries in 
distributed simulation have focused on in interoperability 
and scalability issues.  Examples of such inquires are 
middleware technologies such as High Level Architecture 
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(HLA) (Dahmann, Kuhl et al. 1998, DoD 1998, DoD 1998, 
DoD 1999) and Common Object Request Broker 
Architecture (CORBA) (Orfali, Harkey et al. 1997; OMG 
1998; O'Ryan, Levine et al. 1999). These have been 
employed to enable some degree of interoperability among 
distributed simulations (Fujimoto 1990; Fujimoto 1998).  
Similarly, advanced techniques have been proposed and 
implemented to reduce amount of data transmission among 
simulation nodes by a few orders of magnitude (Zeigler, 
Ball et al. 1998, Zeigler, Hall et al. 1999).  While 
considerable research has been conducted in the areas of 
simulation interoperability and scalability, M&S research 
has yet to pursue research in the area of model ownership. 
Conceptual basis and modeling paradigms for model 
ownership is an essential need for distributed simulation, 
especially in multi-organizational settings.   

Accountability for model ownership is integral to the 
existence and further advances in collaborative modeling 
as well as distributed simulation.  There are numerous 
instances where ownership becomes the initial, and often 
the main, impediment to collaborative model development 
across multiple, sometime competing, organizations.  
Consider the case where two teams of modelers from two 
different organizations must collaborate with one another 
to develop a complex model comprised of two sets of 
models. One group of modelers is to devise a model of a 
communication system including its host hardware with 
many hundreds of components. The other group of 
modelers is to embark on building an E-commerce 
business application. The key observation is that while 
these two organizations are developing their own models, 
they must eventually interoperate with one another. This is 
to due to fact that only combined simulation of these two 
sets of models can reveal intertwined, complex concealed 
behavioral characteristic of the overall model.  However, 
modeling of such large-scale, multi-organizational systems 
are plagued with numerous pitfalls. For example, due to 
lack of systematic model ownership and consequently lack 
of availability of other�s models, the modeling teams must 
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make obscure assumptions.  The undesirable consequence 
is that these independently developed sets of models are 
unlikely to interoperate.  However, with well-defined 
model ownership, teams can use each other�s models at 
varying levels of details throughout model development 
and execution phases and therefore minimize model 
interoperability related uncertainties. Furthermore, model 
ownership can provide orderly handling of proprietary 
issues. 

As of this writing, HLA offers some limited 
capabilities to designate which set of simulation models 
can make available their attributes to other simulation 
models.  For example, HLA supports data 
publishing/subscription and data management - i.e., it 
provides ownership in the sense of who may publish data 
as opposed to, for example, who the actual owner of a 
model is and what authorities the owner may posses.  
Similarly, in CORBA, the Electronic Commerce taskforce 
Object Management Group (OMG), has been proposed an 
specification to support alternative negotiation styles (e.g., 
bilateral and multilateral) and legal related issues (e.g., 
jurisdiction). The capabilities offered by HLA and CORBA 
indicates two distinct aspects of ownership: micro level 
(attributes of a model are considered) and macro level 
(entire organizations are considered). 

Therefore, in this work we will provide a basis for 
model ownership concepts such as �modeler rights and 
privileges� in a collaborative setting. To devise an 
approach for formally representing model ownership, we 
will employ the Discrete-event System Specification 
(DEVS) modeling framework.  

 
2 SCALEABLITY, INTEROPERABLITY,  

AND OWNERSHIP 
 
Increasingly contemporary software systems are expected 
to operate in a distributed setting due to, in part, extensive 
interdependencies among various worlds� economies, 
short-lived collaborations, and their expected and 
accidental emerging complexities.  Distributed computing 
technologies are expected to support scalability and 
interoperability requirements for systems exhibiting 
homogeneity and heterogeneity characteristics.  While 
scaleabilty and interoperability are attracting much needed 
attention, in contrast, the necessity and role of 
distributed/multi-organization ownership is hardly 
recognized and reckoned with. This is unfortunate since the 
trio of scalability, interoperability and ownership must be 
collectively supported to enable distributed modeling and 
simulation. 

The Authoritative Data Source (ADS) project, under 
the Defense Modeling and Simulation Office (DMSO) 
Master Plan 5000.59-P directive, has undertaken steps 
toward supporting data credibility and composability, and 
reduction in  cost (Sheehan, McGlynn et al. 1999). Such 
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efforts are directed toward a process whereby models (1) 
can be developed and stored according to standards, (2) 
identified, and (3) can be assigned authority (i.e., 
credibility) level.  This and the HLA initiative are 
important in building a repository of �reusable� models. 
However, we believe collaborative, distributed modeling 
paradigm is needed based on the SCO principles as the 
underlying foundation to guide objectives such as those 
advocated by the ADS project.  Within such a formal 
collaborative, distributed modeling paradigm, not only the 
data credibility, composability, and cost objectives are 
more likely be achieved, the broader needs (e.g., 
distributed simulation) of the M&S community can be 
supported as well.    

 
2.1 Scalability 
 
An examination of existing modeling and simulation 
environments reveals that ever more larger models are 
needed to represent an array of systems � environmental 
models (e.g., climatology), enterprise resource planning 
(e.g., supply chain), computer networks (e.g., FAA), and 
system of systems (e.g., C4I).  Models capable of 
representing dynamics of such systems can be 
characterized along two dimensions: (1) number of sub-
models and (2) data size and exchange frequency.  From 
the modeling perspective, these dimensions, are 
interdependent since data size and exchange frequency are 
in part directly due to the number of sub-models and the 
number of state variables.  The other key factors 
responsible for increased interaction among submodels can 
be attributed to model resolution, accuracy, cost, and 
execution speed.  
 
2.2 Interoperability 
 
Simulation models of a variety of systems have been 
developed over the span on many decades, many of which 
in isolation and therefore without the goal of satisfying 
model interoperability. Consequently, interoperability, 
generally, is considered at the simulation model execution 
level. Absence of formal interoperability concepts at the 
modeling level can be attributed to model development 
across literally all scientific disciplines without adhering to 
any formal, comprehensive modeling framework. This may 
explain why DoD�s High Level Architecture (HLA) and its 
Object Model Template (OMT) proposed standards are 
primarily specified at the simulation level.  HLA/OMT can 
support �interoperability� among simulations using the 
object orientation concepts. For example, it appears that 
interoperability across DoD�s training, analysis, and 
acquisition mandates can be quite hard to achieve without 
relying on the old ad hoc means.  In software engineering, 
CORBA has been instrumental in supporting 
heterogeneous software components to interoperate.  The 
1
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CORBA specification (CORBA 1995) provides a host of
services such as events, persistence, naming, time,
concurrency, and licensing. These services, however, do
not have their foundation in dynamical system modeling
and therefore cannot in their present form enable �model
interoperability.� Nevertheless, the underlying concepts of
CORBA provide a sound basis for modeling and
simulation interoperability.

2.3 Ownership

We will compare model ownership with access control to
show the required additions. Data and specifically
component access control, from the object oriented world-
view, is through field declarations. For example,
�ownership� of simple and higher-order objects (derived
from inheritance and composition relationships) can be
enforced through field declarations.  However, relying
solely on such accessibility mechanisms for providing
access control offer limited ownership capabilities for
model development, model (re)use, and execution.
Furthermore, in a distributed setting, such access controls
are weak since they cannot provide a systematic approach
to assigning, maintaining, and controlling ownership at
alternative levels of granularities (e.g., attribute vs. class
ownership).

Other means for access control can be enforced
through security check and more generally private
networks and user authentication. These approaches have
been employed for users and their applicability and
adaptation for model ownership is an open research
inquiry. Next we discuss access control from the OO
perspective as well as publish/subscribe in terms of data
exchange among distributed nodes and model bases.

Other capabilities related to ownership (e.g., access
control) have been available for many years. For example,
SCMS Software Configuration Management Systems
(SCMS) (Bersoff, Henderson et al. 1980) and configuration
programming (Shaw, DeLine et al. 1995, Bishop and Faria
1996) support some types of access to data primarily based
on the operating systems� services.

2.3.1 Access Control in Object Orientation

Object orientation provides a rich set of access control
fields for each of classes, interfaces, attributes, and
methods. A class/object is typically has attributes,
methods, as well as inheritance and composition
relationships. Attributes generally can be first-class
objects. Therefore, an object�s attributes can be thought of
as component having its own attributes, methods, and
inheritance relationship. Object orientation provides a
uniform access control policy via field declarations for
objects, attributes, and methods.  Class field modifier
choices are public, abstract, and final. Interface modifier
44
choices are public and abstract. The access control of a
class/interface (object) with an inheritance relationship is
determined by its inherited parent field declaration.

In Java, for example, public, protected, private, and static
field modifiers can be assigned to attributes. Other, less
relevant attribute field modifiers are final, transient, and
volatile. The final modifier can be used for providing one
incarnation of the field, transient modifier provides non-per-
sistence fields, and volatile modifier makes private copies for
threads. The field declarations for methods are public, pro-
tected, private, abstract, static, final, synchronized, and native.

Field declarations and their abilities to control read,
write, and execution can be seen in two settings: non-
distributed and distributed. The field declarations have
well-defined characteristics in non-distributed setting � that
is a class hierarchy of objects contained in a single memory
workspace.  In contrast, field declarations in a distributed
setting are primarily through packages.  While attributes,
methods, and inheritance field declaration provides some
level of mutual exclusion, they cannot support ownership
since ownership can be enforced through file ownership
offered by operating system.  Moreover, the field
declarations are too weak for control access control for
individual use, especially outside of a given hierarchy of
classes or a package. For example, consider an attribute for
a class clsA. By declaring this attribute to have no field
modifier, the attribute is available within its own package
and to any other child class (e.g., clsB extends
clsA) that resides in the same package.

2.3.2 Publish/Subscribe in Distributed Computing

In the world of distributed computing, the basic concepts
of object-orientation are insufficient due to the fact that
there does not exist a single-address space, but instead
make it possible to communicate across a network.
Accordingly, �distributed object�, an extend form of
object, make it possible for it to be used in a seamless
fashion.  Such distributed objects not only have their
encapsulated knowledge, but also can be manipulated
across a network or send their data to others.

The concepts of publish and subscribe allow a
component to publish its own data or subscribe to data
from other components.  The components capabilities to
interchange data, makes it possible for them to be
heterogeneous and therefore support portability and
scalability. Of course, components should be able to
interoperate with inhomogeneous data types under the
condition that they are able to transform receiving data to
their expected types.

Data exchange can be either through ports or not.
Components can have unidirectional input and output ports
through which various kinds of data types can be sent or
received.  Alternatively data can be sent or received
through �virtual� bi-directional ports.
2
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2.3.3 Distributed Model Bases 
 
Our underlying assumption is that persistence models exist 
in an independent fashion in a distributed setting.  
Moreover, our treatment of the ownership is independent 
of form of storage � that is models located in a node can be 
either in a database or not.  The basic requirement that 
must be satisfied is that the model can be treated as an 
object and independent of any specific programming 
language. 
 
3 INFUSING OWNERSHIP INTO  

DEVS MODELING 
 
A rather extensive variety of models, methodologies, and 
applications have been introduced. For example, models 
are represented using laws of physics, chemistry, statistics 
using a variety of mathematical formalisms such as a 
systems theory, neural networks, fuzzy logic, situation 
calculus. Aside from these types of models, many of 
today�s contemporary computer systems (e.g., commerce) 
are modeled using UML (UML 2000) and other computer 
language-based schemas such as System Entity Structure 
(SES) (Zeigler 1984; Rozenblit 1992).  
 Model design and simulation of distributed systems, in 
comparison to non-distributed (singular) systems, is much 
more complex. From the standpoint of collaborative model 
development and distributed simulation, scalability, 
interoperability, and ownership considerations are of 
fundamental importance. In particular, a viable modeling 
paradigm must enable its users to represent and formalize 
interoperability and ownership concepts as well as lending 
itself as blueprint for alternative forms of simulation 
execution strategies.     

Given the existence of numerous modeling 
approaches, we focus our attention on systems theory as 
the basis to formalize interoperability and ownership 
concepts discuss above.  From the three alternative system 
theoretic formalisms, discrete event system specification 
has been shown to lend itself quite well in characterizing 
many kinds of systems exhibiting causal, time-invariant 
(varying), and (non) deterministic behaviors. More 
importantly, distributed systems, generally, are event-
oriented and are generally best represented in discrete 
event form.  

Given modeling paradigms founded on the principles 
of System Theory, the Discrete-event System Specification 
(DEVS) is believed to be the most appropriate candidate 
for incorporating distributed model ownership. The DEVS 
modeling formalism enables characterization of systems in 
terms of hierarchical modules with well-defined interfaces.  
Due to its system-theoretic foundations, DEVS modeling 
paradigm naturally maps into object-orientation 
implementation and consequently has been implemented in 
sequential, parallel, and distributed environments (AIS 
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1998; Zeigler, Praehofer et al. 2000).  In addition to DEVS 
Modeling constructs, the System Entity Structure (SES) in 
conjunction with rule-based system have been proposed 
and employed to deal with design choices.  The 
combination of DEVS and SES can provide a suite of 
modeling capabilities for representing model spaces and 
dynamics containing intelligent features (e.g., rule-based 
model synthesis, fuzzy logic, and neural networks based 
dynamics.)   

 
3.1 Discrete Event System Specification 
 
The Discrete Event System Specification (DEVS) (Zeigler, 
Praehofer et al. 2000)modeling approach supports 
capturing a system�s structure in terms of atomic and/or 
coupled models where coupled models are hierarchical 
satisfying closure under coupling (Zeigler 1984).  While a 
part of a system can be represented as an atomic model 
with well-defined input/output interfaces, a system 
represented as a DEVS coupled model designates how 
systems can be coupled together to form system of 
systems. Such coupled models also have the same 
input/output interfaces. Given atomic models, DEVS 
coupled models can be formed in a straightforward 
manner.  Both atomic and coupled models can be 
simulated using sequential and/or various forms of parallel, 
distributed computational techniques (Zeigler and 
Sarjoughian 1997).   
 
3.2 Atomic Model with Ownership 
 
Aside from OO declaration fields such as public, we 
employ the broader concepts of publish and subscribe. 
These concepts are used with distributed systems (e.g., 
client/server applications and distributed simulations). We 
define DEVS atomic model with ownership as a 
mathematical structure: 

 
AM = 〈X, Y, S, δ, λ, ta, ons〉  where 
X set of input events, 
S  set of sequential states, 
Y  set of output events, 
δ    state transitions due to internal changes and 

external stimuli 
λ  output function generating external events as 

outputs, 
ta  time advance function, 
 

3.2.1 Ons Ownership 
 
Sets S and Y represent publishable and non-publishable 
data of an atomic model. Similarly, set X represents 
subscribable data.  The element ons is used to 
assign/identify the model owner. The model ownership is 
w.r.t. the data contained in the model and specifically what 
3
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can be made available to other models. The remaining 
elements of the atomic model structure represent its 
dynamics.  In terms of modular, hierarchical distributed 
modeling, internal functionality of an atomic model is of 
interest only to the extent of its states and input/output 
events (data) associated with their input/output ports. 
Therefore, we can characterize an atomic model�s 
ownership as follows.  
 

 
 

X = {(px, vx)  |  px ∈ Px, input port names, vx ∈ Vx, 
input values, Ssub → Vx, Ssub =Spub ∪Ppub 
whereSpub andPpub are other DEVS models 
publishable states and parameters, respectively.} 

Y = {(py, vy)  |  py ∈ Py, arbitrary input port names, 
vy ∈ Vy, arbitrary input values, Spub → Vy, 
Spub ⊆ S.}  

S = Spub ∪ SN where Spub and SN are the set of 
states that are publishable and non-publishable 
states, respectively.  

ons is an arbitrary name with an associated 
authentication (passwd.) The model owner is able 
to specify publishable vs. non-publishable states 
and parameters.  Owner can be a singular or not. 
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If multiple owners are permitted or desired, 
appropriate levels of authorities (e.g., 
master/slave) mechanisms are needed in addition 
to support for resolving conflicts for inconsistent 
concurrent assignments of (un)publishable states.   

  

 The existence of input/output ports can result in 
separate ownership of states/parameters, thus allowing for 
distinct ownership for ports and states/parameters. Under 
the supposition that both ports and states/parameters of an 
atomic model can be assigned ownership, ownership can 
be of three types: (a) single owner for ports and 
states/parameters, (b) a single owner for each port and the 
data (i.e., states/parameters) that is made available via it, 
(c) multiple owners for ports and a single owner for 
states/parameters.  Input and output ports have opposite 
scope w.r.t. states/parameters. An output port can sanction 
what subset of publishable states can be made available to 
other models. That is, output port ownership is superior to  
data ownership.  The date owner, however, would be able 
to sanction what input values (states published by other 
models) it may choose to use, thus asserting control 
(superiority) over input port ownership.  These 
characterizations, along with the concept of modularity and 
object orientation, point to case (a) as being the most ideal. 
In this case, state/parameters and output ports ownership 
are the same.  Similarly, ownership of input ports would be 
the same as accepting/rejecting other model�s published 
states/parameters. Cases (b) and (c) provide no 
fundamental advantage since supporting such finer grain 
ownership will complicate needlessly ownership 
characterization of coupled models.  In the next section, we 
consider ownership of ports for the coupled model case in 
view of our present discussion. 
Atomic Model A

Spub: publishable states
SN: non-publishable states
ons: owner of Spub and SN

(px, vx) (py, vy)

subscribe publish

DEVS Model B

Spub: publishable states
SN: non-publishable states
ons: owner of Spub and SN

(px, vx)
(py, vy)

subscribe

publish

Atomic Model N

Spub: publishable states
SN: non-publishable states
ons: owner of Spub and SN

(px, vx)

(py, vy)

subscribe

publish

IC

(px, vx)

subscribe

(p′
y, v′

y)
publish

EIC

EOC

CM: owner of
IC,
EIC,
EOC

Coupled Model 

(py, vy)

publish

(p′
y, v′

y)

publish

(px, vx)

subscribe
4
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Since DEVS, Differential Equations System 
Specification (DESS), and Discrete-Time System 
Specification (DTSS) are founded on the basis of systems 
theory concept [19], the ownership characterization of the 
DEVS atomic model is equally applicable to continuous 
systems that can be represented as differential equations. 
(Treatment for the discrete-time systems is the same as 
DEVS.) That is, the specification of DESS is AMcont = 〈X, 
Q, Y, f, λ, ons〉 where all of its elements are the same as 
those of DEVS atomic model except f which is the rate of 
change function. 

 
3.3 Coupled Model with Ownership 
 
Given a coupled model (CM), its representation is concise 
and reusable since any coupled model has a corresponding 
basic DEVS model due to the closure-under-coupling 
property.  The couplings among components can be 
systematically captured using output to input mappings.  In 
particular, there exist three different types of coupling: 
internal coupling, external input coupling, and external 
output coupling.  Internal coupling interconnects 
components of a coupled model.  External input coupling 
interconnects input ports of a coupled model to input ports 
of its components. Similarly, external output coupling 
interconnect component output ports of a coupled model to 
the output ports of the coupled model itself. Note that the 
ports provide a generic pipe through which a variety of 
messages (data/objects) can be transferred from one 
component to another 
 
CM  = 〈 X, Y, D, {Md | d ∈ D}, IC, EIC, EOC, ons〉 

where 
X set of input port and value pairs; 
Y set of  output port and value pairs; 
D set of the component names; 
IC set of internal coupling connecting component 

outputs to component inputs; 
EIC set of External input couplings connecting 

external inputs to component inputs; 
EOC set of external output coupling connecting 

component outputs to external outputs; 
ons an arbitrary name with an associated 

authentication (passwd.) Publishable vs. non-
publishable states and parameters are controlled 
by MO via the internal, external input, and 
external output couplings ownership. 

 
Subject to:  
 
X = {(px, vx) |  px ∈  InPorts,  vx ∈ Vx, , Ssub → 

Vx , Ssub =Spub ∪Ppub ,Spub = S1pub × �× 
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Smpub such that S ipub ≠ SMd
  for i = 1, �, m for d ∈ 

D.}    
Y = {(py, vy) |  py ∈  OutPorts,  vy ∈ Vy, , Spub ∪ 

Ppub → Vy , Spub ⊆ S1pub × �× Snpub such that 

Sjpub = SMd
  for j = 1, �, n for d ∈ D.}    

Each component is a DEVS model. That is, for 
each d ∈ D, 

 Md = 〈 X, Y, S, δ, λ, ta, OM 〉 is a DEVS as 
defined above. 

 
Coupling and ownership specification: 
 
IC  ⊆ {((a, (py,a , vy,a)), (b,  (px,b , vx,b))) | a, b 

∈ D,            
py,a ∈ OutPortsa , S

apub ⊆ Sa , Sapub → Vy,a , 
vy,a ∈ Vy,a ,  

px,b∈ InPortsb , vx,b ∈ Vx,b ,Vx,b ⊆ Vy,a .} 
 
Interpretation: model owner can (1) ascertain 

components couplings and (2) restrict child component 
a output values (Vy,a) that can be made available as 
input values (Vx,b) to sibling component b.} 

 
EIC ⊆ {((CM, (px,CM , vx,CM)), (d,  (px,d , 

vx,d))) | d ∈ D, px,CM ∈ InPortsCM, px,d 

∈ InPortsd,Spub → Vx,CM , Spub = S1pub × �× 

Skpub such that S ipub ≠ SMd
  for i = 1, �, k for d ∈ 

D, Vx,d ⊆ Vx,CM  for d ∈ D.} 
 
Interpretation: model owner can (1) ascertain EIC 

couplings and (2) restrict component CM input values 
(Vx,CM) that can be made available as input values 
(Vx,d) to child component d.} 

 
EOC ⊆ {((d,  (py,d , vy,d)), (CM, (py,CM , 

vy,CM))) | d ∈ D, py,d ∈ OutPortsd , py,CM 

∈ OutPortsCM, Sdpub → Vy,d , SCMpub ⊆  S1pub × 

�× Shpub such that S ipub = SMd
  for i = 1, �, h for 

d ∈ D, Vx,d ⊆ Vx,CM  for d ∈ D.} 
 
Interpretation: model owner can (1) own EOC 

couplings and (2) restrict child component d output 
values (Vx,d) that can be made available as output 
values (Vx,CM) to component CM. 
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No direct feedback loops between the output and 
input ports of any DEVS model is allowed. That is, no 
output port of a component may be connected to an 
input port of the same component i.e., ((a, (py,a , 
vy,a)), (b, (px,b , vx,b))) ∈ IC implies a ≠ b. For 
simplicity, without loss of generality, our formulation 
does not explicitly account for parameters.  

 
Coupled models are defined to own couplings alone.  

As discussed in Section 3.2, the ports of any atomic model 
can have ownership associated with them. A simple 
approach is to let a coupled model own its input/output 
ports with the implication that the EIC (subscription) and 
EOC (publishing) ownership are also applicable to input 
and output ports. This approach lends itself to modular 
ownership of ports for any DEVS model in a simple 
manner. Of course, it is possible to grant multiple 
ownership in a coupled model � let each of IC, EIC, and 
EOC be owned by separate owners. Or indeed, designate 
ownership at a finer grain level � have multiple owners for 
multiple couplings for each set of declared IC, EIC, and 
EOC coupling.  These finer grain ownership strategies 
require complex ownership strategies and are not discussed 
here.  

 
3.4 Role of Ownership in System 

Entity Structure 
 
A System Entity Structure (SES) provides the means to 
represent a family of models as a labeled tree (Rozenblit 
1992). Two of its key features are support for 
decomposition and specialization. The former allows 
representing a large system in terms of smaller systems. 
The latter supports representation of alternative choices. 
Specialization enables representing a generic model (e.g., a 
computer display model) and its specialized variations (a 
flat panel display or a CRT display.) Based on SES 
axiomatic specifications, a family of models can be 
represented and pruned to study and experiment with 
design choices (alternatives.) An important, salient feature 
of SES is its ability to represent models not only in terms 
of their decomposition and specialization, but also aspects 
(SES represents alternative decompositions via aspects.)  
 
4 SUPPORTING ENVIRONMENTS 
 
To demonstrate the applicability and usefulness of 
ownership concepts, we propose the Collaborative DEVS 
Modeler (CDM) (Sarjoughian, Nutaro et al. 1999). Such an 
environment is attractive since it can support dispersed 
modelers to develop models in a collaborative setting. In 
collaborative settings, ownership related concerns are 
always present if each modeler owns her model (i.e., 
models are stored, maintained, accessed from the modeler's 
physical location). 
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The collaborative DEVS modeler is based on the 
integration of two disciplines: Modeling and Distributed 
Object Computing (Sarjoughian, Nutaro et al. 1999).  The 
Collaborative DEVS Modeler approach to modeling is 
based on the concept of a session which is a �loosely 
bounded workspace� within which a group of knowledge 
modelers develop a model as a team. This conceptual view 
of CDM illustrates two basic issues: distribution of 
modelers (knowledge workers) and their resources across 
time and space. It supports synchronous and asynchronous 
synthesis of models.  Synchronous collaboration can be 
supported by complementary capabilities such as text-
based and video-teleconferencing tools in order to support 
rich collaboration among modelers.  These capabilities can 
be tailored for modeling by providing representations of 
common modeling primitives and enforcing correct 
modeling constructs.  Asynchronous collaboration also 
benefits from the availability of modeling primitives and 
semantics enforcement.    

We can distinguish two types of modeling activities: 
model construction and model synthesis (Zeigler, 
Sarjoughian et al. 1997). Model construction mostly deals 
with identifying dynamics of models while model synthesis 
concerned with synthesizing coupled models given existing 
atomic and/or coupled models.  Realizing that the 
boundary between construction and synthesis can be 
imprecise due to the iterative nature of modeling, the 
development of ownership concepts, methods, and 
methodologies demand caution. 

 
5 RELATED WORK 
 
5.1 High Level Architecture 
 
The Department of Defense has instituted the HLA 
standard (HLA 1999)across its branches to support 
reusable, plug and play heterogeneous distributed 
simulation.  Its overarching objective is to enable 
simulation interoperability and reuse, thus enabling various 
simulations to interoperate with one another in logical 
and/or real-time. HLA/OMT is founded on the Federation 
Development Process following software engineering 
principles.  As such, HLA/OMT offers some support for 
distributed �model design� by following the software 
engineering principles, but intentionally does not 
incorporate any specific modeling paradigm and 
methodology (Sarjoughian and Zeigler 1999; Sarjoughian 
and Zeigler 1999).  

The HLA standard is a modeling and simulation 
interface specification.  The HLA/OMT specification, one 
of the three pieces of the HLA standard, defines primarily 
HLA object models as opposed to model dynamics. Users 
are able to develop different classes of simulations across 
alternative domains using HLA Interface Specification (IS) 
and Object Model Template (OMT) for defining data 
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exchange interfaces among federates (simulation 
components) and rules for constructing federations 
(composite simulations). HLA/IS provides federation, 
time, data distribution, declaration, object, and ownership 
management services. Alternative combinations of the 
latter three services can be used to enable (a) object class 
registration and discovery, instance attribute updating and 
reflection, (b) parameter sending or receiving belonging to 
interaction classes. HLA/OMT supports object and 
interaction class hierarchies � these class hierarchies are 
interchangeable. Publish/subscribe are used with object 
class attributes and send/receive are used with interaction 
class parameters. Of significant relevance in terms of 
ownership are the declaration, object, and ownership 
management services provided by the Run Time 
Infrastructure (RTI) to federates. A great majority of these 
services are in support of simulation execution while others 
are for simulation model (i.e., federate) declaration and 
initialization.   

Declaration Management services are used by 
federates to declare their intention to generate or receive 
information. Object and interaction classes are the focus of 
declaration management since they must be available prior 
to, for example, registering object instances, updating of 
attributes and sending of interactions. The Declaration 
Management services are start(stop) registration of object 
classes, turning on(off) interaction classes, (un)publishing 
object/interaction classes and (un)subscribing object class 
attributes, and (un)subscribing interaction classes. Such 
services rely on some form of ownership of the object and 
interaction classes and their content (attributes and 
parameters).  

Object Management services such as object instances 
registration and delete object instance allow the federates 
of a federation to transfer ownership of object instance 
attribute with on another. The RTI and federate �update 
attribute values� and �reflect attribute values� services 
together provide the basic mechanism for data exchange.  
Other Object Management services support sending and 
receiving of interactions.  The send and receive interaction 
services enable sending of interactions to federation and 
receipt of interactions by a federate.  

Ownership Management services support to grant and 
transfer ownership of one or more attributes of an object 
instance.  A federate is an owner of an attribute and not the 
object instance. This allows various attributes of an object 
instance to be �owned� by different federates.  Using these 
services, a federate can invoke services such as �update 
attribute value.�  Some of the main RTI�s Ownership 
Management services are �unconditional/negotiated 
attribute ownership divestiture�, �attribute ownership 
acquisition,� �attribute ownership release response,� and 
�is attribute owned by federate�. The complementary 
services provided by a federate are �inform attribute 
ownership� and �attribute ownership unavailable.�   
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Attributes may or may not have ownership. Owner of 
an instance attribute is the federate responsible for 
publishing it.  Likewise, if a federate seizes to publish an 
attribute the attribute will have no owner. That is, there 
exist interdependencies between ownership and 
publication. We observe that this work presented allows 
ownership assignment using well-defined comprehensive 
mechanisms. It further supports ownership persistence, 
thus supporting dynamic, run-time ownership 
modifications and run time execution.  

 
6 CONCLUSIONS 
 
We have described the ownership for models and the 
necessity of models having distinct owners.  We discussed 
a variety of existing means by which models may be 
controlled. In particular, the concepts of access control and 
HLA publish/subscribe were discussed in relation to model 
ownership. After analyzing the constituents of ownership 
from a formal point of view, we extended the DEVS 
modeling framework to support ownership assignment. 
Ownership was defined for atomic and coupled models. 
We further described how the system entity structure 
knowledge representation scheme can be extended to 
support ownership as well. 
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