
Proceedings of the 2000 Winter Simulation Conference
J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, eds.

SNOOPY CALENDAR QUEUE

Kah Leong Tan
Li-Jin Thng

Department of Electrical and Computer Engineering

10 Kent Ridge Crescent
National University of Singapore

Singapore 119260

ABSTRACT

Discrete event simulations often require a future event list
structure to manage events according to their timestamp.
The choice of an efficient data structure is vital to the
performance of discrete event simulations as 40% of the
time may be spent on its management. A Calendar Queue
(CQ) or Dynamic Calendar Queue (DCQ) are two data
structures that offers O(1) complexity regardless of the
future event list size. CQ is known to perform poorly over
skewed event distributions or when event distribution
changes. DCQ improves on the CQ structure by detecting
such scenarios in order to redistribute events. Both CQ and
DCQ determine their operating parameters (bucket widths)
by sampling events. However, sampling technique will fail
if the samples do not accurately reflect the inter-event gap
size. This paper presents a novel and alternative approach
for determining the optimum operating parameter of a
calendar queue based on performance statistics. Stress
testing of the new calendar queue, henceforth referred to as
the Statistically eNhanced with Optimum Operating
Parameter Calendar Queue (SNOOPy CQ), with widely
varying and severely skewed event arrival scenarios show
that SNOOPy CQ offers a consistent O(1) performance and
can execute up to 100 times faster than DCQ and CQ in
certain scenarios.

1 INTRODUCTION

Discrete event simulations are widely used in many
research areas to model a complex system�s behavior. In
discrete event simulation a system is modeled as a number
of logical processes that interact among themselves by
generating event messages with an execution timestamp
associated with each of the messages. The pending event
set (PES) is a set of all generated event messages that have
not been serviced yet. A PES can be represented by a
priority queue with messages with the smallest timestamp
having the highest priority and vice versa. The choice of a
487
data structure to represent the PES can affect the
performance of a simulation greatly. If the number of
events in the PES is huge as in the case of a fine-grain
simulation, it has been shown that up to 40% of the
simulation execution time may be spent on the
management of the PES alone [Comfort, 1984].

A CQ is a data structure that offers O(1) time
complexity regardless of the number of events in the PES.
To achieve this, the CQ, which consists of an array of
linked lists, tries to maintain a small number of events over
each list. However, the CQ performs poorly when event
distributions are highly skewed or when event distribution
changes.

A DCQ [Oh and Ahn, 1999] has been proposed to
solve the above-mentioned problem by adding a
mechanism for detecting uneven distribution of events over
its array of linked lists. Whenever this is detected, DCQ re-
computes a new operating parameter for the calendar
queue and redistributes events over a newly created array
of linked lists.

Both the DCQ and CQ compute their operating
parameter based on sampling a number of events in the
PES. Sometimes the choices of samples are not sufficiently
reflective of the optimum bucket width to use for the PES.
When this occurs, performance of the DCQ and CQ
degrade significantly and the newly resized calendar will
not be able to maintain their O(1) processing complexity.

This paper proposes a novel approach in estimating an
optimum operating parameter for a calendar queue. This
approach is based on the past performance metrics of the
calendar queue which can be obtained statistically. This
approach provides an O(1) processing complexity for the
calendar queue under all standard benchmarking
distributions. It is also not susceptible to estimation error
associated with the sampling method used in DCQ and CQ.

This paper is organized as follows. In section 2 we
present in detail how a conventional CQ and DCQ
operates, and their associated shortcomings. In section 3
we derive theoretically the optimum operating parameter

Tan and Thng
for a calendar queue. Utilizing the derived equations,
section 4 describes the SNOOPy CQ mechanism. In
section 5, the performance graphs of SNOOpy CQ, DCQ
and CQ under different event arrival distributions are
presented, compared and analyzed. Finally section 6
summarizes the contents of this paper and list down several
recommendations for future work.

2 CQ AND DCQ

Sections 2 describes the operation of CQ and DCQ

2.1 Basic Calendar Queue Stucture.

Figure 1 illustrates the basic structure of a CQ consisting of
an array of linked lists. An element in the array is often
referred to as a bucket and each bucket stores several
events using a single linked list structure. For notational
conveniences, we define the following symbols:

NB = Number of buckets in the CQ
BW = Bucket width in seconds
DY = Duration of a year in seconds = NB× BW
Bk = kth bucket of the calendar queue where 0≤k≤ NB-1

For example, in Figure 1, the CQ has NB=5 buckets, i.e.
B[0], B[1],�, B[4], each of width BW = 1 second,
representing an overall calendar year of duration DY = 5
seconds.

{ } { }5,1,5,, =YWB DBN

Figure 1: A Conventional Calendar Queue

To enqueue events with timestamp greater than or
equal to a year�s duration, a modulo-DY division is
performed on the timestamp to determine the right bucket
to insert the event. Therefore, any events falling on the
same day, regardless of their year, is inserted into the same
bucket and sorted in increasing time order as illustrated in
Figure 1 and Table 1. To dequeue events, the CQ keeps
track of the current calendar year and day it is in. It then
searches for the earliest event that falls on the current year
48
and day starting at bucket B[0]. If the event at the head
node of the linked list at B[0] does not have the current
year�s timestamp, the search then turns to the head node of
the linked list at B[1] and proceeds in this manner until
B[NB �1] is reached. When all the buckets have been
cycled through, the current year will be incremented by 1
and the current day will be reset back to day 0 (i.e. bucket
B[0]). For example, the event with timestamp 10.3 seconds
in Figure 1 is only dequeued at the start of the third cycle.

Table 1: Event Timestamp Mapping
Event timestamp Calendar

Year
Calendar Day

0.3 0 1
0.4 0 1
5.3 1 1

10.3 2 1
3.3 0 4

2.2 CQ Resize Operation

To simplify the resize operation, the number of buckets in
a CQ is often chosen to be of the power of two, i.e.

NB = 2n , n∈ Z, n≥ 0 (1)

The number of buckets are doubled or halved each time the
number of events NE exceeds 2NB or decreases below NB/2
respectively, i.e.

If NE > 2NB, NB:=2 NB
 If NE < NB/2, NB:= NB/2 (2)

When NB is resized, a new operating parameter, i.e. BW, has
to be calculated as well. The new BW that is adopted will be
estimated by sampling the average inter-event time gap
from the first few hundred events starting at the current
bucket position. Thereafter, a new CQ is created and all the
events in the old calendar will be recopied over. The resize
heuristic obtained by sampling suffers from the following
problems:

1) Since resizing is done only when the number of
events doubles or halves that of NB, this means
that as long as NE stays between NB/2 and 2NB, the
CQ will not adapt itself even if there is a drastic
change in event arrivals causing heavily skewed
event distributions to occur.

2) Sampling the first few hundred events starting at the
current bucket position to estimate an appropriate
bucket width is highly sub-optimal especially when
event distributions are highly skewed.
8

Tan and Thng

2.3 DCQ Resize Operation

The DCQ improves on the conventional CQ by adding a
mechanism to detect skewed event distributions and initiate
a resize. The DCQ maintains two cost metrics CE and CE,
where

 CE = Average Enqueue Cost
 CD = Average Dequeue Cost

The average enqueue cost is the average number of events
that is required to be traversed before an insertion can be
made on a linked list. The average dequeue cost is the
average number of buckets that needs to be searched
through before the event with the earliest timestamp can be
found. The implementation aspects of updating the CE
metric and CD metric is deferred until a later section. For
the time being, it is sufficient to assume that these metrics
are available. Now, a change in event distribution is
detected whenever CE or CD exceeds some preset
thresholds, e.g. 2, 3. If this should occur, DCQ initiates a
resize on the width of buckets BW, the number of buckets,
NB, remaining the same before and after the resize.

The DCQ structure also makes a small modification to
the bucket width calculation of the CQ structure. Recall
that for the case of CQ, the bucket width is estimated by
sampling the first few hundred events of the current
bucket. However, in DCQ, the bucket width is obtained by
sampling the first few hundred events starting with the
most populated bucket of the calendar queue structure. It
is noted again that in the DCQ bucket width resize
heuristic, sampling is again employed but this time on the
most populated bucket. Therefore its performance is again
dependent on how well the optimal inter-event gap size can
be represented by these samples. If samples in the most
populated bucket are constantly highly skewed, the DCQ
resize operation is no better than the conventional CQ
resize. This point is demonstrated later in our numerical
studies presented in Section 6. In the next section, we will
describe how SNOOPy CQ initiates a bucket width resize
and then calculates the optimal bucket width.

3 SNOOPY CQ ALGORITHM

There are two parts to the SNOOPy CQ mechanism,
namely, the SNOOPy triggering process which is
responsible for initiating a bucket width resize and
secondly, the SNOOPy bucket width optimisation process
which is responsible for calculating the optimum bucket
width when a resize operation has been initiated. As the
triggering process is very much dependent on the bucket
width optimisation process, we will proceed with
explaining the second process first.

48
3.1 SNOOPy CQ Bucket Width
Optimisation Process

The cost function that SNOOPy CQ aims to minimize
when a bucket width resize is initiated is the sum of the
average enqueue cost and average dequeue cost as follows:

C
WB

min = CE + CD, subject to NB fixed (3)

The variable to optimize is the bucket width BW. To
optimize BW, notice that if BW is increased by a positive
factor k , i.e. bucket width sizes are now larger in the
system,

BW := kBW (4)

then the average dequeue cost and the average enqueue
cost are expected to increase and decrease respectively in
the new queue. Hence the optimization problem in (3)
transforms to the optimization of the factor k to minimize
the following objective function:

min min min' ' '

k k D E k

D
EC C C C

g k
g k C= + = +

1
2b g b g (5)

where g1(k) and g2(k)≥1 and have to be some
monotonically increasing functions of k. In addition, g1(k)
and g2(k) should also satisfy the following boundary
conditions:

g g1 21 1 1b g b g= = (6)

Note that the new average cost metrics CD

' and CE
' may

remain optimized only for that short time period
immediately after the bucket width upsize event has
occurred, i.e queue distributions has not changed much
before and after the upsize event. To handle a growing or
declining PES scenario, more such optimizations can be
triggered at appropriate times.

Now, the functions g1 and g2 not only depends on
the event distribution of the queue at that particular instant,
they may also depend on the factor k as well, i.e. different k
factor upsize may demand different g1 and g2 functions.
It is clear that to determine the exact functional in the face
of statistical variations is not worthwhile. In order to
proceed from this point forth, we take the approach of
having no a priori knowledge of the event distribution and
consider the best case and worst case cost
decrements/increments after an upsize event. Once the
bounds have been identified, an average objective function
can be established for optimizing k.
9

Tan and Thng
For the case of the average dequeue cost, we note that
increasing the bucket width packs events together. Hence
the new average dequeue cost CD

' (within that short time
period after the upsize) should range between

C
k

C CD
D D≤ ≤' (7)

The upper bound in (7) indicates that in the worst case,
there may be no reduction to the average dequeue cost
even if the bucket width is increased. Such a scenario may
occur as illustrated in Figure 2 where events are
concentrated in only two buckets, i.e. 3 and 7, and events
have time stamps such that the dequeue mechanism must
alternate between these two buckets for every event that is
dequeued. In Figure 2, increasing the bucket width moves
the two bucket of events together but leaves a longer tail of
empty buckets in the new calendar queue. As the old queue
and the new queue have the same number of buckets N B ,
it is clear that the number of empty buckets that is
traversed so as to dequeue alternate events (residing
respectively in the two buckets) is exactly the same.
Conversely, the lower bound in (7) indicates the most ideal
average dequeue cost reduction when the bucket width is
upsized by k, subject to this condition - that the upsize
does not cause the onset of a degenerate queue structure.
A degenerate queue structure occurs when k is so large
such that after resizing, all the elements are merged into a
single bucket. Consequently, the average dequeue cost
decreases to 0 but the calendar queue degenerates into a
single linked list structure which is undesirable. To avoid
the degenerate scenario, the lower bound for the reduction
in the average dequeue cost has to be constrained (which
will in turn limit the size of k). Now, the best possible
reduction only occurs, without the onset of degeneration,
when the k factor upsize causes the distance between the
previous linked list structures to be k-times closer to each
other in the new queue structure but does not cause any of
the previous linked list structure to merge, and all events
dequeued belong to the current year so that there is no need
to traverse the tail of empty buckets. Under this ideal
scenario, we note that upsizing the bucket width by k
would cause the number of empty buckets between filled
buckets to be divided by k. Hence each subsequent
dequeue operation in the new structure would traverse k-
times less empty buckets compared to previous traversals
in the old queue.

49

Figure 2: Worst case CD reduction after bucket width
upsizing

Increasing the bucket width merges events, resulting in
longer linked lists in the new calendar queue structure.
Hence the new average enqueue cost CE

' (within that short
time period after the upsize) should increase and range
between

C C kCE E E≤ ≤'

 (8)

The lower bound in (8) indicates the best case situation in
that the enqueue cost does not increase after the upsizing.
Such situations occur when the upsize factor is not large
enough to cause linked list structures of the previous queue
to merge. Consequently, the linked list structures of the old
queue are all preserved in the new queue. The only
difference is that the new linked list structures are now
assigned to buckets with smaller indexes (which affects the
dequeue cost but not the enqueue cost). Conversely, the
upper bound in (8) indicates that in the worst case
situation, the average enqueue cost increases k times its
previous. This situation occurs when prior to the upsizing,
all non- empty buckets are clustered to each other as shown
in Figure 3. After the upsizing, all the events should now
be found in a cluster of buckets which is k-times smaller.
Since N E is identical in that short time before and after the
bucket upsize, the length of each linked list in the new
queue should on average grow by k .

Figure 3: Worst case CE increase after bucket width upsizing

With the bounds for CD

' and CE
' defined in (7) and (8),

these bounds can be permutated to form four possible
limiting cases of cost decrements/increments after a bucket
upsize event. Taking the average of these four possible

After Upsizing Bucket Before Upsizing Bucket

531

642

3

7

531

642

1

2
0

Tan and Thng
permutations, we obtain the following average objective
function for optimizing k.

C C C
k

C kC CD E
D

D E E
' '+ = +FHG

I
KJ + +

1
2

1
2
b g (9)

Notice that the cost function in (9) satisfies the boundary
conditions in (6). Differentiating (9) with respect to k to
solve for the minimum cost, we obtain the following
optimal relations:

k C
C

D

E

= , C
C C C

D
D E D' = +
2 2

, C
C C C

E
D E E' = +
2 2

 (10)

Hence, the optimal bucket width to use for upsizing the
bucket width is

B C
C

BW
D

E
W

* = (11)

It can be easily verified that for the case of downsizing the
bucket width, an identical average cost function to (9) can
be derived where k is now less than or equal to unity.
Consequently, the same set of optimal solutions shown in
(10) also applies for a bucket width downsizing event.

3.2 SNOOPy CQ Bucket Width

Resize Triggering Process

As the SNOOPy CQ triggering process depends on CE and
CD , a short explanation on how CE and CD is practically
obtained is presented. The SNOOPy CQ initiation process
keeps track of two types of average cost. The first is a slot
average and the second is a multi-slot moving average.
The following definitions explain:

Slot : a time interval corresponding to NB dequeue
operations or NB enqueue operations and not
any mixture of both.

CD,1: average dequeue cost averaged over 1 slot of
dequeue operations. Memory effects
associated with CD,1 from slot to slot is zero,
i.e. each slot derives a new CD,1 based only
on dequeue operations occurring during the
current slot period.

CE,1: average enqueue cost averaged over 1 slot of
enqueue operations. It has similar properties
as CD,1.

Era : a time interval between two consecutive
bucket resize events.

CD, n: a moving average of n consecutive CD,1�s
obtained in an era. When an era begins, the
first n consecutive CD,1�s are averaged to
obtain CD, n. Thereafter, any new CD,1 that is
4

generated would be included into the moving
average after the oldest CD,1 has been
discarded. There is no memory effect
associated with CD, n from era to era. If the
era is less than n slots, then CD, n is zero
throughout that era.

CE, n: a moving average of n consecutive CE,1�s
obtained in an era. It has similar properties as
CD, n

In the case of DCQ, only CD,1 and CE,1 are tracked

while the SNOOPy CQ structure tracks CD,1, CE,1, CD,10 and
CE,10.

The SNOOPy CQ adopts all the triggering
mechanisms of the conventional CQ and DCQ structure
and adds another two more triggering mechanisms, namely

C CE D, ,10 102≥ × or C CD E, ,10 102≥ × (12)

This means that when the 10-slots moving average cost
factors differ by a factor of 2, a bucket resize is also
initiated by SNOOPy CQ. The use of a 10-slots moving
average has been found in our simulations to provide
enough stability in the average costs to strike a good
balance between excessive triggering and un-responsive
triggering. The use of the triggering condition in (12)
results from the optimal cost solutions shown in (10) where
it is noted that if the current average costs CD and CE
already satisfies the optimal conditions, i.e.

C
C C C

D
D E D= +
2 2

 and C
C C C

E
D E E= +
2 2

 (13)

then there is no necessity for a bucket resizing event.
Solving the equations simultaneously in (13), we obtain the
unique and more simplified condition that if

C CD E= (14)

then there is no need for a bucket width resize event. Hence
the objective of the triggering mechanism in (12) is to
equalize CD and CE within some tolerance factor (i.e. 2).

It is noted that adding two more triggering
mechanisms for the SNOOPy CQ structure in (12) does not
necessarily imply that the SNOOPy CQ will resize itself
more often than the DCQ structure. In fact, our simulations
show that the SNOOPy CQ resizes less often than the DCQ
structure and the main reason is that the SNOOPy CQ uses
a more superior bucket width optimization calculation than
DCQ�s sampling technique, consequently, the SNOOPy
CQ operates most of the time in its optimum state keeping
both the DCQ-inherited and SNOOPy CQ triggering
mechanisms inactive.
91

Tan and Thng

4 FINE-TUNED SNOOPY CQ ALGORITHM

The SNOOPy CQ algorithm should be employed
judiciously especially when a new calendar queue era has
just started after a complete resize. This is because any
performance metrics corresponding to the new era will not
be sufficiently reflective of the queue performance unless
there is sufficient amount of dequeue operations Dops and
likewise, sufficient amount of enqueue operations Eops .
Note that Dops affects CD and likewise, Eops affect CE .
Hence some fine tuning is required and this is reflected in
the pseudo-codes of the SNOOPy CQ Enqueue() function
as illustrated in Figure 4. Line 12 of the pseudo- codes
show how it is decided whether to use the SNOOPy CQ
bucket width calculation or the DCQ bucket width
technique (which is based on sampling around the most
populated bucket). The Calendar_Resize(B NW B,)
function, which is referenced in the Enqueue() function,
copies events in the old calendar queue to a new calendar
queue consisting of N B buckets, each with width BW . The
Calendar_Resize() function also incorporates a
Resize(uneven) module which may further fine tune the
new queue structure. The usefulness of the Resize(uneven)
module to further fine tune a newly created calendar queue
is mentioned in the DCQ literature [Oh and Ahn, 1999].
Note that the resize triggers are found only in the
Enqueue() and Dequeue() functions as these functions
manage the events of the queue. The differences between
the Dequeue() function and the Enqueue() function is
illustrated in Figure 5.

5 EXPERIMENTS AND RESULTS ANALYSIS

The classical Hold and Up/Down model are used to
benchmark the performance for a conventional calendar
queue (SCQ), DCQ and SNOOPy CQ. The priority
increment distributions used are the Rect, Triag, NegTriag,
Camel(x,y) and Change(A,B,x) distributions as were used
by Oh and Ahn [1999] and Rönngren et al.[1993].
Camel(x,y) represents a 2 hump distribution will x% of its
mass concentrated in the two humps and the duration of the
two humps is y% of the total interval. Change(A,B,x)
interleaves two priority distribution A and B together.
Initially x priority increments are drawn from A followed
by another x priority increments drawn from B and so on.
The shapes of the priority increment distributions used are
shown in Figure 6.
492
Enqueue(){
(1)Enqueue new event to the appropriate bucket
and update AccEvSkip ; /* AccEvSkip accumulates
the number of events skipped for each enqueue
operation since the enqueue slot began. For the
case of the Dequeue() function, another
variable, AccBuckSkip, is used to accumulate
the number of empty buckets traversed for each
dequeue operation since the dequeue slot began
*/
(2)NE++;
(3)if(NE>2NB){// CQ trigger for a growing PES
(4) NB=2NB;
(5) BW:=Use Sampling Method;
(6) Calendar_Resize(BW,NB);/* After a resize, a
 new era begins, therefore, we set � */
(7) CD,1=CE,1=CD,10=CE,10=Eops=Dops=0;
AccEvSkip=AccBuckSkip=0;}
 else{
(8) Eops++;
/*Track the number of enqueue operations since
the slot started*/
(9) if(Eops>NB){//end of an enqueue slot
(10) Update CE,1 and CE,10; //Update costs
(11) if(CE,1>2 or CD,10> 2CE,10 or CE,10> 2CD,10){
 /* After trigger check which
 bucket width algorithm to use */
(12) if(Eops>64 && Dops>64){/*enough samples
 use Snoopy CQ*/
(13) if(CE,1>2) //DCQ inherited trigger

(14) CE= CE,1, CD=AccBuckSkip/Dops;
/* CD,1 may not be available at this time */
 else//This is a Snoopy CQ trigger
(15) CE= CE,10, CD= CD,10;
/* Now obtain the new SNOOPy CQ bucket width */

(16)
E

D
WW C

CBB =: ;}
 else//not enough operations, use DCQ
(17) BW:=Use Sampling Method;
(18) Calendar_Resize(BW,NB);
/* A calendar resize marks the end of an era,
so we set �*/
(19) CD,1=CE,10=CD,10=Dops=0;
 AccBuckSkip=0;
 }
/*end of pseudo-codes dealing with a trigger
condition*/
(20) CE,1=Eops=AccEvSkip=0;
/* Since this is also the end of a slot of en
queue operations*/
 }// end of pseudo-codes for end of slot

 }
(21)Return;}

Figure 4: Enqueue() Pseudo Codes of SNOOPy CQ

Tan and Thng

Line Dequeue() replaces it with �.
1 Dequeue event from the head of the appropriate

bucket and update AccBuckSkip;
2 N E − − ;
3 if (N B > 2N E) {

/* CQ trigger for a declining PES */
4 N NB B: /= 2 ;
8 Dops ++;

 /* Track the number of dequeue operations
since the slot started */

9 if (Dops > N B) { // end of a slot, update costs,
check triggers, resize if necessary.

10 Update CD,1 and CD,10 ;
11 if(CD,1 >2 or CD,10 >2 CE ,10 or CE ,10 >2 CD,10) {
13 if (CD,1 > 2) // This is a DCQ-inherited trigger
14. C CD D= ,1 , C EE ops= AccEvSkip / ;

/* CE ,1 may not be available at this time */
19 C C C EE E D ops, , ,1 10 10 0= = = = AccEvSkip = ;
20 C DD ops,1 0= = AccBuckSkip = /*Since this is

also the end of a slot of dequeue operations*/
Figure 5: Differences between Dequeue() and Enqueue()
Pseudo-codes

Figure 6: Benchmarking Distributions

The Classical Hold and Up/Down model represent two
extreme cases and are frequently used to show the
performance bounds of PES implementations [Vaucher and
Duval, 1975]. The number of hold operations performed is
100 × the queue size. Loop overhead time is eliminated
using another dummy loop as was described by Rönngren
and Ayani[1997]. The experiment is done on an AMD K6
210Mhz (83×2.5) with 32Mb RAM system running
Windows 95. Figure 7 shows the Hold results under
different distribution for CQ, DCQ and SNOOPy CQ.

Rect Triag

NegTriag Camel

49
(a)

(b)

(c)

Figure 7: Average time per Hold operation for CQ, DCQ
and SNOOPy CQ

It can be observed that out of the three queue
implementations, SNOOPy CQ is the least affected by the
type of distribution used. It boasts average hold times
between 3 to 5 µs for all priority increment distributions.
The DCQ performance is erratic especially for the Triag
and Camel(98,01) distributions. Average hold times vary
from 3 to 30 µs. The CQ performance is the worst among
the three queue implementations with average access times
varying from 3 to 65 µs. It is most affected by the Triag
and Camel(98,01) distributions. Both DCQ and CQ suffer
from the same problem of estimating the optimum bucket
width just by event sampling. For DCQ, event sampling
around the most populated bucket seems to give a good

CQ Hold

0
10
20
30
40
50
60
70

80
0

30
00

60
00

90
00

12
00

0
15

00
0
18

00
0
21

00
0
24

00
0
27

00
0
30

00
0

Queue Size

Ti
m

e/
m

ic
ro

S

Rect

Triag

Ntriag
Camel(70,20)

Camel(98,01)

SNOOPy Hold

0
1
2
3
4
5
6

80
0

30
00

60
00

90
00

12
00

0
15

00
0
18

00
0
21

00
0
24

00
0
27

00
0
30

00
0

Queue Size

Ti
m

e/
m

ic
ro

S

Rect

Triag

Ntriag
Camel(70,20)

Camel(98,01)

DCQ Hold

0
5

10
15
20
25
30
35

80
0

30
00

60
00

90
00

12
00

0
15

00
0
18

00
0
21

00
0
24

00
0
27

00
0
30

00
0

Queue Size
Ti

m
e/

m
ic

ro
S Rect

Triag

Ntriag
Camel(70,20)
Camel(98,01)
3

Tan and Thng

estimate for some situation but not every situation. Thus,
the inconsistent performance as shown in Figure 7(b).

Two other distributions used for the Hold
benchmarking test are the Change(camel9801(9-
10),Triag(0- 0.0001),2000) and the Change(Triag(9-
10),Rect(0- 0.0001),2000). Camel9801(9-10) represents
the camel(98,01) in the range of 9 to 10. Triag(0-0.0001)
distribution represents the Triag distribution in the range of
0 to 0.0001. Triag(9-10) represents the Triag distribution in
the range of 9 to 10, and finally the Rect(0-0.0001)
represents a Rect distribution in the range of 0 to 0.0001.
The results of the Hold benchmarks are shown in Figure 8.

(a)

(b)
Figure 8: Average time per Hold operation under
Change(A,B,x)

From these two graphs it can be seen that SNOOPy
CQ adapts to changes in distribution easily with average
hold time in the range of 10µs for Figure 8(a) and 8(b).
The resize heuristics for CQ and DCQ fail miserably for
(a), with average hold time of 100µs and up to 1000µs. In
(b), the DCQ heuristic could adapt itself for certain queue
sizes but not all. Average hold time ranges from 10µs to
100µs. CQ, on the other hand, fails to adapt at all due to its
static resize algorithm. Average hold time deteriorates to
1000µs for large queue sizes. Again from these two graphs,
it is evident that estimating an optimum bucket width to
use just by event sampling does not guarantee consistent
performance under all situations. This is unlike the more
superior SNOOPy CQ resize heuristic.

For the Up/Down model, a total of 10 cycles of filling
up the calendar to reach the required queue size followed

Change(Camel,Triag,2000)

1

10

100

1000

10000

80
0

30
00

60
00

90
00

12
00

0
15

00
0
18

00
0
21

00
0
24

00
0
27

00
0
30

00
0

Queue Size

Ti
m

e/
m

ic
ro

S

SNOOPY CQ
DCQ
CQ

Change(Triag,Rect,2000)

1

10

100

1000

10000

80
0

30
00

60
00

90
00

12
00

0
15

00
0
18

00
0
21

00
0
24

00
0
27

00
0
30

00
0

Queue Size

Ti
m

e/
m

ic
ro

S

SNOOPY CQ
DCQ
CQ
49
by a complete emptying of the calendar was done. The
average time per enqueue/dequeue operation is then
computed and plotted against different queue sizes. The
plots for CQ, DCQ and SNOOPy CQ under different
priority increment distributions are given in Figure 9.

(a)

(b)

(c)
Figure 9: Average time per enqueue/dequeue operation
under Up/Down Model

Figure 9(a) shows that the CQ resize heuristic is
sensitive under Camel(98,01) distributions despite many
resize operations. This is because the CQ structure is
unable to determine the optimum bucket width by event
sampling.

Figure 9(b) shows that the DCQ resize heuristic works
well under most distributions except Triag. This is because
the heuristic tend to estimate a bucket width that is too

CQ Up/Down

0

500

1000

1500

2000

2500

80
0

40
00

80
00

12
00

0
16

00
0

20
00

0
24

00
0

28
00

0

Queue Size

Ti
m

e/
m

ic
ro

S Rect
Triag
Ntriag
Camel(70,20)
Camel(98,01)

DCQ Up/Down

0

500

1000

1500

2000

2500

80
0

30
00

60
00

90
00

12
00

0
15

00
0
18

00
0
21

00
0
24

00
0
27

00
0
30

00
0

Queue Size

Ti
m

e/
m

ic
ro

S Rect
Triag
Ntriag

Camel(70,20)
Camel(98,01)

SNOOPy Up/Down

0

500

1000

1500

2000

2500

80
0

30
00

60
00

90
00

12
00

0
15

00
0
18

00
0
21

00
0
24

00
0
27

00
0
30

00
0

Queue Size

Ti
m

e/
m

ic
ro

S Rect
Triag
Ntriag
Camel(70,20)
Camel(98,01)
4

Tan and Thng

small since it samples events around the most populated
bucket.

Figure 9(c) shows that the SNOOPy CQ performs well
under all distributions and is not susceptible to
underestimating or overestimating the optimum bucket
width to use.

Finally, Figure 10 illustrates the effectiveness of the
DCQ resize heuristic compared to the SNOOPy CQ
heuristics in terms of the number of resize triggers. Recall
earlier that the SNOOPy CQ algorithm adds two more
triggering mechanism and it was mentioned that it does not
necessarily mean that SNOOPy CQ initiates a resize more
often. The plots in Figure 10 shows that on average,
SNOOPy CQ takes 50% less resize operations to achieve
optimal operating parameters compared to DCQ for the
case of the Camel(98,01) distribution in the Hold scenario.
Other distributions used for the Hold scenario are well
behaved and do not cause DCQ and SNOOPy CQ to
trigger often enough to provide meaningful comparisons on
the number of resize operations.

Figure 10: Number of Resize Triggers in the Camel(98,01)
Hold scenario

6 CONCLUSION

Choosing the correct PES data structure for a simulator is
important for speeding up huge sized simulations. Calendar
Queue and Dynamic Calendar Queue are two data structure
that are often used to implement the PES. Both of these
data structures perform well under some situation but badly
in others. The resize heuristic of CQ and DCQ could not
guarantee a good estimate of an optimum bucket width to
use under all situations. This paper proposes a novel
approach in estimating the optimum bucket width to use
based on performance statistics of the calendar. The data
structure employing this approach is called Statistically
eNhanced with Optimum Operating Parameter Calendar
Queue (SNOOPy CQ). It has been demonstrated that this
technique provides a superior bucket width estimate to use
during a resize event. Experimental results from the Hold
and Up/Down model show that SNOOPy CQ consistently
offers O(1) time complexity under different distributions,
unlike CQ and DCQ. In certain scenarios, SNOOPy CQ
has been shown to be 100x faster than CQ or DCQ. In

Camel9801 Hold

0
2
4
6
8

10
12
14
16
18

80
0

30
00

60
00

90
00

12
00

0
15

00
0
18

00
0
21

00
0
24

00
0
27

00
0
30

00
0

Queue Size

R
es

iz
e

Tr
ig

ge
r

SNOOPY CQ

DCQ
4

more well-behaved queue distributions, the SNOOPy CQ
has the same order of performance compared to CQ and
DCQ.

REFERENCES

Comfort, J.C., 1984. The simulation of a master-slave event

set processor. Simulation 42, 3 (March), 117-124.
Oh, S., and Ahn, J.. 1999. Dynamic Calendar Queue. In

Proceeding of the 32nd Annual Simulation
Symposium.

Rönngren, R., Riboe, J., and Ayani, R. 1993. Lazy Queue:
New approach to implementing the pending event set.
Int. J. Computer Simulation 3, 303-332.

Rönngren, R., and Ayani, R. 1997. Parallel and Sequential
priority Queue Algorithms. ACM Trans. On Modeling
and Computer Simulation 2, 157-209.

Vaucher, J. G., and Duval, P. 1975. A comparison of
simulation event lists. Commun. ACM 18, 4(June),
223-230.

AUTHOR BIOGRAPHIES

TAN KAH LEONG is a Research Scholar in the
Department of Electrical and Computer Engineering,
National University of Singapore (NUS). He received his
B.Eng from NUS. His research interests include O-O
simulation and neural networks. He can be contacted at
<engp9186@nus.edu.sg>.

DR THNG LI- JIN, IAN is a lecturer in the Department
of Electrical and Computer Engineering, National
University of Singapore. His research interests include O-
O simulation, signal processing and communications. He
can be contacted at <eletlj@nus.edu.sg>.

95

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

