
Proceedings of the 2000 Winter Simulation Conference
J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, eds.

MODELS AND REPRESENTATION OF THEIR OWNERSHIP

Hessam S. Sarjoughian
Bernard P. Zeigler

Arizona Center for Integrative Modeling and Simulation

Electrical and Computer Engineering Department
University of Arizona

Tucson, AZ 85721-0104, U.S.A.

ABSTRACT

Models, similar to other intellectual properties, are
increasingly being treated as commodities worthy of
protection. Providing ownership for models is key for
promoting model reusability, composability, and
distributed simulation. However, to date, it appears no
principled approach has been developed to support
ownership of models. Instead, individuals such as
modelers and legal personnel employ ad hoc means to
obtain and (re)use models developed and owned by others.
In this article, we briefly describe access control
capabilities offered by computer languages, operating
systems, and HLA ownership management services. The
examinations of such methods suggest the need for formal
ownership specification. The article discusses, in an
informal setting, requirements for model ownership from
the point of view of increasing demand and necessity for
model reuse, distributed simulation, and future trends for
collaborative model development. We develop concepts for
model ownership suitable for collaborative model
development and distributed execution. Based on the
developed concepts, we present an approach, within the
DEVS modeling & simulation framework, for specifying
model ownership. The article closes with the consideration
of the proposed approach for the Collaborative DEVS
Modeling environment and a brief discussion of HLA
services relevant to model ownership.

1 INTRODUCTION

For many years, research inquires and emphasis in
distributed computing, and distributed simulation in
particular, has been on advancing computational,
communication, time management, and load-balancing
techniques. Recently, other basic research inquiries in
distributed simulation have focused on in interoperability
and scalability issues. Examples of such inquires are
middleware technologies such as High Level Architecture
44
(HLA) (Dahmann, Kuhl et al. 1998, DoD 1998, DoD 1998,
DoD 1999) and Common Object Request Broker
Architecture (CORBA) (Orfali, Harkey et al. 1997; OMG
1998; O'Ryan, Levine et al. 1999). These have been
employed to enable some degree of interoperability among
distributed simulations (Fujimoto 1990; Fujimoto 1998).
Similarly, advanced techniques have been proposed and
implemented to reduce amount of data transmission among
simulation nodes by a few orders of magnitude (Zeigler,
Ball et al. 1998, Zeigler, Hall et al. 1999). While
considerable research has been conducted in the areas of
simulation interoperability and scalability, M&S research
has yet to pursue research in the area of model ownership.
Conceptual basis and modeling paradigms for model
ownership is an essential need for distributed simulation,
especially in multi-organizational settings.

Accountability for model ownership is integral to the
existence and further advances in collaborative modeling
as well as distributed simulation. There are numerous
instances where ownership becomes the initial, and often
the main, impediment to collaborative model development
across multiple, sometime competing, organizations.
Consider the case where two teams of modelers from two
different organizations must collaborate with one another
to develop a complex model comprised of two sets of
models. One group of modelers is to devise a model of a
communication system including its host hardware with
many hundreds of components. The other group of
modelers is to embark on building an E-commerce
business application. The key observation is that while
these two organizations are developing their own models,
they must eventually interoperate with one another. This is
to due to fact that only combined simulation of these two
sets of models can reveal intertwined, complex concealed
behavioral characteristic of the overall model. However,
modeling of such large-scale, multi-organizational systems
are plagued with numerous pitfalls. For example, due to
lack of systematic model ownership and consequently lack
of availability of other�s models, the modeling teams must
0

Sarjoughian and Zeigler

make obscure assumptions. The undesirable consequence
is that these independently developed sets of models are
unlikely to interoperate. However, with well-defined
model ownership, teams can use each other�s models at
varying levels of details throughout model development
and execution phases and therefore minimize model
interoperability related uncertainties. Furthermore, model
ownership can provide orderly handling of proprietary
issues.

As of this writing, HLA offers some limited
capabilities to designate which set of simulation models
can make available their attributes to other simulation
models. For example, HLA supports data
publishing/subscription and data management - i.e., it
provides ownership in the sense of who may publish data
as opposed to, for example, who the actual owner of a
model is and what authorities the owner may posses.
Similarly, in CORBA, the Electronic Commerce taskforce
Object Management Group (OMG), has been proposed an
specification to support alternative negotiation styles (e.g.,
bilateral and multilateral) and legal related issues (e.g.,
jurisdiction). The capabilities offered by HLA and CORBA
indicates two distinct aspects of ownership: micro level
(attributes of a model are considered) and macro level
(entire organizations are considered).

Therefore, in this work we will provide a basis for
model ownership concepts such as �modeler rights and
privileges� in a collaborative setting. To devise an
approach for formally representing model ownership, we
will employ the Discrete-event System Specification
(DEVS) modeling framework.

2 SCALEABLITY, INTEROPERABLITY,

AND OWNERSHIP

Increasingly contemporary software systems are expected
to operate in a distributed setting due to, in part, extensive
interdependencies among various worlds� economies,
short-lived collaborations, and their expected and
accidental emerging complexities. Distributed computing
technologies are expected to support scalability and
interoperability requirements for systems exhibiting
homogeneity and heterogeneity characteristics. While
scaleabilty and interoperability are attracting much needed
attention, in contrast, the necessity and role of
distributed/multi-organization ownership is hardly
recognized and reckoned with. This is unfortunate since the
trio of scalability, interoperability and ownership must be
collectively supported to enable distributed modeling and
simulation.

The Authoritative Data Source (ADS) project, under
the Defense Modeling and Simulation Office (DMSO)
Master Plan 5000.59-P directive, has undertaken steps
toward supporting data credibility and composability, and
reduction in cost (Sheehan, McGlynn et al. 1999). Such
44
efforts are directed toward a process whereby models (1)
can be developed and stored according to standards, (2)
identified, and (3) can be assigned authority (i.e.,
credibility) level. This and the HLA initiative are
important in building a repository of �reusable� models.
However, we believe collaborative, distributed modeling
paradigm is needed based on the SCO principles as the
underlying foundation to guide objectives such as those
advocated by the ADS project. Within such a formal
collaborative, distributed modeling paradigm, not only the
data credibility, composability, and cost objectives are
more likely be achieved, the broader needs (e.g.,
distributed simulation) of the M&S community can be
supported as well.

2.1 Scalability

An examination of existing modeling and simulation
environments reveals that ever more larger models are
needed to represent an array of systems � environmental
models (e.g., climatology), enterprise resource planning
(e.g., supply chain), computer networks (e.g., FAA), and
system of systems (e.g., C4I). Models capable of
representing dynamics of such systems can be
characterized along two dimensions: (1) number of sub-
models and (2) data size and exchange frequency. From
the modeling perspective, these dimensions, are
interdependent since data size and exchange frequency are
in part directly due to the number of sub-models and the
number of state variables. The other key factors
responsible for increased interaction among submodels can
be attributed to model resolution, accuracy, cost, and
execution speed.

2.2 Interoperability

Simulation models of a variety of systems have been
developed over the span on many decades, many of which
in isolation and therefore without the goal of satisfying
model interoperability. Consequently, interoperability,
generally, is considered at the simulation model execution
level. Absence of formal interoperability concepts at the
modeling level can be attributed to model development
across literally all scientific disciplines without adhering to
any formal, comprehensive modeling framework. This may
explain why DoD�s High Level Architecture (HLA) and its
Object Model Template (OMT) proposed standards are
primarily specified at the simulation level. HLA/OMT can
support �interoperability� among simulations using the
object orientation concepts. For example, it appears that
interoperability across DoD�s training, analysis, and
acquisition mandates can be quite hard to achieve without
relying on the old ad hoc means. In software engineering,
CORBA has been instrumental in supporting
heterogeneous software components to interoperate. The
1

Sarjoughian and Zeigler
CORBA specification (CORBA 1995) provides a host of
services such as events, persistence, naming, time,
concurrency, and licensing. These services, however, do
not have their foundation in dynamical system modeling
and therefore cannot in their present form enable �model
interoperability.� Nevertheless, the underlying concepts of
CORBA provide a sound basis for modeling and
simulation interoperability.

2.3 Ownership

We will compare model ownership with access control to
show the required additions. Data and specifically
component access control, from the object oriented world-
view, is through field declarations. For example,
�ownership� of simple and higher-order objects (derived
from inheritance and composition relationships) can be
enforced through field declarations. However, relying
solely on such accessibility mechanisms for providing
access control offer limited ownership capabilities for
model development, model (re)use, and execution.
Furthermore, in a distributed setting, such access controls
are weak since they cannot provide a systematic approach
to assigning, maintaining, and controlling ownership at
alternative levels of granularities (e.g., attribute vs. class
ownership).

Other means for access control can be enforced
through security check and more generally private
networks and user authentication. These approaches have
been employed for users and their applicability and
adaptation for model ownership is an open research
inquiry. Next we discuss access control from the OO
perspective as well as publish/subscribe in terms of data
exchange among distributed nodes and model bases.

Other capabilities related to ownership (e.g., access
control) have been available for many years. For example,
SCMS Software Configuration Management Systems
(SCMS) (Bersoff, Henderson et al. 1980) and configuration
programming (Shaw, DeLine et al. 1995, Bishop and Faria
1996) support some types of access to data primarily based
on the operating systems� services.

2.3.1 Access Control in Object Orientation

Object orientation provides a rich set of access control
fields for each of classes, interfaces, attributes, and
methods. A class/object is typically has attributes,
methods, as well as inheritance and composition
relationships. Attributes generally can be first-class
objects. Therefore, an object�s attributes can be thought of
as component having its own attributes, methods, and
inheritance relationship. Object orientation provides a
uniform access control policy via field declarations for
objects, attributes, and methods. Class field modifier
choices are public, abstract, and final. Interface modifier
44
choices are public and abstract. The access control of a
class/interface (object) with an inheritance relationship is
determined by its inherited parent field declaration.

In Java, for example, public, protected, private, and static
field modifiers can be assigned to attributes. Other, less
relevant attribute field modifiers are final, transient, and
volatile. The final modifier can be used for providing one
incarnation of the field, transient modifier provides non-per-
sistence fields, and volatile modifier makes private copies for
threads. The field declarations for methods are public, pro-
tected, private, abstract, static, final, synchronized, and native.

Field declarations and their abilities to control read,
write, and execution can be seen in two settings: non-
distributed and distributed. The field declarations have
well-defined characteristics in non-distributed setting � that
is a class hierarchy of objects contained in a single memory
workspace. In contrast, field declarations in a distributed
setting are primarily through packages. While attributes,
methods, and inheritance field declaration provides some
level of mutual exclusion, they cannot support ownership
since ownership can be enforced through file ownership
offered by operating system. Moreover, the field
declarations are too weak for control access control for
individual use, especially outside of a given hierarchy of
classes or a package. For example, consider an attribute for
a class clsA. By declaring this attribute to have no field
modifier, the attribute is available within its own package
and to any other child class (e.g., clsB extends
clsA) that resides in the same package.

2.3.2 Publish/Subscribe in Distributed Computing

In the world of distributed computing, the basic concepts
of object-orientation are insufficient due to the fact that
there does not exist a single-address space, but instead
make it possible to communicate across a network.
Accordingly, �distributed object�, an extend form of
object, make it possible for it to be used in a seamless
fashion. Such distributed objects not only have their
encapsulated knowledge, but also can be manipulated
across a network or send their data to others.

The concepts of publish and subscribe allow a
component to publish its own data or subscribe to data
from other components. The components capabilities to
interchange data, makes it possible for them to be
heterogeneous and therefore support portability and
scalability. Of course, components should be able to
interoperate with inhomogeneous data types under the
condition that they are able to transform receiving data to
their expected types.

Data exchange can be either through ports or not.
Components can have unidirectional input and output ports
through which various kinds of data types can be sent or
received. Alternatively data can be sent or received
through �virtual� bi-directional ports.
2

Sarjoughian and Zeigler

2.3.3 Distributed Model Bases

Our underlying assumption is that persistence models exist
in an independent fashion in a distributed setting.
Moreover, our treatment of the ownership is independent
of form of storage � that is models located in a node can be
either in a database or not. The basic requirement that
must be satisfied is that the model can be treated as an
object and independent of any specific programming
language.

3 INFUSING OWNERSHIP INTO

DEVS MODELING

A rather extensive variety of models, methodologies, and
applications have been introduced. For example, models
are represented using laws of physics, chemistry, statistics
using a variety of mathematical formalisms such as a
systems theory, neural networks, fuzzy logic, situation
calculus. Aside from these types of models, many of
today�s contemporary computer systems (e.g., commerce)
are modeled using UML (UML 2000) and other computer
language-based schemas such as System Entity Structure
(SES) (Zeigler 1984; Rozenblit 1992).
 Model design and simulation of distributed systems, in
comparison to non-distributed (singular) systems, is much
more complex. From the standpoint of collaborative model
development and distributed simulation, scalability,
interoperability, and ownership considerations are of
fundamental importance. In particular, a viable modeling
paradigm must enable its users to represent and formalize
interoperability and ownership concepts as well as lending
itself as blueprint for alternative forms of simulation
execution strategies.

Given the existence of numerous modeling
approaches, we focus our attention on systems theory as
the basis to formalize interoperability and ownership
concepts discuss above. From the three alternative system
theoretic formalisms, discrete event system specification
has been shown to lend itself quite well in characterizing
many kinds of systems exhibiting causal, time-invariant
(varying), and (non) deterministic behaviors. More
importantly, distributed systems, generally, are event-
oriented and are generally best represented in discrete
event form.

Given modeling paradigms founded on the principles
of System Theory, the Discrete-event System Specification
(DEVS) is believed to be the most appropriate candidate
for incorporating distributed model ownership. The DEVS
modeling formalism enables characterization of systems in
terms of hierarchical modules with well-defined interfaces.
Due to its system-theoretic foundations, DEVS modeling
paradigm naturally maps into object-orientation
implementation and consequently has been implemented in
sequential, parallel, and distributed environments (AIS
44
1998; Zeigler, Praehofer et al. 2000). In addition to DEVS
Modeling constructs, the System Entity Structure (SES) in
conjunction with rule-based system have been proposed
and employed to deal with design choices. The
combination of DEVS and SES can provide a suite of
modeling capabilities for representing model spaces and
dynamics containing intelligent features (e.g., rule-based
model synthesis, fuzzy logic, and neural networks based
dynamics.)

3.1 Discrete Event System Specification

The Discrete Event System Specification (DEVS) (Zeigler,
Praehofer et al. 2000)modeling approach supports
capturing a system�s structure in terms of atomic and/or
coupled models where coupled models are hierarchical
satisfying closure under coupling (Zeigler 1984). While a
part of a system can be represented as an atomic model
with well-defined input/output interfaces, a system
represented as a DEVS coupled model designates how
systems can be coupled together to form system of
systems. Such coupled models also have the same
input/output interfaces. Given atomic models, DEVS
coupled models can be formed in a straightforward
manner. Both atomic and coupled models can be
simulated using sequential and/or various forms of parallel,
distributed computational techniques (Zeigler and
Sarjoughian 1997).

3.2 Atomic Model with Ownership

Aside from OO declaration fields such as public, we
employ the broader concepts of publish and subscribe.
These concepts are used with distributed systems (e.g.,
client/server applications and distributed simulations). We
define DEVS atomic model with ownership as a
mathematical structure:

AM = 〈X, Y, S, δ, λ, ta, ons〉 where
X set of input events,
S set of sequential states,
Y set of output events,
δ state transitions due to internal changes and

external stimuli
λ output function generating external events as

outputs,
ta time advance function,

3.2.1 Ons Ownership

Sets S and Y represent publishable and non-publishable
data of an atomic model. Similarly, set X represents
subscribable data. The element ons is used to
assign/identify the model owner. The model ownership is
w.r.t. the data contained in the model and specifically what
3

Sarjoughian and Zeigler

can be made available to other models. The remaining
elements of the atomic model structure represent its
dynamics. In terms of modular, hierarchical distributed
modeling, internal functionality of an atomic model is of
interest only to the extent of its states and input/output
events (data) associated with their input/output ports.
Therefore, we can characterize an atomic model�s
ownership as follows.

X = {(px, vx) | px ∈ Px, input port names, vx ∈ Vx,
input values, Ssub → Vx, Ssub =Spub ∪Ppub
whereSpub andPpub are other DEVS models
publishable states and parameters, respectively.}

Y = {(py, vy) | py ∈ Py, arbitrary input port names,
vy ∈ Vy, arbitrary input values, Spub → Vy,
Spub ⊆ S.}

S = Spub ∪ SN where Spub and SN are the set of
states that are publishable and non-publishable
states, respectively.

ons is an arbitrary name with an associated
authentication (passwd.) The model owner is able
to specify publishable vs. non-publishable states
and parameters. Owner can be a singular or not.
44
If multiple owners are permitted or desired,
appropriate levels of authorities (e.g.,
master/slave) mechanisms are needed in addition
to support for resolving conflicts for inconsistent
concurrent assignments of (un)publishable states.

 The existence of input/output ports can result in
separate ownership of states/parameters, thus allowing for
distinct ownership for ports and states/parameters. Under
the supposition that both ports and states/parameters of an
atomic model can be assigned ownership, ownership can
be of three types: (a) single owner for ports and
states/parameters, (b) a single owner for each port and the
data (i.e., states/parameters) that is made available via it,
(c) multiple owners for ports and a single owner for
states/parameters. Input and output ports have opposite
scope w.r.t. states/parameters. An output port can sanction
what subset of publishable states can be made available to
other models. That is, output port ownership is superior to
data ownership. The date owner, however, would be able
to sanction what input values (states published by other
models) it may choose to use, thus asserting control
(superiority) over input port ownership. These
characterizations, along with the concept of modularity and
object orientation, point to case (a) as being the most ideal.
In this case, state/parameters and output ports ownership
are the same. Similarly, ownership of input ports would be
the same as accepting/rejecting other model�s published
states/parameters. Cases (b) and (c) provide no
fundamental advantage since supporting such finer grain
ownership will complicate needlessly ownership
characterization of coupled models. In the next section, we
consider ownership of ports for the coupled model case in
view of our present discussion.
Atomic Model A

Spub: publishable states
SN: non-publishable states
ons: owner of Spub and SN

(px, vx) (py, vy)

subscribe publish

DEVS Model B

Spub: publishable states
SN: non-publishable states
ons: owner of Spub and SN

(px, vx)
(py, vy)

subscribe

publish

Atomic Model N

Spub: publishable states
SN: non-publishable states
ons: owner of Spub and SN

(px, vx)

(py, vy)

subscribe

publish

IC

(px, vx)

subscribe

(p′
y, v′

y)
publish

EIC

EOC

CM: owner of
IC,
EIC,
EOC

Coupled Model

(py, vy)

publish

(p′
y, v′

y)

publish

(px, vx)

subscribe
4

Sarjoughian and Zeigler

Since DEVS, Differential Equations System
Specification (DESS), and Discrete-Time System
Specification (DTSS) are founded on the basis of systems
theory concept [19], the ownership characterization of the
DEVS atomic model is equally applicable to continuous
systems that can be represented as differential equations.
(Treatment for the discrete-time systems is the same as
DEVS.) That is, the specification of DESS is AMcont = 〈X,
Q, Y, f, λ, ons〉 where all of its elements are the same as
those of DEVS atomic model except f which is the rate of
change function.

3.3 Coupled Model with Ownership

Given a coupled model (CM), its representation is concise
and reusable since any coupled model has a corresponding
basic DEVS model due to the closure-under-coupling
property. The couplings among components can be
systematically captured using output to input mappings. In
particular, there exist three different types of coupling:
internal coupling, external input coupling, and external
output coupling. Internal coupling interconnects
components of a coupled model. External input coupling
interconnects input ports of a coupled model to input ports
of its components. Similarly, external output coupling
interconnect component output ports of a coupled model to
the output ports of the coupled model itself. Note that the
ports provide a generic pipe through which a variety of
messages (data/objects) can be transferred from one
component to another

CM = 〈 X, Y, D, {Md | d ∈ D}, IC, EIC, EOC, ons〉

where
X set of input port and value pairs;
Y set of output port and value pairs;
D set of the component names;
IC set of internal coupling connecting component

outputs to component inputs;
EIC set of External input couplings connecting

external inputs to component inputs;
EOC set of external output coupling connecting

component outputs to external outputs;
ons an arbitrary name with an associated

authentication (passwd.) Publishable vs. non-
publishable states and parameters are controlled
by MO via the internal, external input, and
external output couplings ownership.

Subject to:

X = {(px, vx) | px ∈ InPorts, vx ∈ Vx, , Ssub →

Vx , Ssub =Spub ∪Ppub ,Spub = S1pub × �×
445
Smpub such that S ipub ≠ SMd
 for i = 1, �, m for d ∈

D.}
Y = {(py, vy) | py ∈ OutPorts, vy ∈ Vy, , Spub ∪

Ppub → Vy , Spub ⊆ S1pub × �× Snpub such that

Sjpub = SMd
 for j = 1, �, n for d ∈ D.}

Each component is a DEVS model. That is, for
each d ∈ D,

 Md = 〈 X, Y, S, δ, λ, ta, OM 〉 is a DEVS as
defined above.

Coupling and ownership specification:

IC ⊆ {((a, (py,a , vy,a)), (b, (px,b , vx,b))) | a, b

∈ D,
py,a ∈ OutPortsa , S

apub ⊆ Sa , Sapub → Vy,a ,
vy,a ∈ Vy,a ,

px,b∈ InPortsb , vx,b ∈ Vx,b ,Vx,b ⊆ Vy,a .}

Interpretation: model owner can (1) ascertain

components couplings and (2) restrict child component
a output values (Vy,a) that can be made available as
input values (Vx,b) to sibling component b.}

EIC ⊆ {((CM, (px,CM , vx,CM)), (d, (px,d ,

vx,d))) | d ∈ D, px,CM ∈ InPortsCM, px,d

∈ InPortsd,Spub → Vx,CM , Spub = S1pub × �×

Skpub such that S ipub ≠ SMd
 for i = 1, �, k for d ∈

D, Vx,d ⊆ Vx,CM for d ∈ D.}

Interpretation: model owner can (1) ascertain EIC

couplings and (2) restrict component CM input values
(Vx,CM) that can be made available as input values
(Vx,d) to child component d.}

EOC ⊆ {((d, (py,d , vy,d)), (CM, (py,CM ,

vy,CM))) | d ∈ D, py,d ∈ OutPortsd , py,CM

∈ OutPortsCM, Sdpub → Vy,d , SCMpub ⊆ S1pub ×

�× Shpub such that S ipub = SMd
 for i = 1, �, h for

d ∈ D, Vx,d ⊆ Vx,CM for d ∈ D.}

Interpretation: model owner can (1) own EOC

couplings and (2) restrict child component d output
values (Vx,d) that can be made available as output
values (Vx,CM) to component CM.

Sarjoughian and Zeigler

No direct feedback loops between the output and
input ports of any DEVS model is allowed. That is, no
output port of a component may be connected to an
input port of the same component i.e., ((a, (py,a ,
vy,a)), (b, (px,b , vx,b))) ∈ IC implies a ≠ b. For
simplicity, without loss of generality, our formulation
does not explicitly account for parameters.

Coupled models are defined to own couplings alone.

As discussed in Section 3.2, the ports of any atomic model
can have ownership associated with them. A simple
approach is to let a coupled model own its input/output
ports with the implication that the EIC (subscription) and
EOC (publishing) ownership are also applicable to input
and output ports. This approach lends itself to modular
ownership of ports for any DEVS model in a simple
manner. Of course, it is possible to grant multiple
ownership in a coupled model � let each of IC, EIC, and
EOC be owned by separate owners. Or indeed, designate
ownership at a finer grain level � have multiple owners for
multiple couplings for each set of declared IC, EIC, and
EOC coupling. These finer grain ownership strategies
require complex ownership strategies and are not discussed
here.

3.4 Role of Ownership in System

Entity Structure

A System Entity Structure (SES) provides the means to
represent a family of models as a labeled tree (Rozenblit
1992). Two of its key features are support for
decomposition and specialization. The former allows
representing a large system in terms of smaller systems.
The latter supports representation of alternative choices.
Specialization enables representing a generic model (e.g., a
computer display model) and its specialized variations (a
flat panel display or a CRT display.) Based on SES
axiomatic specifications, a family of models can be
represented and pruned to study and experiment with
design choices (alternatives.) An important, salient feature
of SES is its ability to represent models not only in terms
of their decomposition and specialization, but also aspects
(SES represents alternative decompositions via aspects.)

4 SUPPORTING ENVIRONMENTS

To demonstrate the applicability and usefulness of
ownership concepts, we propose the Collaborative DEVS
Modeler (CDM) (Sarjoughian, Nutaro et al. 1999). Such an
environment is attractive since it can support dispersed
modelers to develop models in a collaborative setting. In
collaborative settings, ownership related concerns are
always present if each modeler owns her model (i.e.,
models are stored, maintained, accessed from the modeler's
physical location).
446
The collaborative DEVS modeler is based on the
integration of two disciplines: Modeling and Distributed
Object Computing (Sarjoughian, Nutaro et al. 1999). The
Collaborative DEVS Modeler approach to modeling is
based on the concept of a session which is a �loosely
bounded workspace� within which a group of knowledge
modelers develop a model as a team. This conceptual view
of CDM illustrates two basic issues: distribution of
modelers (knowledge workers) and their resources across
time and space. It supports synchronous and asynchronous
synthesis of models. Synchronous collaboration can be
supported by complementary capabilities such as text-
based and video-teleconferencing tools in order to support
rich collaboration among modelers. These capabilities can
be tailored for modeling by providing representations of
common modeling primitives and enforcing correct
modeling constructs. Asynchronous collaboration also
benefits from the availability of modeling primitives and
semantics enforcement.

We can distinguish two types of modeling activities:
model construction and model synthesis (Zeigler,
Sarjoughian et al. 1997). Model construction mostly deals
with identifying dynamics of models while model synthesis
concerned with synthesizing coupled models given existing
atomic and/or coupled models. Realizing that the
boundary between construction and synthesis can be
imprecise due to the iterative nature of modeling, the
development of ownership concepts, methods, and
methodologies demand caution.

5 RELATED WORK

5.1 High Level Architecture

The Department of Defense has instituted the HLA
standard (HLA 1999)across its branches to support
reusable, plug and play heterogeneous distributed
simulation. Its overarching objective is to enable
simulation interoperability and reuse, thus enabling various
simulations to interoperate with one another in logical
and/or real-time. HLA/OMT is founded on the Federation
Development Process following software engineering
principles. As such, HLA/OMT offers some support for
distributed �model design� by following the software
engineering principles, but intentionally does not
incorporate any specific modeling paradigm and
methodology (Sarjoughian and Zeigler 1999; Sarjoughian
and Zeigler 1999).

The HLA standard is a modeling and simulation
interface specification. The HLA/OMT specification, one
of the three pieces of the HLA standard, defines primarily
HLA object models as opposed to model dynamics. Users
are able to develop different classes of simulations across
alternative domains using HLA Interface Specification (IS)
and Object Model Template (OMT) for defining data

Sarjoughian and Zeigler

exchange interfaces among federates (simulation
components) and rules for constructing federations
(composite simulations). HLA/IS provides federation,
time, data distribution, declaration, object, and ownership
management services. Alternative combinations of the
latter three services can be used to enable (a) object class
registration and discovery, instance attribute updating and
reflection, (b) parameter sending or receiving belonging to
interaction classes. HLA/OMT supports object and
interaction class hierarchies � these class hierarchies are
interchangeable. Publish/subscribe are used with object
class attributes and send/receive are used with interaction
class parameters. Of significant relevance in terms of
ownership are the declaration, object, and ownership
management services provided by the Run Time
Infrastructure (RTI) to federates. A great majority of these
services are in support of simulation execution while others
are for simulation model (i.e., federate) declaration and
initialization.

Declaration Management services are used by
federates to declare their intention to generate or receive
information. Object and interaction classes are the focus of
declaration management since they must be available prior
to, for example, registering object instances, updating of
attributes and sending of interactions. The Declaration
Management services are start(stop) registration of object
classes, turning on(off) interaction classes, (un)publishing
object/interaction classes and (un)subscribing object class
attributes, and (un)subscribing interaction classes. Such
services rely on some form of ownership of the object and
interaction classes and their content (attributes and
parameters).

Object Management services such as object instances
registration and delete object instance allow the federates
of a federation to transfer ownership of object instance
attribute with on another. The RTI and federate �update
attribute values� and �reflect attribute values� services
together provide the basic mechanism for data exchange.
Other Object Management services support sending and
receiving of interactions. The send and receive interaction
services enable sending of interactions to federation and
receipt of interactions by a federate.

Ownership Management services support to grant and
transfer ownership of one or more attributes of an object
instance. A federate is an owner of an attribute and not the
object instance. This allows various attributes of an object
instance to be �owned� by different federates. Using these
services, a federate can invoke services such as �update
attribute value.� Some of the main RTI�s Ownership
Management services are �unconditional/negotiated
attribute ownership divestiture�, �attribute ownership
acquisition,� �attribute ownership release response,� and
�is attribute owned by federate�. The complementary
services provided by a federate are �inform attribute
ownership� and �attribute ownership unavailable.�
44
Attributes may or may not have ownership. Owner of
an instance attribute is the federate responsible for
publishing it. Likewise, if a federate seizes to publish an
attribute the attribute will have no owner. That is, there
exist interdependencies between ownership and
publication. We observe that this work presented allows
ownership assignment using well-defined comprehensive
mechanisms. It further supports ownership persistence,
thus supporting dynamic, run-time ownership
modifications and run time execution.

6 CONCLUSIONS

We have described the ownership for models and the
necessity of models having distinct owners. We discussed
a variety of existing means by which models may be
controlled. In particular, the concepts of access control and
HLA publish/subscribe were discussed in relation to model
ownership. After analyzing the constituents of ownership
from a formal point of view, we extended the DEVS
modeling framework to support ownership assignment.
Ownership was defined for atomic and coupled models.
We further described how the system entity structure
knowledge representation scheme can be extended to
support ownership as well.

ACKNOWLEDGMENTS

This research has been supported in part by NSF Next
Generation Software (NGS) grant #EIA-9975050 and
DARPA Advanced Simulation Technology Thrust (ASTT)
Contract #N6133997K-0007.

REFERENCES

AIS (1998). AI & Simulation Research Group.

<http://www.acims.arizona.edu>.
Bersoff, E., V. Henderson, et al. 1980. Software

Configuration Management, Prentice-Hall.
Bishop, J. and R. Faria 1996. Connectors in configuration

programming languages: are they necessary? 3rd
International Conference on Configurable Distributed
Systems, Annapolis, MD.

CORBA 1995. CORBA: Architecture and Specification,
OMG.

Dahmann, J. S., F. Kuhl, et al. 1998. Standards for
simulation: as simple as possible but not simpler the
high level architecture for simulation. Simulation
71(6): 378-387.

DoD, U. S. 1998. High-Level Architecture Interface
Specification (Version 1.3).

DoD, U. S. 1998. High-Level Architecture Rules (Version
1.3).

DoD, U. S. 1999. High-Level Architecture Object Model
Specification (Version 1.4).
7

Sarjoughian and Zeigler

Fujimoto, R. 1990. Distributed simulation.
Communications of the ACM 33(10): 30-53.

Fujimoto, R. 1998. Time management in the high-level
architecture. Simulation 71(6): 388-400.

HLA 1999. High Level Architecture, Defense Modeling
and Simulation Office.

OMG 1998. CORBA/IIOP 2.2 Specification,
http://www.omg.org/corba/corbaiiop.html.

Orfali, R., D. Harkey, et al. 1997. The Essential
Client/Server Survival Guide, John Wiley & Sons.

Orfali, R., D. Harkey, et al. 1995. The Essential
Distributed Objects Survival Guide, John Wiley &
Sons.

O'Ryan, C., D. L. Levine, et al. 1999. Applying a scaleable
corba events service to large-scale distributed
interactive simulations. 5th Workshop on Object-
oriented Real-time Dependable Systems.

Rozenblit, J. R., J.F. Hu 1992. Integrated knowledge
representation and management in simulation based
design generation. IMACS Journal of Mathematics
and Computers in Simulation 34(3-4): 262-282.

Sarjoughian, H. S., J. Nutaro, et al. 1999. Collaborative
DEVS modeler. International Conference on Web-
Based Modeling and Simulation, San Francisco, SCS.

Sarjoughian, H. S. and B. P. Zeigler 1999. Collaborative
modeling: the missing piece of distributed simulation.
enabling technology for simulation science, 13th SPIE,
Orlando, FL.

Sarjoughian, H. S. and B. P. Zeigler 1999. The role of
collaborative DEVS modeler in federation
development. Simulation Interoperability Workshop,
Orlando, FL.

Shaw, M., R. DeLine, et al. 1995. Abstractions for
software architecture and tools to support them. IEEE
Transactions on Software Engineering 21(4): 314-335.

Sheehan, J., L. McGlynn, et al. 1999. Authoritative data
sources: how do i efficiently find the knowledge i
require? PHALANX 32(1): 13-16.

UML 2000. Unified Modeling Language.
<http://www.rational.com/uml/index.j
tmpl>.

Zeigler, B. P. 1984. Multi-Facetted Modeling and Discrete
Event Simulation. New York, Academic Press.

Zeigler, B. P., G. Ball, H. S. Sarjoughian 1998. The
DEVS/HLA Distributed Simulation Environment And
Its Support for Predictive Filtering, ECE, The
University of Arizona.

Zeigler, B. P., S. B. Hall, et al. 1999. Exploiting HLA and
DEVS to promote interoperability and reuse in
lockheed's corporate environment. Simulation 73(5):
288-295.

Zeigler, B. P., H. Praehofer, et al. 2000. Theory of
Modeling and Simulation, 2nd Edition, Academic
Press.
44

Zeigler, B. P. and H. S. Sarjoughian 1997. Object-oriented

DEVS. 11th SPIE, Orlando, Florida.

AUTHOR BIOGRAPHIES

HESSAM S. SARJOUGHIAN is Assistant Research
Professor of Electrical and Computer Engineering at the
University of Arizona. His current research interests are in
theory, methodology, and practice of distributed/
collaborative modeling & simulation. His other research
interests are in AI and Software Engineering. His email
and web addresses are <hessam@ece.arizona.
edu> and <www.acims.arizona.edu >.

BERNARD P. ZEIGLER is Professor of Electrical and
Computer Engineering at the University of Arizona,
Tucson. He has written several foundational books on
modeling and simulation theory and methodology. He is
currently leading a DARPA sponsored project on DEVS
framework for HLA and predictive contracts. He is a
Fellow of the IEEE. His email and web addresses are
<zeigler@ece.arizona.edu> and <www.
acims.arizona.edu >.
8

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

