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ABSTRACT  
 
Discrete event simulations often require a future event list 
structure to manage events according to their timestamp. 
The choice of an efficient data structure is vital to the 
performance of discrete event simulations as 40% of the 
time may be spent on its management. A Calendar Queue 
(CQ) or Dynamic Calendar Queue (DCQ) are two data 
structures that offers O(1) complexity regardless of the 
future event list size. CQ is known to perform poorly over 
skewed event distributions or when event distribution 
changes. DCQ improves on the CQ structure by detecting 
such scenarios in order to redistribute events. Both CQ and 
DCQ determine their operating parameters (bucket widths) 
by sampling events. However, sampling technique will fail 
if the samples do not accurately reflect the inter-event gap 
size. This paper presents a novel and alternative approach 
for determining the optimum operating parameter of a 
calendar queue based on performance statistics. Stress 
testing of the new calendar queue, henceforth referred to as 
the Statistically eNhanced with Optimum Operating 
Parameter Calendar Queue (SNOOPy CQ), with widely 
varying and severely skewed event arrival scenarios show 
that SNOOPy CQ offers a consistent O(1) performance and 
can execute up to 100 times faster than DCQ and CQ in 
certain scenarios. 
 
1 INTRODUCTION 
 
Discrete event simulations are widely used in many 
research areas to model a complex system�s behavior. In 
discrete event simulation a system is modeled as a number 
of logical processes that interact among themselves by 
generating event messages with an execution timestamp 
associated with each of the messages. The pending event 
set (PES) is a set of all generated event messages that have 
not been serviced yet. A PES can be represented by a 
priority queue with messages with the smallest timestamp 
having the highest priority and vice versa. The choice of a 
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data structure to represent the PES can affect the 
performance of a simulation greatly. If the number of 
events in the PES is huge as in the case of a fine-grain 
simulation, it has been shown that up to 40% of the 
simulation execution time may be spent on the 
management of the PES alone [Comfort, 1984]. 

A CQ is a data structure that offers O(1) time 
complexity regardless of the number of events in the PES. 
To achieve this, the CQ, which consists of an array of 
linked lists, tries to maintain a small number of events over 
each list. However, the CQ performs poorly when event 
distributions are highly skewed or when event distribution 
changes.  

A DCQ [Oh and Ahn, 1999] has been proposed to 
solve the above-mentioned problem by adding a 
mechanism for detecting uneven distribution of events over 
its array of linked lists. Whenever this is detected, DCQ re-
computes a new operating parameter for the calendar 
queue and redistributes events over a newly created array 
of linked lists.  

Both the DCQ and CQ compute their operating 
parameter based on sampling a number of events in the 
PES. Sometimes the choices of samples are not sufficiently 
reflective of the optimum bucket width to use for the PES. 
When this occurs, performance of the DCQ and CQ 
degrade significantly and the newly resized calendar will 
not be able to maintain their O(1) processing complexity. 

This paper proposes a novel approach in estimating an 
optimum operating parameter for a calendar queue. This 
approach is based on the past performance metrics of the 
calendar queue which can be obtained statistically. This 
approach provides an O(1) processing complexity for the 
calendar queue under all standard benchmarking 
distributions. It is also not susceptible to estimation error 
associated with the sampling method used in DCQ and CQ. 

This paper is organized as follows. In section 2 we 
present in detail how a conventional CQ and DCQ 
operates, and their associated shortcomings. In section 3 
we derive theoretically the optimum operating parameter 
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for a calendar queue. Utilizing the derived equations,
section 4 describes the SNOOPy CQ mechanism. In
section 5, the performance graphs of SNOOpy CQ, DCQ
and CQ under different event arrival distributions are
presented, compared and analyzed. Finally section 6
summarizes the contents of this paper and list down several
recommendations for future work.

2 CQ AND DCQ

Sections 2 describes the operation of CQ and DCQ

2.1 Basic Calendar Queue Stucture.

Figure 1 illustrates the basic structure of a CQ consisting of
an array of linked lists. An element in the array is often
referred to as a bucket and each bucket stores several
events using a single linked list structure. For notational
conveniences, we define the following symbols:

NB   = Number of buckets in the CQ
BW = Bucket width in seconds
DY  = Duration of a year in seconds = NB× BW
Bk   = kth bucket of the calendar queue where 0≤k≤ NB-1

For example, in Figure 1, the CQ has NB=5 buckets, i.e.
B[0], B[1],�, B[4], each of width BW = 1 second,
representing an overall calendar year of duration DY = 5
seconds.

{ } { }5,1,5,, =YWB DBN

Figure 1:  A Conventional Calendar Queue

To enqueue events with timestamp greater than or
equal to a year�s duration, a modulo-DY division is
performed on the timestamp to determine the right bucket
to insert the event. Therefore, any events falling on the
same day, regardless of their year, is inserted into the same
bucket and sorted in increasing time order as illustrated in
Figure 1 and Table 1. To dequeue events, the CQ keeps
track of the current calendar year and day it is in. It then
searches for the earliest event that falls on the current year
48
and day starting at bucket B[0]. If the event at the head
node of the linked list at B[0] does not have the current
year�s timestamp, the search then turns to the head node of
the linked list at B[1] and proceeds in this manner until
B[NB �1] is reached. When all the buckets have been
cycled through, the current year will be incremented by 1
and the current day will be reset back to day 0 (i.e. bucket
B[0]). For example, the event with timestamp 10.3 seconds
in Figure 1 is only dequeued at the start of the third cycle.

Table 1:  Event Timestamp Mapping
Event timestamp Calendar

Year
Calendar Day

0.3 0 1
0.4 0 1
5.3 1 1

10.3 2 1
3.3 0 4

2.2 CQ Resize Operation

To simplify the resize operation, the number of buckets in
a CQ is often chosen to be of the power of two, i.e.

NB = 2n , n∈ Z, n≥ 0                           (1)

The number of buckets are doubled or halved each time the
number of events NE exceeds 2NB or decreases below NB/2
respectively, i.e.

If NE > 2NB, NB:=2 NB
                          If NE < NB/2, NB:= NB/2           (2)

When NB is resized, a new operating parameter, i.e. BW, has
to be calculated as well. The new BW that is adopted will be
estimated by sampling the average inter-event time gap
from the first few hundred events starting at the current
bucket position. Thereafter, a new CQ is created and all the
events in the old calendar will be recopied over. The resize
heuristic obtained by sampling suffers from the following
problems:

1) Since resizing is done only when the number of
events doubles or halves that of NB, this means
that as long as NE stays between NB/2 and 2NB, the
CQ will not adapt itself even if there is a drastic
change in event arrivals causing heavily skewed
event distributions to occur.

2) Sampling the first few hundred events starting at the
current bucket position to estimate an appropriate
bucket width is highly sub-optimal especially when
event distributions are highly skewed.
8
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2.3 DCQ Resize Operation 
 
The DCQ improves on the conventional CQ by adding a 
mechanism to detect skewed event distributions and initiate 
a resize. The DCQ maintains two cost metrics CE and CE, 
where 
 
 CE = Average Enqueue Cost 
 CD = Average Dequeue Cost 
 
The average enqueue cost is the average number of events 
that is required to be traversed before an insertion can be 
made on a linked list. The average dequeue cost is the 
average number of buckets that needs to be searched 
through before the event with the earliest timestamp can be 
found. The implementation aspects of updating the CE 
metric and CD metric is deferred until a later section. For 
the time being, it is sufficient to assume that these metrics 
are available. Now, a change in event distribution is 
detected whenever CE or CD exceeds some preset 
thresholds, e.g. 2, 3. If this should occur, DCQ initiates a 
resize on the width of buckets BW, the number of buckets, 
NB, remaining the same before and after the resize.  

The DCQ structure also makes a small modification to 
the bucket width calculation of the CQ structure. Recall 
that for the case of CQ, the bucket width is estimated by 
sampling the first few hundred events of the current 
bucket. However, in DCQ, the bucket width is obtained by 
sampling the first few hundred events starting with the 
most populated bucket of the calendar queue structure.  It 
is noted again that in the DCQ bucket width resize 
heuristic, sampling is again employed but this time on the 
most populated bucket. Therefore its performance is again 
dependent on how well the optimal inter-event gap size can 
be represented by these samples. If samples in the most 
populated bucket are constantly highly skewed, the DCQ 
resize operation is no better than the conventional CQ 
resize. This point is demonstrated later in our numerical 
studies presented in Section 6. In the next section, we will 
describe how SNOOPy CQ initiates a bucket width resize 
and then calculates the optimal bucket width. 

 
3 SNOOPY CQ ALGORITHM 
 
There are two parts to the SNOOPy CQ mechanism, 
namely, the SNOOPy triggering process which is 
responsible for initiating a bucket width resize and 
secondly, the SNOOPy bucket width optimisation process 
which is responsible for calculating the optimum bucket 
width when a resize operation has been initiated. As the 
triggering process is very much dependent on the bucket 
width optimisation process, we will proceed with 
explaining the second process first. 
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3.1 SNOOPy CQ Bucket Width 
Optimisation Process 

 
The cost function that SNOOPy CQ aims to minimize 
when a bucket width resize is initiated is the sum of the 
average enqueue cost and average dequeue cost as follows: 
 

C
WB

min  = CE + CD,  subject to NB fixed  (3) 

 
The variable to optimize is the bucket width BW. To 
optimize BW, notice that if BW is increased by a positive 
factor k , i.e. bucket width sizes are now larger in the 
system, 
 

BW  := kBW      (4) 
 
then the average dequeue cost and the average enqueue 
cost are expected to increase and decrease respectively in 
the new queue. Hence the optimization problem in (3) 
transforms to the optimization of the factor k to minimize 
the following objective function: 
 

min min min' ' '

k k D E k

D
EC C C C

g k
g k C= + = +

1
2b g b g    (5) 

 
where g1(k) and g2(k)≥1 and have to be some 
monotonically increasing functions of k. In addition, g1(k) 
and g2(k) should also satisfy the following boundary 
conditions: 
 

g g1 21 1 1b g b g= =             (6) 
 
Note that the new average cost metrics CD

'  and CE
'  may 

remain optimized only for that short time period 
immediately after the bucket width upsize event has 
occurred, i.e queue distributions has not changed much 
before and after the upsize event. To handle a growing or 
declining PES  scenario, more such optimizations can be 
triggered at appropriate times.  

Now, the functions g1  and g2  not only depends on 
the event distribution of the queue at that particular instant, 
they may also depend on the factor k as well, i.e. different k 
factor upsize may demand different g1  and g2  functions. 
It is clear that to determine the exact functional in the face 
of statistical variations is not worthwhile. In order to 
proceed from this point forth, we take the approach of 
having no a priori knowledge of the event distribution and 
consider the best case and worst case cost 
decrements/increments after an upsize event. Once the 
bounds have been identified, an average objective function 
can be established for optimizing k.  
9
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For the case of the average dequeue cost, we note that 
increasing the bucket width packs events together. Hence 
the new average dequeue cost CD

'  (within that short time 
period after the upsize) should range between 
 

C
k

C CD
D D≤ ≤'             (7) 

 
The upper bound in (7) indicates that in the worst case, 
there may be no reduction to the average dequeue cost 
even if the bucket width is increased. Such a scenario may 
occur as illustrated in Figure 2 where events are 
concentrated in only two buckets, i.e. 3 and 7, and events 
have time stamps such that the dequeue mechanism must 
alternate between these two buckets for every event that is 
dequeued. In Figure 2, increasing the bucket width moves 
the two bucket of events together but leaves a longer tail of 
empty buckets in the new calendar queue. As the old queue 
and the new queue have the same number of buckets N B , 
it is clear that the number of empty buckets that is 
traversed so as to dequeue alternate events (residing 
respectively in the two buckets) is exactly the same. 
Conversely, the lower bound in (7) indicates the most ideal 
average dequeue cost reduction when the bucket width is 
upsized by k, subject to this condition - that the upsize 
does not cause the onset of a degenerate queue structure. 
A degenerate queue structure occurs when k is so large 
such that after resizing, all the elements are merged into a 
single bucket. Consequently, the average dequeue cost 
decreases to 0 but the calendar queue degenerates into a 
single linked list structure which is undesirable. To avoid 
the degenerate scenario, the lower bound for the reduction 
in the average dequeue cost has to be constrained (which 
will in turn limit the size of k). Now, the best possible 
reduction only occurs, without the onset of degeneration, 
when the k factor upsize causes the distance between the 
previous linked list structures to be k-times closer to each 
other in the new queue structure but does not cause any of 
the previous linked list structure to merge, and all events 
dequeued belong to the current year so that there is no need 
to traverse the tail of empty buckets. Under this ideal 
scenario, we note that upsizing the bucket width by k 
would cause the number of empty buckets between filled 
buckets to be divided by k. Hence each subsequent 
dequeue operation in the new structure would traverse k-
times less empty buckets compared to previous traversals 
in the old queue. 
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Figure 2:  Worst case CD  reduction after bucket width 
upsizing 
 
Increasing the bucket width merges events, resulting in 
longer linked lists in the new calendar queue structure. 
Hence the new average enqueue cost CE

'  (within that short 
time period after the upsize) should increase and range 
between 
 

C C kCE E E≤ ≤'

                            (8) 

The lower bound in (8) indicates the best case situation in 
that the enqueue cost does not increase after the upsizing. 
Such situations occur when the upsize factor is not large 
enough to cause linked list structures of the previous queue 
to merge. Consequently, the linked list structures of the old 
queue are all preserved in the new queue. The only 
difference is that the new linked list structures are now 
assigned to buckets with smaller indexes (which affects the 
dequeue cost but not the enqueue cost). Conversely, the 
upper bound in (8) indicates that in the worst case 
situation, the average enqueue cost increases k times its 
previous. This situation occurs when prior to the upsizing, 
all non- empty buckets are clustered to each other as shown 
in Figure 3. After the upsizing, all the events should now 
be found in a cluster of buckets which is k-times smaller. 
Since N E  is identical in that short time before and after the 
bucket upsize, the length of each linked list in the new 
queue should on average grow by k .  
 

 
 

Figure 3:  Worst case CE  increase after bucket width upsizing 
 
With the bounds for CD

'  and CE
'  defined in (7) and (8), 

these bounds can be permutated to form four possible 
limiting cases of cost decrements/increments after a bucket 
upsize event. Taking the average of these four possible 
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permutations, we obtain the following average objective 
function for optimizing k. 
 

C C C
k

C kC CD E
D

D E E
' '+ = +FHG

I
KJ + +

1
2

1
2
b g     (9) 

 
Notice that the cost function in (9) satisfies the boundary 
conditions in (6). Differentiating (9) with respect to k  to 
solve for the minimum cost, we obtain the following 
optimal relations: 
 

k C
C

D

E

= , C
C C C

D
D E D' = +
2 2

, C
C C C

E
D E E' = +
2 2

 (10) 

Hence, the optimal bucket width to use for upsizing the 
bucket width is  

B C
C

BW
D

E
W

* =         (11) 

 
It can be easily verified that for the case of downsizing the 
bucket width, an identical average cost function to (9) can 
be derived where k is now less than or equal to unity. 
Consequently, the same set of optimal solutions shown in 
(10) also applies for a bucket width downsizing event.  
 
3.2 SNOOPy CQ Bucket Width  

Resize Triggering Process 
 
As the SNOOPy CQ triggering process depends on CE and 
CD , a short explanation on how CE and CD is practically 
obtained is presented. The SNOOPy CQ initiation process 
keeps track of two types of average cost. The first is a slot 
average and the second is a multi-slot moving average. 
The following definitions explain: 
 

Slot :   a time interval corresponding to NB dequeue 
operations or NB enqueue operations and not 
any mixture of both. 

CD,1:   average dequeue cost averaged over 1 slot of 
dequeue operations. Memory effects 
associated with CD,1 from slot to slot is zero, 
i.e. each slot derives a new CD,1  based only 
on dequeue operations occurring during the 
current slot period. 

CE,1:   average enqueue cost averaged over 1 slot of 
enqueue operations. It has similar properties 
as CD,1. 

Era  :    a time interval between two consecutive 
bucket resize events.  

CD, n:   a moving average of n consecutive CD,1�s 
obtained in an era. When an era begins, the 
first n consecutive CD,1�s are averaged to 
obtain CD, n. Thereafter, any new CD,1 that is 
4

 
generated would be included into the moving 
average after the oldest CD,1 has been 
discarded. There is no memory effect 
associated with CD, n  from era to era. If the 
era is less than n slots, then CD, n is zero 
throughout that era.    

CE, n:   a moving average of n consecutive CE,1�s 
obtained in an era. It has similar properties as 
CD, n 

 
In the case of DCQ, only CD,1 and CE,1 are tracked 

while the SNOOPy CQ structure tracks CD,1, CE,1, CD,10 and 
CE,10. 

The SNOOPy CQ adopts all the triggering 
mechanisms of the conventional CQ and DCQ structure 
and adds another two more triggering mechanisms, namely  

 
C CE D, ,10 102≥ ×  or C CD E, ,10 102≥ ×           (12) 

This means that when the 10-slots moving average cost 
factors differ by a factor of 2, a bucket resize is also 
initiated by SNOOPy CQ. The use of a 10-slots moving 
average has been found in our simulations to provide 
enough stability in the average costs to strike a good 
balance between excessive triggering and un-responsive 
triggering. The use of the triggering condition in (12) 
results from the optimal cost solutions shown in (10) where 
it is noted that if the current average costs CD  and CE  
already satisfies the optimal conditions, i.e.  
 

C
C C C

D
D E D= +
2 2

 and C
C C C

E
D E E= +
2 2     

 (13) 

then there is no necessity for a bucket resizing event. 
Solving the equations simultaneously in (13), we obtain the 
unique and more simplified condition that if 
 

C CD E=                                     (14) 

then there is no need for a bucket width resize event. Hence 
the objective of the triggering mechanism in (12) is to 
equalize CD  and CE  within some tolerance factor (i.e. 2). 

It is noted that adding two more triggering 
mechanisms for the SNOOPy CQ structure in (12) does not 
necessarily imply that the SNOOPy CQ will resize itself 
more often than the DCQ structure. In fact, our simulations 
show that the SNOOPy CQ resizes less often than the DCQ 
structure and the main reason is that the SNOOPy CQ uses 
a more superior bucket width optimization calculation than 
DCQ�s sampling technique, consequently, the SNOOPy 
CQ operates most of the time in its optimum state keeping 
both the DCQ-inherited and SNOOPy CQ triggering 
mechanisms inactive. 
91
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4 FINE-TUNED SNOOPY CQ ALGORITHM 
 
The SNOOPy CQ algorithm should be employed 
judiciously especially when a new calendar queue era has 
just started after a complete resize. This is because any 
performance metrics corresponding to the new era will not 
be sufficiently reflective of the queue performance unless 
there is sufficient amount of dequeue operations Dops  and 
likewise, sufficient amount of enqueue operations Eops . 
Note that Dops  affects CD  and likewise, Eops  affect CE . 
Hence some fine tuning is required and this is reflected in 
the pseudo-codes of the SNOOPy CQ Enqueue() function 
as illustrated in Figure 4. Line 12 of the pseudo- codes 
show how it is decided whether to use the SNOOPy CQ 
bucket width calculation or the DCQ bucket width 
technique (which is based on sampling around the most 
populated bucket). The Calendar_Resize( B NW B, ) 
function, which is referenced in the Enqueue() function, 
copies events in the old calendar queue to a new calendar 
queue consisting of N B  buckets, each with width BW . The 
Calendar_Resize() function also incorporates a 
Resize(uneven) module which may further fine tune the 
new queue structure. The usefulness of the Resize(uneven) 
module to further fine tune a newly created calendar queue 
is mentioned in the DCQ literature [Oh and Ahn, 1999]. 
Note that the resize triggers are found only in the 
Enqueue() and Dequeue() functions as these functions 
manage the events of the queue. The differences between 
the Dequeue() function and the Enqueue() function is 
illustrated in Figure 5. 
 
5 EXPERIMENTS AND RESULTS ANALYSIS 
 
The classical Hold and Up/Down model are used to 
benchmark the performance for a conventional calendar 
queue (SCQ), DCQ and SNOOPy CQ. The priority 
increment distributions used are the Rect, Triag, NegTriag, 
Camel(x,y) and Change(A,B,x) distributions as were used 
by Oh and Ahn [1999] and Rönngren et al.[1993]. 
Camel(x,y) represents a 2 hump distribution will x% of its 
mass concentrated in the two humps and the duration of the  
two humps is y% of the total interval. Change(A,B,x) 
interleaves two priority distribution A and B together. 
Initially x priority increments are drawn from A followed 
by another x priority increments drawn from B and so on. 
The shapes of the priority increment distributions used are 
shown in Figure 6. 
492
Enqueue(){ 
(1)Enqueue new event to the appropriate bucket 
and update AccEvSkip ; /* AccEvSkip accumulates 
the number of events skipped for each enqueue 
operation since the enqueue slot began. For the 
case of the Dequeue() function, another 
variable, AccBuckSkip, is used to accumulate 
the number of empty buckets traversed for each 
dequeue operation since the dequeue slot began 
*/ 
(2)NE++; 
(3)if(NE>2NB){// CQ trigger for a growing PES 
(4) NB=2NB; 
(5)  BW:=Use Sampling Method; 
(6) Calendar_Resize(BW,NB);/* After a resize, a    
     new era begins, therefore, we set � */ 
(7) CD,1=CE,1=CD,10=CE,10=Eops=Dops=0; 
AccEvSkip=AccBuckSkip=0;} 
   else{ 
(8)  Eops++; 
/*Track the number of enqueue operations since 
the slot started*/  
(9)  if(Eops>NB){//end of an enqueue slot 
(10)   Update CE,1 and CE,10; //Update costs 
(11)   if(CE,1>2 or CD,10> 2CE,10 or CE,10> 2CD,10){ 
        /* After trigger check which 
        bucket width algorithm to use */ 
(12)      if(Eops>64 && Dops>64){/*enough samples   
             use Snoopy CQ*/ 
(13)         if(CE,1>2) //DCQ inherited trigger

    
(14)            CE= CE,1, CD=AccBuckSkip/Dops; 
/* CD,1 may not be available at this time */ 
             else//This is a Snoopy CQ trigger 
(15)            CE= CE,10, CD= CD,10; 
/* Now obtain the new SNOOPy CQ bucket width */     

(16)            
E

D
WW C

CBB =: ;} 
           else//not enough operations, use DCQ 
(17)          BW:=Use Sampling Method; 
(18)       Calendar_Resize(BW,NB); 
/* A calendar resize marks the end of an era, 
so we set �*/ 
(19)       CD,1=CE,10=CD,10=Dops=0; 
           AccBuckSkip=0; 
        } 
/*end of pseudo-codes dealing with a trigger 
condition*/ 
(20)    CE,1=Eops=AccEvSkip=0; 
/* Since this is also the end of a slot of en     
queue operations*/ 
     }// end of pseudo-codes for end of slot

  
   } 
(21)Return;} 
 

Figure 4:  Enqueue() Pseudo Codes of SNOOPy CQ 
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Line Dequeue() replaces it with �. 
1 Dequeue event from the head of the appropriate 

bucket and update AccBuckSkip;  
2 N E − − ; 
3 if ( N B  > 2N E ) {  

/* CQ trigger for a declining PES */ 
4 N NB B: /= 2 ; 
8 Dops ++;  

 /* Track the number of dequeue operations 
since the slot started */ 

9 if ( Dops > N B ) {  // end of a slot, update costs, 
check triggers, resize if necessary. 

10 Update CD,1  and CD,10  ; 
11 if( CD,1 >2   or  CD,10 >2 CE ,10   or   CE ,10 >2 CD,10 ) {  
13 if ( CD,1 > 2)   // This is a DCQ-inherited trigger 
14. C CD D= ,1 ,  C EE ops= AccEvSkip /  ;   

/* CE ,1  may not be available at this time */ 
19 C C C EE E D ops, , ,1 10 10 0= = = = AccEvSkip = ; 
20 C DD ops,1 0= = AccBuckSkip =    /*Since this is 

also the end of a slot of dequeue operations*/ 
Figure 5:  Differences between Dequeue() and Enqueue() 
Pseudo-codes 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 

Figure 6:  Benchmarking Distributions 
 
The Classical Hold and Up/Down model represent two 
extreme cases and are frequently used to show the 
performance bounds of PES implementations [Vaucher and 
Duval, 1975]. The number of hold operations performed is 
100 × the queue size. Loop overhead time is eliminated 
using another dummy loop as was described by Rönngren 
and Ayani[1997]. The experiment is done on an AMD K6 
210Mhz (83×2.5) with 32Mb RAM system running 
Windows 95. Figure 7 shows the Hold results under 
different distribution for CQ, DCQ and SNOOPy CQ. 

Rect Triag 

NegTriag Camel 
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(a) 

(b) 

(c) 
 

Figure 7:  Average time per Hold operation for CQ, DCQ 
and SNOOPy CQ 
 

It can be observed that out of the three queue 
implementations, SNOOPy CQ is the least affected by the 
type of distribution used. It boasts average hold times 
between 3 to 5 µs for all priority increment distributions. 
The DCQ performance is erratic especially for the Triag 
and Camel(98,01) distributions. Average hold times vary 
from 3 to 30 µs. The CQ performance is the worst among 
the three queue implementations with average access times 
varying from 3 to 65 µs. It is most affected by the Triag 
and Camel(98,01) distributions. Both DCQ and CQ suffer 
from the same problem of estimating the optimum bucket 
width just by event sampling. For DCQ, event sampling 
around the most populated bucket seems to give a good 
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estimate for some situation but not every situation. Thus, 
the inconsistent performance as shown in Figure 7(b). 

Two other distributions used for the Hold 
benchmarking test are the Change(camel9801(9-
10),Triag(0- 0.0001),2000) and the Change(Triag(9-
10),Rect(0- 0.0001),2000). Camel9801(9-10) represents 
the camel(98,01) in the range of 9 to 10. Triag(0-0.0001) 
distribution represents the Triag distribution in the range of 
0 to 0.0001. Triag(9-10) represents the Triag distribution in 
the range of 9 to 10, and finally the Rect(0-0.0001) 
represents a Rect distribution in the range of 0 to 0.0001. 
The results of the Hold benchmarks are shown in Figure 8.  

 

(a) 

(b) 
Figure 8:  Average time per Hold operation under 
Change(A,B,x) 
 

From these two graphs it can be seen that SNOOPy 
CQ adapts to changes in distribution easily with average 
hold time in the range of 10µs for Figure 8(a) and 8(b). 
The resize heuristics for CQ and DCQ fail miserably for 
(a), with average hold time of 100µs and up to 1000µs. In 
(b), the DCQ heuristic could adapt itself for certain queue 
sizes but not all. Average hold time ranges from 10µs to 
100µs. CQ, on the other hand, fails to adapt at all due to its 
static resize algorithm. Average hold time deteriorates to 
1000µs for large queue sizes. Again from these two graphs, 
it is evident that estimating an optimum bucket width to 
use just by event sampling does not guarantee consistent 
performance under all situations. This is unlike the more 
superior SNOOPy CQ resize heuristic. 

For the Up/Down model, a total of 10 cycles of filling 
up the calendar to reach the required queue size followed 
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by a complete emptying of the calendar was done. The 
average time per enqueue/dequeue operation is then 
computed and plotted against different queue sizes. The 
plots for CQ, DCQ and SNOOPy CQ under different 
priority increment distributions are given in Figure 9. 

(a) 

(b) 

(c) 
Figure 9:  Average time per enqueue/dequeue operation 
under Up/Down Model 
 

Figure 9(a) shows that the CQ resize heuristic is 
sensitive under Camel(98,01) distributions despite many 
resize operations. This is because the CQ structure is 
unable to determine the optimum bucket width by event 
sampling. 

Figure 9(b) shows that the DCQ resize heuristic works 
well under most distributions except Triag. This is because 
the heuristic tend to estimate a bucket width that is too 
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small since it samples events around the most populated 
bucket. 

Figure 9(c) shows that the SNOOPy CQ performs well 
under all distributions and is not susceptible to 
underestimating or overestimating the optimum bucket 
width to use. 

Finally, Figure 10 illustrates the effectiveness of the 
DCQ resize heuristic compared to the SNOOPy CQ 
heuristics in terms of the number of resize triggers. Recall 
earlier that the SNOOPy CQ algorithm adds two more 
triggering mechanism and it was mentioned that it does not 
necessarily mean that SNOOPy CQ initiates a resize more 
often. The plots in Figure 10 shows that on average, 
SNOOPy CQ takes 50% less resize operations to achieve 
optimal operating parameters compared to DCQ for the 
case of the Camel(98,01) distribution in the Hold scenario. 
Other distributions used for the Hold scenario are well 
behaved and do not cause DCQ and SNOOPy CQ to 
trigger often enough to provide meaningful comparisons on 
the number of resize operations. 

 

Figure 10:  Number of Resize Triggers in the Camel(98,01) 
Hold scenario 
 
6 CONCLUSION 
 
Choosing the correct PES data structure for a simulator is 
important for speeding up huge sized simulations. Calendar 
Queue and Dynamic Calendar Queue are two data structure 
that are often used to implement the PES. Both of these 
data structures perform well under some situation but badly 
in others. The resize heuristic of CQ and DCQ could not 
guarantee a good estimate of an optimum bucket width to 
use under all situations. This paper proposes a novel 
approach in estimating the optimum bucket width to use 
based on performance statistics of the calendar. The data 
structure employing this approach is called Statistically 
eNhanced with Optimum Operating Parameter Calendar 
Queue (SNOOPy CQ). It has been demonstrated that this 
technique provides a superior bucket width estimate to use 
during a resize event. Experimental results from the Hold 
and Up/Down model show that SNOOPy CQ consistently 
offers O(1) time complexity under different distributions, 
unlike CQ and DCQ. In certain scenarios, SNOOPy CQ 
has been shown to be 100x faster than CQ or DCQ. In 
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more well-behaved queue distributions, the SNOOPy CQ 
has the same order of performance compared to CQ and 
DCQ. 
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