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ABSTRACT

We discuss some of the difficulties present in trace colle
tion and trace-driven cache simulation. We then descri
our multiprocessor tracing technique and verify that it a
curately collects long traces. We propose sampling as
method to reduce required disk space, enable simulatio
to run faster, and effectively enlarge the trace buffer of o
hardware monitor, decreasing trace distortion. To this en
we investigate time sampling and two types of set sam
pling. We conclude that the second set sampling techniq
achieves the most accurate results. The miss rate for
second set sampling method is calculated as the num
of misses to sampled sets divided by the total number
references scaled by the sample size. We determined th
10% sample size was the most accurate while still reduci
required disk space.

1 INTRODUCTION

Processor speeds are increasing at a much greater rate
memory speeds. This difference causes a bottleneck
the system and decreases performance. With the incre
ing popularity of multiprocessor computers, the bottlenec
is becoming even worse. Researchers are searching
ways to reduce this problem. Since it is now common
have two caches (level 1 and level 2) integrated onto ea
processor chip, adding a third, very large, off-chip cach
(level 3 or L3) seems a likely candidate for reducing th
bottleneck. Simulation, especially trace-driven simulatio
is a frequently used method of testing new cache confi
urations. Creating a simulator is a fairly straightforward
albeit very time consuming, task. The difficulty lies in
obtaining the long, accurate traces necessary for simulat
extremely large L3 cache systems used in current and fut
multiprocessor systems.
lti-
ion
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1.1 Background and Previous Work

For our purposes, a trace is a stream of successive add
requests containing references for memory reads, writes, a
instruction fetches. There are several different address tra
collection methods; for example, instruction modificatio
(Borg 1990, Sun 1992, Larus 1992), microcode modificatio
(Agarwal 1986), single stepping (Agarwal 1986), proce
sor simulation (Sohi 1991), and hardware monitors (Cla
1983, Torrellas 1992, Nagle 1993). These methods oft
introduce one or more of the following four types of error
into collected trace data, (1) missing operating system re
erences, (2) absent multitasking behavior, (3) time dilatio
or (4) short traces (Harper 1993). These introduced erro
mean that simulation runs are not completely accurate.
hardware monitor which overcomes many of these pro
lems is described in (Flanagan 1993, Crockett 1994), b
this technique requires frequently halting the system und
test (SUT). Thus, although this type of hardware monito
eliminates the four problems mentioned above, it introduc
the potential for new errors due to halting the SUT.

One major disadvantage associated with trace-driv
simulation is the storage requirements for long traces. A
other disadvantage is the long run times of simulation
Sampling is a technique that partially overcomes these d
advantages. This is a statistical method where a selec
fraction of a population is used to represent the who
population. This method has been demonstrated to wo
effectively with first- and second-level caches in single pro
cessor systems (Kessler 1994, Martonosi 1995). Sampl
has three potential advantages. It reduces disk space nee
to store traces, enables simulations to run faster, and
fectively enlarges trace buffers of hardware monitors. W
will investigate whether the sampling techniques describ
in (Kessler 1994) perform acceptably when simulating L
caches in symmetric multiprocessor (SMP) systems.

This paper proceeds in the following order. Section
describes and evaluates our technique for tracing mu
processor systems. Section 3 gives a general descript
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of sampling and describes our implementations. It a
presents the results of our sampling study. Finally, S
tion 4 presents our conclusions and lists possible fut
work.

2 MULTIPROCESSOR TRACING

Trace-driven simulation is very accurate if both the mod
and input data represent the real system under test.
accuracy of the model is typically under the control
the researcher. Unfortunately, many researchers do
have the facilities to collect accurate trace data and go
data is difficult to acquire from other sources (Smith 198
Przybylski 1989, Borg 1990, Flanagan 1993). In this pap
we use a hardware monitor designed to collect address tra
from a Hewlett-Packard SMP system containing four In
Pentium Pro processors.

2.1 Trace Collection Technique

Our trace collection technique uses a Tektronix TLA52
logic analyzer to collect trace data. We also require tw
parallel I/O cards for the system under test (SUT) and
workstation which is used to process the trace data. Th
items are used to implement a system similar to the BAC
system described in (Flanagan 1993, Crockett 1994). O
hardware monitor is identical, but the required software
substantially modified to enable its use in SMP systems

2.1.1 Logic Analyzer Configuration

The logic analyzer is connected to a probe which fits betwe
one of the processors and its socket and forwards sign
from the SUT to the Tektronix logic analyzer (TLA520 o
TLA). The probe monitors the address, data, and cont
lines from all four processors via the shared bus. It colle
signals after the L2 cache since both L1 and L2 caches
integrated on the Pentium Pro chip. This does not pos
problem for this work since we are interested in determini
if sampling is useful for evaluating L3 caches.

Figure 1 shows a typical setup that consists of t
machine being traced (SUT), TLA520, and a workstation f
collecting the acquired data. This tracing setup is identi
to the BACH system, but the SUT device driver that hand
the MSO signal is substantially different. When enable
the TLA520 monitors the pins of the SUT, storing timing
address, and control information in an internal buffer; t
buffer is 512 K entries long. When the buffer fills, th
workstation downloads the trace for storage or processi

2.1.2 Operation and Organization

We use a technique that overcomes the trace length limita
of previous hardware monitors. When the TLA520’s intern
47
o
-
e

l
he

ot
d
,
r,
es
l

a
se

r

n
ls

l
s
re
a

r
l
s
,

g.

n
l

System TLA520
WorkstationUnder

Test

Halted

Download

Trace

Start
MSO

(Module Sync Out)

Figure 1: Communications between the SUT, TLA520 an
a Workstation

buffer is almost full, it sends a signal through Module Syn
Out (MSO), a line connected to the interrupt line of a parall
I/O card located in the Eisa slot of the SUT. This is a low
priority interrupt which allows the SUT to finish other
higher priority interrupts before responding. The buffe
does not overflow under normal operating conditions. Afte
all other devices have been serviced, the SUT enters
interrupt routine, disables interrupts, and spins in a tig
loop. While it spins, it sends a continuous signal back to th
TLA indicating that it has halted. When the TLA receive
this signal, it raises MSO and stops collecting traces. T
workstation has been waiting for the TLA to halt and i
promptly downloads the buffer over the network and resta
the TLA. The buffer contents may be stored to seconda
storage media or processed while being extracted. The T
lowers MSO to signal the SUT that it’s ready to collec
another buffer. The SUT stops asserting its signal a
resumes processing. The TLA raises MSO and procee
to collect another buffer. This process may be repeated
many times as desired, producing a contiguous trace. T
difference between the single processor technique used
(Flanagan 1993) and the multiprocessor technique used h
is that it is necessary to wait until all four processors hav
entered the interrupt loop before continuing.

2.1.3 System Under Test

The system under test is a Hewlett-Packard NetServer L
Pro symmetric multiprocessor with four Intel Pentium Pr
processors. It has 16 gigabytes of disk and 1 gigabyte
memory. Each processor has on-chip L1 and L2 caches. T
L1 caches are 8 Kbyte, four-way set-associative instructi
and data caches; the L2 caches are 512 Kbytes and 4-w
set-associative. The multiprocessor is running Microso
Windows NT Server 4.0 with Service Pack 3. It also ha
two parallel I/O cards in its Eisa slots as part of the trac
collection mechanism.

2.1.4 Trace Download And Storage

We used a workstation running HP-UX for this stage. Th
workstation is responsible for storing or processing th
data. Once the TLA520 has collected a buffer of data a
halted, the data is downloaded to the workstation. Whi
the TLA520 collects another buffer, the workstation strip
a header off of the data, compresses and stores it.
2
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2.2 Verification And Evaluation

After implementing our technique, it was necessary to veri
that halting was possible in an SMP system and to meas
the trace perturbation caused by the halting.

2.2.1 Verification

Once we had developed our halting mechanism it w
important to verify that it actually worked. We wrote a
program that spun in a loop, incrementing a counter a
writing the value to an I/O port. When the counter reache
0xFFFF, it rolled over to zero. The upper 16 bits of th
counter were fixed, so we could identify it in the trace. W
chose an I/O port because it’s non-cacheable so all valu
would appear in the trace. We configured the logic analyz
to collect a thousand buffers of the counter program (25
million references). The logic analyzer would obviousl
collect consecutive counter values within a buffer. If th
halting mechanism didnot work correctly, we would find
non-consecutive counter values between consecutive buff
We analyzed the collected trace and found that the coun
values between buffers were consecutive in all cases.
collected another thousand buffers and achieved identi
results. We concluded that the halting mechanism work
correctly.

As a further illustration, we contrast the working halting
mechanism with the earlier, incomplete halting mechanis
As part of the debugging process, we opened several p
grams in various windows so that we could tell if a process
was halted. One window contained a clock program. Wh
we tried to halt the system, a window would freeze or th
mouse would freeze or occasionally the entire screen wou
freeze, indicating that at least one processor had halt
Once we released the halting mechanism, the clock wou
jump ahead to the correct time. This is significant becau
it showed that the clock interrupt was being processed ev
if it wasn’t being updated on the screen; this meant that
least one processor had not been halted. We could tell t
all four processors were halted when we could release
halting mechanism and have the clock continue running
if nothing had happened. We mention the clock interru
in particular because it has one of the highest interru
levels while our halting mechanism has a fairly low priority
interrupt; if it were possible for our halting mechanism t
be interrupted, the clock interrupt would do so.

2.2.2 Limitations

Although we can effectively halt the processors, we can’t ha
the peripheral devices. Since the processors are halted
approximately 30 seconds for downloading, the I/O devic
have plenty of time to complete any pending requests.
a result, at the beginning of each buffer, there are a numb
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of interrupts waiting to be processed. As noted in an earli
version of this technique (Flanagan 1993), this distortion
negligible. Since the distortion occurs at the beginning
each buffer, a deeper buffer would clearly be beneficial. T
halting also makes it difficult to trace real-time application
such as interactive games.

2.3 Summary

We have designed and implemented a trace collection me
anism that collects long, contiguous, and accurate traces w
negligible amounts of distortion. Trace distortions coul
be reduced further if a larger trace buffer were availabl
The following section describes sampling, a technique th
effectively enlarges the buffer size for trace-driven cach
simulations.

3 SAMPLING

In this section we will discuss time sampling and two type
of set sampling. We will define a metric for accuracy an
then compare the results of the sampling techniques
various workloads and determine which method produc
the most accurate results.

3.1 Sampling Methods

Sampling is a statistical process of using a subset (or samp
of a population to represent the whole. It is possible
directly compute characteristics of the population like th
mean or standard deviation. When we take a sample o
population we can calculate the sample mean and use
as an estimate of the real mean. We would like to veri
that sampling works so that we can integrate a sampli
method with the trace collection mechanism or use it
cases where complete trace collection is not possible.

Since trace perturbations occur at the beginning of ea
buffer, we would like to make the buffers very large. Thi
is not always physically possible so we would like to fit a
much information as possible into a single buffer. We wi
accomplish this bysamplingthe trace. Sampling has three
potential advantages. It reduces the needed disk stor
space, enables simulations to run faster, and effective
enlarges the trace buffer.

When we collect a complete trace, we are able
directly calculate the cache miss rate by running the ent
trace through a cache simulator. Two possible sampli
methods would be to take pieces of the trace and run th
through a cache simulator or to only look at certain sets
the cache during simulation. If we take pieces of the trac
it eliminates the need to halt the SUT. A buffer could b
collected as usual, but instead of halting the SUT as t
buffer is saved to disk, the SUT would continue to run
After the buffer is saved, another can be collected, and
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forth. If, on the other hand, we choose to sample cac
sets, we can do this by only acquiring references to t
selected sets. This can be accomplished by using a bit m
on the cache set bits. This will take less storage space th
a complete trace and effectively enlarge the trace buffer

Time samplingrefers to the option of taking pieces of
the trace and feeding them through a simulator. If we wa
to use 10% of the trace, we will send every tenth buffe
through the simulator and calculate the miss rate. Tim
sampling was successfully used in (Fu 1994, Martono
1995). Time sampling eliminates the need to halt the SU
and therefore decreases trace distortions.

Set samplingrefers to selecting certain sets in the cach
Upon entering the cache, an address is broken into th
parts, tag, set selector, and line offset. The set selector b
choose which set the address maps to. We will use a
mask on the set selector to filter the trace; if the selected b
match the given pattern, that address will be sent through
cache simulator. We placed the bit mask on the low-ord
bits of the set selector bits to get the maximum distributio
of addresses. The pattern was chosen arbitrarily. If eith
of the set sampling techniques described below prove to
useful, we can integrate the bit mask into our trace collecti
mechanism, allowing us to collect only the references th
map to the desired sets. This effectively increases the s
of the trace buffer and will allow the CPU to run longe
before it is halted. Set sampling was used successfully
(Kessler 1994).

The problem of choosing which pieces of the trac
to take or which sets to focus on is non-trivial. Anothe
problem is the sample size: deciding how much of the tra
or how many sets to use. If we only use a small fractio
of the trace we won’t get very accurate results, but if w
use a very large fraction of the trace, the size improveme
isn’t worth the effort it takes to do the sampling. As a bas
heuristic, we decided that the sample miss rate should
within 10% of the real miss rate using at most 10% of th
trace. We will first look at several methods of choosin
which trace pieces or cache sets to focus on.

We will investigate two set sampling techniques whic
are useful when conducting cache studies. In the fi
technique (set1), we filter the trace using a bit mask
described above and keep track of misses and referen
to the selected sets. In this case, the estimated miss
is calculated as the number of misses to the selected s
divided by the number of references to the selected set

SampledMisses

SampledRef erences
(1)

In the second technique (set2), we record the numb
of misses to the selected sets. Unlike the first techniqu
we count references to all sets in the cache and then sc
that number by the ratio of sampled sets to total sets. T
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scaled number is then used to calculate the estimated m
rate.

SampledMisses

ScaledRef erences
(2)

The first technique could be implemented by configurin
the TLA to only collect references that map to the selecte
sets. The references could be counted during simulatio
The second technique would use the same configurati
with the addition of a running counter to keep track of a
cacheable references. Both sampling techniques were p
posed in (Kessler 1994); our contribution is demonstratin
that sampling is a viable technique for simulating huge L
caches in an SMP environment.

The following examples demonstrate how each set sa
pling method works. We will use a small 128 byte, 16 byt
line, direct-mapped cache for this illustration. This mean
that a 16-bit address will consist of 4 offset bits, 3 set bit
and 9 tag bits. The offset bits are ignored for simulatio
purposes. There are 8 sets in the cache. Table 1 lists
address trace and the set that each address maps to.

Table 1: Mapping of Addresses in a Trace to Sets in
a Cache

Address Maps to Set Address Maps to Set
0x7d91 1 0x9f2a 2
0x7d94 1 0x9f28 2
0x7e6b 6 0x9f24 2
0x833b 3 0x9f26 2
0xcc5c 5 0x9f22 2
0x833a 3 0x9f1e 1
0x9339 3 0x9f1c 1
0x6604 0 0x9f1a 1
0x1604 0 0xa458 5
0x9f27 2 0x7540 4
0x9f21 2 0x5a68 6

Table 2 shows the cache after simulation with the trac
It lists the addresses for the misses to each set and the num
of hits to each set. As an example, we will use the firs
set sampling technique with a 50% sampling rate. We w
arbitrarily select the odd numbered sets for our sample.
the trace, this would include all addresses where the lowe
set bit is a one. We can see from Table 2 that there are
misses to odd sets; adding in the 4 hits to sets 1 and 3 giv
us 10 references. This sample has a miss rate of 60%. T
real miss rate is 12 / 22 which is 54.5%.

As a second example, we will demonstrate the seco
set sampling technique with a 50% sampling rate. We w
again select the odd numbered sets. Again, there are
misses to odd sets. To calculate the references, we n
that there are 22 addresses listed in the trace in Table
Since this is a 50% sampling rate, we will multiply 22 by
4
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Table 2: Hits and Misses to a
128 Byte, 16 Byte Line, Direct-
Mapped Cache After Simulat-
ing the Trace in Table 1

Set# Misses # of Hits
0 660, 160 0
1 7d9, 9f1 3
2 9f2 6
3 833, 933 1
4 754 0
5 cc5, a45 0
6 7e6, 5a6 0
7 0

0.5 for a result of 11. The miss rate for this method is 6
11 which is 54.5%.

For both of the sampling techniques, we investigate
three sample sizes: 6% (1/16), 10% (1/10), and 25% (1/
(We note that the 10% size is approximate for set sampli
since the 2n sets will not divide evenly by 10.) The 10%
sample size exactly meets the size criteria. With the 6
size we investigate whether it’s possible to use a smal
fraction of the trace. The 25% sample size will allow us t
investigate a larger fraction if we can’t achieve the need
accuracy with the smaller sample size.

3.2 Workloads

We collected traces from several different workloads; th
traces were collected after the L2 cache. The first worklo
consisted of 4 instances of an MP3 compressor runni
simultaneously. Each instance compressed one of fo
distinct 500 megabyte sets of audio files. The trace contain
about 350 million references. The second was a thread
version of NONA which is a genetic program that look
at two sets of DNA to see if they’re related. This trac
contained 1.2 billion references. The third workload i
Winbench, an address trace of the Ziff Davis Winbenc
benchmark running the All Winmarks suite, except for th
disk benchmarks. It had 700 million references. The four
is Winstone, an address trace of the Ziff-Davis Winston
99 benchmark running the dual-processor inspection te
(MicroStation SE, Photoshop 4.0, Visual C++ 5.0) wit
300 million references. The fifth is an address trace
a demo playback of the Descent video game with 20
million references. The sixth workload is an address trace
the Transaction Processing Council Benchmark C (TPC-
using an Informix database. This benchmark is frequen
used in the computer industry. We used a 5 warehouse
implementation which exercised the cache thoroughly. T
trace contains 1 billion references. Table 3 summarizes t
information.
4
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Table 3: Names and Number
of References of Traces Used
in Our Sampling Study

Workload References

MP3 350 million
Para-NONA 1.2 billion
Winbench 700 million
Winstone 300 million
Descent 200 million
TPC-C 1 billion

3.3 Preliminary Results

As we mentioned previously, we decided that a samplin
method must be within 10% of the actual miss rate
order to be acceptable. Error rates for the miss rates w
calculated using the following formula:

(real − sample)
real

(3)

A more accurate result has a lower error rate. We conducte
preliminary study using the MP3 and para-NONA workload
in hopes of eliminating some simulation runs. We use
sampling ratios of 6%, 10%, and 25%. The 25% samp
size allowed us to investigate a larger fraction if acceptab
results were not achieved using the smaller fractions. W
simulated caches with sizes of 8, 16, and 32 megabyt
line sizes of 32 and 64 bytes, and associativities of 1,
4, and 8. We repeated the studies with different samp
in order to calculate confidence intervals. We used a 95
confidence level.

Figures 2 and 3 show the results for the MP3 Compress
workload. The diamonds represent the actual miss rate. T
confidence intervals represent the variation of the samp
miss rates. This means that the time sampling miss rates w
very consistent but they were far away from the real valu
The set sampling miss rates were not as consistent (narro
but they were much closer to the real miss rate. Figures
and 5 show the results for the para-NONA workload. The
graphs are for an 8 megabyte, 32 byte line cache. Again,
real miss rate is consistently outside of the time samplin
confidence interval. The other cache configurations h
similar results and are not shown.

3.4 Time Sampling

After analyzing the results of the preliminary study, w
determined that the time sampling method was unacceptab
Although it has a very low variation, the confidence interva
does not include the real miss rate. It has an error rate
50 to 90 percent for the first workload and over 10 perce
for the second.
75
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Figure 2: Results of SamplingTechniques for an 8 Megabyt
32 Byte Line, Direct-Mapped Cache using the MP3 Com
pressor Workload
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Figure 3: Results of All Sampling Techniques for an 8
Megabyte, 32 Byte Line, 4-Way Set-Associative Cache fo
the MP3 Compressor Workload

3.5 Set Sampling

The preliminary study showed that the first set samplin
method performed acceptably for both the MP3 compre
sion workload and the para-NONA workload. Confidenc
intervals consistently centered around the real miss rate a
were within 10% error for the 10% and 25% sample size
They were within 15% for the 6% sample size.

The second sampling method behaved like the fir
method for both workloads: confidence intervals centere
around the real miss rate and all error rates were less th
10%.

Each set sampling method performed acceptably fo
both workloads. Since neither of the set sampling method
47
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Figure 4: Results of SamplingTechniques for an 8 Megaby
32 Byte Line, Direct-Mapped Cache Using the Para-NON
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Figure 5: Results of SamplingTechniques for an 8 Megaby
32 Byte Line, 4-Way Set-Associative Cache for the Par
NONA Workload

was conclusively better than the other, further investigatio
was necessary.

3.6 Further Set Sampling Study

Following are the results for the other four workloads: De
scent, Winbench, Winstone, and TPC-C using the two s
sampling methods. Figures 6 through 9 are for a direc
mapped cache configuration. The set-associative config
rations had similar graphs with smaller miss and error rat
and are not shown. The direct-mapped configurations we
invariably worse than the set-associative configurations sin
they are much more dependent on the stream of addres

The first set sampling method had centered confiden
intervals for all workloads except for TPC-C. All error rate
6
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for the Winbench and Winstone workloads were under 10
The Descent workload had error rates ranging from± 9%
for the 6% and 25% sample sizes to -18% to +27% for t
10% size. The TPC-C workload had error rates rangi
from -83% to +126%. Error rates for the set-associati
configurations were similar for Winbench, Winstone, an
TPC-C. Descent error rates for 6% and 25% sample si
were well under 10% and ranged from -8% to +12% fo
the 10% size.

The second set sampling method had centered co
dence intervals in all cases. Its error rates were less th
10% for all sample sizes for the TPC-C, Winbench, an
Winstone workloads. The Descent workload did worse th
the other workloads with error rates ranging from± 10%
to± 14%. Error rates for the set-associative configuratio
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Figure 8: Results of SamplingTechniques for an 8 Megabyt
32 Byte Line, Direct-Mapped Cache Using the Ziff-Davis
Winstone Workload
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Figure 9: Results of SamplingTechniques for an 8 Megabyt
32 Byte Line, Direct-Mapped Cache Using the TPC-C Work
load

were well under 10% for all four workloads. We conclude
that the second set sampling method performs better th
time sampling and the first set sampling method.

The results for the set sampling techniques can be e
plained by studying the following graph. Figure 10 display
the number of references to each set in a direct-mapp
cache for the MP3 workload. We observe that the MP
graph has some tall spikes. In the first sampling techniqu
we use the number of references to certain sets. The chan
of selecting a set with a spike are about 1 in 10 for a 10
sampling size. This means that about 90% of the time, tho
references will not be included. In the second samplin
technique, we countall of the references and then scale
them by the sample size; this has the effect of distributin
the references equally across all cache sets. This is w
77
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Figure 10: References to All Sets in an 8 Megabyte, 32
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3.7 Sample Size

Once we had determined that the second sampling meth
worked best, we needed to decide which sample size had
error rate of less than 10% while using less than 10% of th
trace. We investigated 6%, 10%, and 25% sample sizes. W
chose the 10% sample size for further investigation becau
its error rate was acceptable (less than 10% error), and
had much greater trace compression than the 25% samp
size. We find it unusual that the 10% sample size perform
better than the 25% sample size in most cases. Figures
and 12 show the error rate for each sample size for an
megabyte cache with a 32 byte line size, direct-mapped an
4-way set-associative, respectively.
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3.8 Summary

We investigated time sampling and two versions of se
sampling. The time sampling and the first set samplin
method produced unacceptable results. The second
sampling method appears to produce accurate results. W
determined that the 10% sample size had the lowest err
rate while still using less than 10% of the trace.

4 CONCLUSIONS AND FUTURE WORK

We discussed some of the difficulties of trace collection
and trace-driven cache simulation. We then described o
multiprocessor tracing technique and verified that it accu
rately collects long traces. Three types of sampling wer
described: time sampling and two types of set sampling
With time sampling, pieces of the trace represented the enti
trace. In the set sampling techniques, a subset of the se
represented all sets in the cache. The difference betwe
the two set sampling technique is the calculation of the mis
rate. In the first technique, the number of misses to sample
sets is divided by the number of references to sampled se
In the second technique, the miss rate is calculated as t
number of misses to sampled sets divided by the total num
ber of references scaled by the sample size. We conclud
that the second set sampling technique achieved the mo
accurate results for all caches. This can be integrated in
our tracing hardware to effectually increase the length o
the buffer, reducing trace distortions. We determined tha
the 10% sample size had the lowest error rate while sti
using less than 10% of the trace.

4.1 Future Work

Future work includes adapting the hardware monitor to us
sampling techniques and performing L3 cache studies usin
set samples of commercial workloads.
8
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