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ABSTRACT  
 
A new systematic algorithm to build adaptive linguistic 
fuzzy models directly from input-output data is presented 
in this paper. Based on clustering and projection in the 
input and output spaces, significant inputs are selected, the 
number of clusters is determined, rules are generated 
automatically, and a linguistic fuzzy model is constructed. 
Then, using a simplified fuzzy reasoning mechanism, the 
Back-Propagation (BP) and Least Mean Squared (LMS) 
algorithms are implemented to tune the parameters of the 
membership functions. Compared to other algorithms, the 
new algorithm is both computationally and conceptually 
simple. The new algorithm is called the Linguistic Fuzzy 
Inference (LFI) model.  
 
1 INTRODUCTION 
 
Fuzzy logic modeling techniques can be classified into 
three categories, namely the linguistic (Mamdani-type), the 
relational equation, and the Takagi, Sugeno and Kang 
(TSK). In linguistic models, both the antecedent and the 
consequence are fuzzy sets while in the TSK model the 
antecedent consists of fuzzy sets but the consequence is 
made up of linear equations. Fuzzy relational equation 
models aim at building the fuzzy relation matrices 
according to the input-output process data.  

Based on the TSK model, an Adaptive Network based 
Fuzzy Inference System (ANFIS) has been introduced by 
Jang (Jang 1993). This model is mostly suited to the 
modeling of nonlinear systems. It combines the recursive 
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least-square estimation and the steepest descent algorithms 
for calibrating both premise and consequent parameters 
iteratively. This algorithm is limited in incorporating 
human knowledge. In contrast, Linguistic fuzzy models are 
effective in embedding the human knowledge and have 
simpler forms. Systematic approaches to building linguistic 
fuzzy models are proposed in (Emami 1998, Sugeno. 
1993). These approaches, however, involve nonlinear 
programming and are computationally cumbersome. This 
paper addresses this problem and proposes a new 
systematic and simple algorithm to build and tune models 
directly from the input-output data. Like ANFIS (Jang 
1993) the new algorithm takes advantage of Neural 
Networks training techniques and it uses projection 
methods (Emami 1998, Sugeno 1993) to build the fuzzy 
rules. The new algorithm consists of two procedures. The 
first one is for fuzzy structure identification, in which the 
inputs, membership functions and fuzzy rules are 
determined. The second one is for fuzzy parameter 
identification, in which training algorithms are used to tune 
the parameters of the membership functions.  

 
2 GENERAL LINGUISTIC FUZZY MODEL 
 
The general Linguistic Fuzzy Model of a Multi-Input 
Single-Output (MISO) system is interpreted by rules with 
multi-antecedent and single-consequent variables such as 
the following: 
 
Rule l: IF U1  is  Bl1  AND  U2  is  Bl2  AND Ur is Blr  

THEN V  is  Dl ,  l = 1,2,�,n            (1) 
0
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Where U1 , U2 ,��, Ur are input variables and V is the 
output, Bij  (i=1, �..,n,  j=1,�..,r) and Di (i=1, �..,n) are 
fuzzy sets of the universes of discourse X1, X2,�, Xr, and Y 
of U1 , U2 ,��, Ur and V respectively. The above rule can 
be interpreted as a fuzzy implication relation  
 
Bl = Bl1 x Bl2 x�x Blr → Dl  in  (X = X1 x X2 x�x Xr)xY: 

))(),((),( yDxBTyxR lll = , ))(),(),(()( 21 xBxBxBTxB lrlll
!′=  

                                                (2) 
 
Where T and T' are  the t-norm operators and may be 
different from each other.  

Let the fuzzy set A in the universe of discourse X be 
the input to the fuzzy system of (1). Then, each fuzzy IF-
THEN rule determines a fuzzy set lF in Y: 
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where )( *xBl

is called the Degree Of Firing (DOF) of rule l: 
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The output fuzzy set F of the fuzzy system is the t-conorm 
of the n fuzzy sets ),2,1( nlFl != : 
 

)](),(),([)( 21 yFyFyFSyF n!=                (7)        
 
Where, S denotes the t-conorm operator.  To obtain a crisp 
value of the output, the commonly used Center of Area 
(COA) method, may be used. 
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Where, the real interval ],[ 10 yyY =  is the universe of 
discourse for the output. 

The fuzzy system is usually not analytical, but 
analytical formulation is essential for the use of training 
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algorithms like BP and LMS. We, therefore, use the 
following simplified fuzzy inference engine: First, T-norm 
and T-conorm operators are chosen to be the multiplication 
and addition operators, respectively. Then equation (7) 
becomes, 
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Obviously, the summation brings the output fuzzy set F(y) 
out of the unit interval. However, it doesn�t have an effect 
on the defuzzified value. By substituting for F(y) in (8) we 
get the COA defuzzified value: 
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Where the *

ly �s are the centroids of the fuzzy sets lD . 

The defuzzified value *y is determined by the weighted 
average of the centroids of the individual consequent fuzzy 
sets [2]. Using a symmetric triangular membership 
function, the fuzzy system becomes, 
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Where lic and lib are the center and the half-width of the 
triangular membership function respectively. 
 
3 CLUSTERING AND FUZZY  

STRUCTURE IDENTIFICATION 
 
The essence of the fuzzy structure identification method is 
in the clustering and the projection (Emami 1998).  First, 
the output space is partitioned using a fuzzy clustering 
algorithm like Fuzzy C-Mean clustering. Second, the 
partitions (clusters) are projected onto the space of the 
input variables. The output partition and its corresponding 
input partitions are the consequents and antecedents, 
respectively.  
 
3.1 Clustering 
 
Fuzzy C-mean (FCM) clustering method clusters the data 
by minimizing the total �distance� of each data point to the 
cluster centers. For detailed,  the reader is referred to 
1
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(Emami 1998). A critical problem for the FCM algorithm 
is how to determine the optimal number of clusters. Xie-
Beni index (or S-function) (Xie 1991), computed as the 
ratio of compactness and separation of clusters, can be 
used as a validity measure. If the smallest S is found, the 
optimal number of clusters is then determined. However, it 
is intuitive that more clusters and more rules usually 
provide a more accurate model. Therefore, the optimal 
number of clusters determined by the smallest S only gives 
the minimum number of clusters in order to achieve an 
acceptable model.  

The weighting exponent �m� controls the extent of 
membership sharing between fuzzy clusters in the data set.  
The larger the m, the greater the extent of membership 
sharing between fuzzy clusters.  A general rule as 
introduced in (Emami 1998) suggests that m should be far 
enough from both of its limits, one and infinity. 

Another clustering method "Subtractive Clustering", 
which can automatically determine the number of clusters, 
is also used in the proposed algorithm of this paper. For 
details on subtractive clustering, the reader is referred to 
(Chiu 1994).  

 
3.2 Input Selection 
 
Since the fuzzy rules are constructed by clustering and 
projection procedures, a simple and effective method to 
determine the significant inputs can evolve (Emami 1998).  
The so-called non-significance index jπ , defined for each 

input variable jx , is used. 
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Where 

ijΓ is the range of jx in which its membership 

function )( jij xB is one in the ith partition (or cluster), jΓ is 

the entire range of the variable jx , n is the number of 

rules, and 0r is the number of input variables. The smaller 
the non-significance index, the more significant the 
corresponding input variable. However, the non-
significance index is usually too small to be a good index. 
The reason is that the range in which the membership is 
one is typically very small. This can be improved by 
calculating ijΓ  as the range of clusters as is the case in the 
new proposed algorithm. If an input variable is not 
significant, the clusters are intended to evenly cover the 
whole range of this input variable, which makes its non-
significance index close to one. Therefore, by removing the 
input variables whose non-significance indices is close to 
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one or greater than that of the others, one can determine the 
significant input variables.  
 
3.3 Membership Function Assignment  

and Rule Generation 
 
First, partition the output space using the FCM clustering 
method. The number of clusters is determined by 
calculating the Xie-Beni index. Then by projecting each 
cluster onto each input variable we get temporary clusters 
in the input space. However, these temporary clusters are 
probably not well formed and should be clustered again 
into several sub-clusters. This is implemented by using the 
subtractive clustering method that automatically 
determines the number of sub-clusters in each temporary 
cluster.  

After obtaining all the sub-clusters in all input 
variables and all clusters in the output space, the next step 
is to assign a membership function to each cluster. First the 
data points whose membership grades are among the 
highest are chosen. The mid-point of these data points is 
assigned grade of one, which is the vertex of the 
membership function. Then a membership grade C 
(0<C<1) is assigned to the points at the edge of the cluster. 
The membership function is shown in the Figure 1, where 
cli and bli are the center and the half-width of the 
membership function respectively. And x is the average 
distance of the vertex to the left and the right edges. Thus, 
we have: 
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C is a parameter to be assigned.  This C is usually 
determined by experience, although some optimization 
techniques may be used. Typical values of CM vary from 
0.5 to 0.8. 

After partitioning the input and output spaces and 
assigning the membership functions, the next step is to 
construct the rules.  
                           
 
 
 
 
 
 
 
                             
 
              
 

Figure 1: The Triangular Membership Function 
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4 PARAMETER IDENTIFICATION 
 
This procedure optimizes the parameters of the 
membership functions of the model to minimize the 
performance index:  
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Where, iy� is the model�s output, iy is the real output, and 
N is the number of data points.  
 
4.1 Back-Propagation (BP) 
 
The fuzzy system can be represented by a three-layer feed-
forward network as shown in Figure 2, where the 
membership functions rinlBli !! ,1;,1, == are 
triangular functions,  
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Other variables are: 
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The back-propagation algorithm may be used to train this 
system. Suppose that we are given an input-output pair 
( ) k

r
kkkkk xxxxdx !,,;, 21= , our aim is then to determine 

a fuzzy logic system such that: 
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is minimized.  

 

48
 

 
 

Figure 2: Three-Layer Feed-Forward Network Represen-
tation of Fuzzy System 
 
Three parameters, lilil bcy ,, , need to be adjusted.  The 

training  procedure for ly  is: 
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Where α  is a step size.  
 
To train lic , the following adaptive rules are used: 
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To train lib , the following adaptive rule are used: 
 

k
b
ekbkb
li

lili ∂
∂

−=+ α)()1(                        (21) 

 
)(

)()( 2
ili

l

li

liil

li

l

lli xB
z

b
cx

b
fydf

b
z

z
fdf

b
e −−

−=
∂
∂

∂
∂

−=
∂
∂   

                   (22) 

 

3



Salehfar, Bengiamin, and Huang 

 

4.2 Least Mean Squared (LMS) 
 
In fuzzy systems, if the antecedent fuzzy sets Bli 
(l=1,2,…,n; I=1,2,…r) are known (the type of membership 
functions and their parameters are determined), the 
normalized DOF iv are also known, 
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To minimize the error (16), the Least Mean Squared 
(LMS) algorithm that recursively updates the values of the 
parameters *

ly  in the direction of greatest decrease of the 
error e is used: 
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where α  is the step size.  
 
5 TEST RESULTS 
 
To illustrate the validity of the proposed algorithm, three 
functions are tested. Due to its highly variable 
characteristics, the Sinc function is a typical benchmark for 
identification (Chen 1999). The second test function is a 
two-dimensional nonlinear static map, which has been 
studied in (Emami 1998, Sugeno 1993). The third one is 
the Mackey-Glass chaotic time-series generated by an 
underlying nonlinear dynamic system, which has been 
studied in (Jang 1993, Wang 1992). Due to lack of space, 
we present the results of the Sinc function only. 

For convenience, we give the following definitions: 
The ANFIS method combined with the grid partition 
method is called ANFIS-GRID. The ANFIS method 
combined with the subtractive clustering method is called 
ANFIS-SUB. The method in (Chen 1999) is called ANFIS-
EFCM. 

The 1-D sinc function is defined as: 
 

  ]10,10[,
)sin(

)( −∈== x
x

xxSincy              (26) 

 
As in (Chen 1999), 121 data points are uniformly sampled 
between [-10,10].  By calculating the Xie-Beni index, the 
optimal number of clusters is found to be 2. CM is set to 
4

 
0.62 and four rules are built. The final rule base of the 
system is: 
 
Rule 1:         x             y 

-10 0 10
0

0.5

1
e
b
s

  -1 0 1
0

0.5

1

 
 (c11 = -6.0049; b11 = 6.2221)     (c1 = -0.0185; b1 = 0.1387) 
Rule 2:         x              y 

-10 0 10
0

0 .5

1

            -1 0 1
0

0.5

1

 
  (c21 = 6.9616; b21 = 6.8778)      (c2 = -0.0102; b2 = 0.1387) 
Rule 3:        x                                                  y 

-10 0 10
0

0.5

1

             -1 0 1
0

0.5

1

 
 (c31 = -0.1147; b21 = 0.5947)    (c3 = 1.0106; b3 = 0.4785) 
Rule 4:      x                                                       y 

-10 0 10
0

0.5

1

                -1 0 1
0

0.5

1

 
 (c41 = 0.2677; b41 = 0.4200)        (c4 = 0.8284; b4 = 0.4785) 
 

Figure 3: The Final Rule Base of the Sinc Function 
 
 The proposed algorithms (LFI)  produced a 
performace index of 0.0735. Figure 4 depicts the LFI 
model�s output compared to the raw output data. The LFI 
is  thus superior to ANFIS-EFCM (RMSE = 0.09416), 
ANFIS-GRID (RMSE = 0.21132) and ANFIS-SUB 
(RMSE = 0.21221). 
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Figure 4  The Performance of LFI with 4 Rules (Upper 
Part: Dashed Line is Model�s Output, Solid Line is Real 
Output; Lower Part: Residuals) 

 
When the number of rules is increased to 8, the LFI 

model�s performance is improved to 0.04438 while the 
performance index of ANFIS-GRID with 8 rules is 0.1288. 
Their performances are shown in Figures 5 and 6, 
respectively.   
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Figure 5  The Performance of  the Proposed LFI with 8 
Rules (Upper Part: Dashed Line is Model�s Output, Solid 
Line is Real Output; Lower Part: Residuals) 
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Figure 6  The Performance of ANFIS-GRID with 8 Rules 
(Upper Part: Dashed Line is Model�s Output, Solid Line is 
Real Output; Lower Part: Residuals) 
 
6 CONCLUSION 
 
A new algorithm to build linguistic fuzzy models directly 
from input-output data is introduced. The proposed method 
is simple because of its pure linguistic nature. It uses 
symmetric triangular membership functions and a simplified 
fuzzy reasoning method.  This algorithm can achieve either 
the same or better level of accuracy comapred to  ANFIS 
and the methods of (Emami 1998, Sugeno 1993). For the test 
4

 
Sinc function, the proposed LFI model proved superior to 
the three different ANFIS algorithms. Although the TSK 
model is generally more discriptive than the pure linguistic 
model, sometimes it  seems  that it indulges into the 
insignificant details of the system while the LFI model 
allways retrieves the most important characteristics of the 
systems. Compared with the methods in of (Emami 1998, 
Sugeno 1993), which also aim at building pure linguistic 
models, the LFI model of this paper is much simpler both in 
computation and in form.  
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