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ABSTRACT

Under certain conditions on the integrand, quasi-Monte
Carlo methods for estimating integrals (expectations) con-
verge faster asymptotically than Monte Carlo methods. Mo-
tivated by this result we consider the generation of quasi-
random vectors with given marginals and given correlation
matrix. We extend the “Normal To Anything” (NORTA)
method, introduced by Cario and Nelson, to this context,
and term the extension the “Quasi-Random to Anything”
(QUARTA) method.

1 INTRODUCTION

We present a new approach for computing integrals (ex-
pectations) of the fornEg(X), for some functiorg, and a
class of random vectorX¥. This problem arises in a host
of applications. For example, in stochastic linear program-
ming, X represents certain random input data to a linear
program, and the functiog gives the optimal objective
value of the linear program (Infanger 1994). In stochastic
activity networks,X represents the random task durations
on the arcs of the network, andreflects the length of the
longest path between two specified nodes.

In both of these applicationsy takes the form of a
d-dimensional vector of real-valued random variables. |If
i.i.d. replicates ofX can be generated, then the Monte Carlo
method may be used to estimaig(X).

If the d components o are modeled as independent
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for dealing with the case where the marginal distributions
do not come from a common family.

Specifying the distributions of such random vectors can
be an onerous task, let alone developing variate generation
algorithms. It is natural then, to simply specify the marginal
distributions of the components of, together with their
covariance matrix. This approach does not necessarily
uniquely specify the distribution ok. However, it is far
easier to specify this data than to specify a full multivariate
distribution. Furthermore, there are methods for generating
random vectors with specified marginals and covariance
matrix.

The extremal distributions method of Hill and Reilly
(1994) can be applied in this case, but practically speaking,
it appears to be limited in applicability to low-dimensional
(d < 4 say) random vectors.

Cario and Nelson (1997) describe the “Normal to
Anything” (NORTA) method, which easily scales to high-
dimensional random vectors. The basic idea is to begin
with a random vectoZ with a multivariate normal distri-
bution, and transforn¥ to yield a random vectoX with
the desired marginals and correlation structure. Cario and
Nelson (1997) gave structural results that establish the feasi-
bility of a numerical approach to determining the correlation
structure ofZ which induces the required correlation struc-
ture of X. They traced the origins of the NORTA method
back to Mardia (1970) who looked at transformations of
bivariate normal random variables, and Li and Hammond
(1975), who looked at random vectors where all marginals

random variables, then univariate generation techniques may have densities (with respect to Lebesgue measure). Iman
be applied to each of the components independently to gener-et al (1981) and Iman and Conover (1982) implemented
ateX. However, the assumption of independent components a joint normal transform procedure, where the variables
may be an unreasonable one for many applications (Infanger Z and X have the same rank correlation structure. Their

1994, Cario and Nelson 1997).

There are many models for specifying multivariate ran-
dom vectors with correlated components and marginal distri-
butions from a single parametric family; see Devroye (1986)

approach is essentially the NORTA method with a different
method for choosing the correlation matrix @f Clemen

and Reilly (1999) use the NORTA method, attempting to
ensure a given rank correlation in the output. They employ

and Johnson (1987) for surveys. There are fewer methods an explicit formula for the rank correlations of multivari-
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ate normal random variables to determine the appropriate
correlation structure of.
It might be conceived that the NORTA method could

It is known (Niederreiter 1992, p. 32) that under cer-
tain conditions org, sequences = u(1), u(2), ... exist for
which the error in (1) decreases at most at ratélogn)<.

be used to generate random vectors with arbitrary marginals This rate is (asymptotically) faster than the rate/? ex-

and an arbitranfeasiblecovariance matrix (feasible in the
sense that a random vector with the specified marginals
and covariance matrix exists). Unfortunately, this is not the

hibited by the Monte Carlo method.
Such sequences are termed quasi-random number
(QRN) sequences, and because they are designed to “uni-

case, as Ghosh and Henderson (2000) show that there areformly” fill the unit hypercube, we will say that they are

sets of marginals with feasible covariance matrix that cannot
be generated with the NORTA procedure. This fact was
noted, although not rigorously established, in both Li and
Hammond (1975) and Clemen and Reilly (1999). However,
the method can be adjusted to generate a random v&ctor
with the required marginals, and a covariance matrix that
is “close” to the desired covariance matrix. Clemen and
Reilly (1999) give one such adjustment, and Ghosh and
Henderson (2000) give another. We outline how Ghosh and
Henderson (2000) do this in Section 2.

In this paper, we use the NORTA procedure as a tool
to assist in computing’g(X). A Monte Carlo approach to
computingEg(X) generatesi.i.d. replicate&(l), ..., X (n)
of X, and computes

l n
ame(n) =~ ) g(X (D).
i=1

If E[g(X)]? < oo, thena, satisfies the central limit theorem
Vn(e, — Eg(X)) = oN(0, 1)

asn — oo, where = denotes weak convergencé(0, 1)
denotes a standard normal random variable, add=
var(g(X)). Hencea, converges at rate~%/2 to Eg(X),
independent of the dimensiahof X.

Alternatively, numerical integration techniques may be
employed to estimat&g(X). We may write

Eg(X)=/Sg(X)7T(dX),

wherer is the distribution ofX, andS € R? is the support

of m. This integral can be transformed into one on the
unit hypercube ind dimensions with respect to Lebesgue
measure. Numerical integration techniques can then be
applied to estimat& g (X). In particular, the (deterministic)
pointsu (1), u(2), ..., u(n) within the unit hypercube might

be chosen, and an approximation 6§ (X) computed via

1 ,
=D (@),
i=1

where the functiork depends on the transformation of the
integral oversS to one over the unit hypercube.

)
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guasi-random numbers with a uniform distribution on the
unit hypercube. However, it should be noted that QRN
sequences are specifically designed to be deterministic, and
not share certain properties with an i.i.d. sequence (unlike
pseudo-random numbers). Consequently some care must
be exercised when speaking about the distribution of such
a sequence of points.

It is then reasonable to ask whether it is possible to
generate QRN sequences with a nonuniform distribution.
Gentle (1998, Chapter 2) surveyed a number of methods used
to transform uniformly distributed univariate (quasi-)random
number sequences to nonuniform distributions. Further, the
issue of directly sampling (quasi-)random numbers from
specific distributions including univariate and multivariate
distributions, as well as over geometric objects, has also
been explored (Gentle, 1998, Chapter 3). Chiera and Cooke
(2000) have recently extended this problem by looking at
the generation of QRN sequences for Markov trees with
diagonal band copulae. A joint distribution is determined by
one-dimensional marginals and rank correlations on a tree
whose nodes are the one dimensional marginals, together
with a maximum entropy condition. This latter condition is
always consistent and ensures that realizations are Markov;
that is, they possess a conditional independence structure
given by the tree, considered as an (undirected) belief net
(Meeuwissen, 1993, Meeuwissen and Bedford 1997, Cooke
1997).

But why are nonuniform QRN sequences of interest?
The answer is that it is possible to estimdig(X) using
an estimator of the form

1 n
agma(n) = = > g(x(0)),
i=1

where the quasi-random sequerie€)} is chosen “to have
distribution” (we will formalize the notion of the distri-
bution of a deterministic sequence of points in Section 3).
There is certainly potential value in such an approach.
To see why, suppose thatx) = ¢, a constant. Then
clearly, Eg(X) = c. Using the estimatoxgmc yields the
exact solution with a single poinit(1). If the change of
variables technique mentioned earlier were to be used, then
in general, the integrand ové®d, 1)¢ will not be constant,
and a single integrand evaluation will not yield the exact
value of the expectation. While this example is highly
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artificial, it nevertheless motivates the use of quasi-random
numbers with distributionr.

Given that we have an acceptable definition of quasi-
random numbers with a given distributian say, we then
need a method for generating them. To do so directly
appears to be a rather formidable task, as the support of
the distributiont and so forth must be taken into account.
However, there are a host of methods for generating quasi-
random numbers in the unit hypercube (see Gentle, 1998,
for a survey of these methods). So instead we transform
guasi-random numbers with a uniform distribution in the
unit hypercube to quasi-random numbers with the desired
distribution 7. Basically, some form of inversion method
needs to be applied, and the NORTA method is one such
method. Therefore, we propose to take quasi-random num-
bers, and transform them into the desired distribution using
the NORTA method. We will refer to this process as the
“quasi-random to anything”, or QUARTA method. (Itshould
be noted that NORTA can only generate a restricted class
of distributions, and is not a completely general method.)

To demonstrate the potential of QUARTA, we will pro-
vide two elementary examples that show that improved
accuracy over pure Monte Carlo is possible with (approxi-
mately) the same amount of computation.

The remainder of this paper is structured as follows.
In Section 2, we review the NORTA method. We discuss
some of the properties of the method, and mention some
pertinent results from Ghosh and Henderson (2000). In

Section 3 we define what we mean by quasi-random numbers

with a given distribution. Then, in Section 4, we outline
the QUARTA method, which is basically a variant of the
NORTA method. Finally, in Section 5, we provide two
examples of the application of the QUARTA method for
estimating expectations (integrals).

2 THE NORTA METHOD

Suppose that we wish to generate i.i.d. replicates of 4n R
valued random vectoX = (X3, ..., Xg4), with marginal
distribution functions

FF()=PX; <-,i=1,...,d,
and correlation matrix

Xx =(Ex@, j):1<i,j<d),
with Zx (i, j) = cor(X;, X;). We require that (X?) < oo
fori = 1,...,d, so that the correlation matrify is
defined, but otherwise impose no conditions on the marginal
distribution functionsf;, i = 1, ..., d. We assume th& x

is feasiblefor the given marginals, in that a random vector
exists with the specified marginals and correlation structure.
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Cario and Nelson (1997) described the NORTA proce-
dure for solving this problem, which works as follows.

Generate an Rvalued normal random vectar =

(Z1, ..., Zg) with mean vector 0 and covariance
matrix ¥z = (2z(@,j) : 1 <i,j < d), where
Yz@G,i)y=1fori =1,...,d. Then eachz; is

a standard normal random variate (mean 0 and
variance 1). We will further specifie z shortly.
Compute the vectok = (X3, ..., X4) via

1.

Xi = F7H(®(2)), @)

fori =1,...,d, whered is the distribution func-

tion of a standard normal random variable, and
Flw) = inf{x : Fi(x) > u). (3)

At the conclusion of this procedure will have the
prescribed marginal distributions, becau®¢Z;) is uni-
formly distributed on(0, 1), and soF, (@ (Z;)) will have
the required marginal distribution. Note that this algorithm
requires the calculation ob(z) for many z. While this
is not possible in closed form, fast numerical algorithms
are available to perform the calculation to high accuracy
(Abramowitz and Stegun, 1964, Chapter 26).

It is easy to generate multivariate normal random vec-
tors. See p. 480 of Law and Kelton (2000), for example.
In a preprocessing step, the correlation mattix is
chosen in an attempt to ensure tiawill have the prescribed

correlation matrixZy. Determining the matriXxx; is the
principal difficulty in applying the NORTA method, and we
now explain how this may be done.

As in Cario and Nelson (1997), define the function
cij(z) = conX;, X;), whereX; and X ; are defined via (2)
and cotZ;, Z;) = z. We would like to choos&z(i, j) so
thatc;; (Xz(i, j)) matches the desired correlatidy (i, ;).
Cario and Nelson (1997) established the following structural
result for the functiorr;;.

Theorem 1 The quantityc;;[Xz(i, j)] is nonde-
creasing inXz(i, j), and the minimum (resp. maximum)
possible correlation betweeX; and X; (for the given
marginal distribution functions?; and F;) is achieved by
taking (i, j) = —1 (resp.+1). Furthermore, if there
exists some > 0 such that

E|X;X ;| < 00

for all values—1 < X7(i, j) < 1, theng;; is a continuous
function of X, (i, j) € [-1, 1].

Theorem 1 allows one to perform an efficient numerical
search for values\ z (i, j) that yield

cij(Az(, j)) = Zx(,j) fori < j. (4)
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We takeA z(i,i) = 1fori =1,...,d. ThevalueAz(i, j)
fori > j can then be chosen to ensure that the matrixs

Of course, this is only a counterexample if the random
vector X = (X1, X2, X3) exists. Li and Hammond (1975)

symmetric. Unless otherwise stated, we henceforth assumedid not show this, but Ghosh and Henderson (2000) have

that a solution to (4) exists.

Let the matrix Az satisfy (4). If Az is not positive
semidefinite, then it is not a valid correlation matrix, and
there is no normal random vect@rwith correlation matrix
Az. In particular, Az cannot be used within a NORTA
procedure to generatg.

However, it may still be possible to generaXe via
a NORTA transformation. If (4) does not have a unique
solution, then a second matrix’, may exist that satisfies
(4) and that is positive semidefinite.

Theorem 2 below basically shows that a solution to (4) is
unique when all the marginals have densities (with respect
to Lebesgue measure) that are positive everywhere. We
conjecture that the solution is, in fact, unique for arbitrary
marginals. For a proof of this result, see the appendix.

Theorem 2 Suppose that for = 1,...,d, F; has
a densityf; that is positive everywhere, i.ef;(x) > 0 for
all x e R. If Az solves (4), them\ 7 is unique.

We immediately obtain the following corollary.

Corollary 3 Suppose thatitis possible to generate a
random vectotX with prescribed marginals and correlation
matrix using a NORTA transformation. If the conditions of
Theorem 2 hold, then the matrix; found using a perfectly
accurate numerical search procedure will be symmetric and
positive semidefinite.

Proof: The assumption that a NORTA transformation

since shown, using linear programming techniques, that
indeed such a random vector can be constructed. There-
fore, there are sets of marginal distributions with a feasible

covariance matrix that NORTA cannot reproduce.

Suppose we take the position that we wish to use NORTA
to generate a random vector with the prescribed marginals,
and a covariance matrix that is, at least approximately, the
required covariance matrix. Ghosh and Henderson (2000)
describe a semidefinite programming approach that can assist
in this regard. The method may be summarized as follows.

1. Use a numerical search procedure as described in
Cario and Nelson (1997) to determine a symmetric
matrix Az such that (4) is satisfied.

If Az is positive semidefinite, then one can proceed
directly with the NORTA procedure.

If not, then we wish to find another matriX,
that is “close” in some sense th;. So minimize
d(Xz, Az) subject to the constraint that, is
positive semidefinite, where is some measure of
distance.

Use the matrixzz as the correlation matrix af
within the NORTA procedure.

With a suitable choice of distance functidnthe opti-
mization in Step 3 above can be formulated as a semidefinite

exists that yields the required correlations ensures that there programming problem; see Ghosh and Henderson (2000)

is a positive semidefinite correlation matrix that solves
(4). Under the conditions stated, the solution to (4) is
unique, and sa\z = A and is positive semidefinite.

The significance of this corollary is basically that if
NORTA can work, then itwill work for the distributions
characterized in Theorem 2.

SothencanNORTA work, i.e. does a NORTA transfor-
mation exist for any set of marginals and feasible correlation
matrix? Li and Hammond (1975) suggested the following
counterexample to this important question.

Let X1, X» and X3 be 3 uniformly distributed random
variables on(0, 1) with correlation matrix

1 -04 02
¥x=| -04 1 08
02 08 1

Li and Hammond quote the formula

LT .
Az(i, j) = ZSIH(EEX(L D) (5)
for the (unique) matrixA; that solves (4) (see Kruskal
1958 for a proof). The (unique) matrix z resulting from
these computations is not positive semidefinite.
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for one choice of/, or Alfakih and Wolkowicz (2000) for
another. Efficient algorithms are available for solving such
problems; see Wolkowicz, Saigal, and Vandenberghe (2000).
The random vectors generated with the NORTA procedure
using £ will have the correct marginal distributions, but
will most likely have a different covariance matrix from that
desired. However, the continuity established in Theorem 1
suggests that the covariance matrix will differ only slightly
from that desired if; is “close” to Az. The numerical
examples given in Ghosh and Henderson (2000) suggest
that this is usually the case.

3 QUASI-RANDOM VECTORS

We need to be somewhat careful in defining what is meant
by “dependent” QRN sequences, as unlike pseudo-random
number sequences, QRN sequences are specifically designed
notto mimic the properties of i.i.d. sequences. Thus it does
not, apriori, make sense to refer to the “distribution” of a
QRN sequence.

QRN sequences are explicitly designed not to exhibit
the clustering and gaps that are representative of an i.i.d.
sequence. It is exactly this property that leads to faster
convergence than the Monte Carlo method in estimating
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integrals (expectations). To be able to measure this clus-
tering/gap effect, one often speaks of tiiscrepancyof
a particular point set. We begin with a discussion of the
classical notion of discrepancy on the unit hypercube, as
adapted from Niederreiter (1992).

Letu = {u(k)} be a sequence of vectors defined within
the unit hypercub¢0, 1)¢ in d dimensions. For a given set
B C R, let

A, (B:u) 2 > Ik € B)

k=1

be the number of vectorgk) fromu (1), .. ., u(n) contained
in the setB. Let B be a nonempty family of Lebesgue
measurable subsets ofYR A general definition of the
discrepancyD, of the firstn terms of the sequenaeis

A, (B

n

D, (B; u) 2 sup > u)
BeB

(6)

—M(B)',

wherei4(-) is Lebesgue measure orfR
If the class of set$ is taken to be all sets of the form

d
B =]]i0.a)
i=1

for a; € [0, 1), then the above definition yields tretar
discrepancyD; (u) of the sequence (p. 14, Niederreiter
1992). The significance of this definition lies in its use
in establishing a bound on the error in an estimate of
an integral using the sequence of points In particular,
the following well-known result is known as the Koksma-
Hlawka inequality.

Theorem 4  (Koksma-HIwaka Inequality): Let
g be a real-valued function defined ¢@, 1] and suppose
that ¢ has bounded variatiorV (g) in the sense of Hardy
and Krause (see p. 19 of Niederreiter 1992 for a definition).
Then for any sequence of vectars= {x(k)} in [0, 1)¢, we
have

le(n) — a| < V(g)Dy(w),

where
A
o= / g(x)dx < oo,
[0,

and for a given sequence of points= {u(k)} with u(k) €
[0, 1),

l n
a(m) =~ guk).
k=1
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It is known (p. 32, Niederreiter 1992) that sequences
u exist with the property that

D}(u) = O(n *(logn)?),

so that the error inx(n) is at most of orden1(logn)?.

This is a faster asymptotic rate than that obtained by the
Monte Carlo method#{(~/2), which motivates the use of
guasi-random numbers for numerical integration. It should
be noted however, that these asymptotic results may not be
representative of the sample sizesused in practice. In
other words, for moderate it may be that the Monte Carlo
method yields lower error than can be obtained through the
use of a quasi-random sequence; see Kocis and Whiten
(1997). This effect is especially pronounced in higher
dimensionsd.

If a sequence: of vectors has a star discrepancy that
converges to 0 as — oo, then we can view the sequence
of vectors as an analogue of a sample from the uniform
distribution on[0, 1)¢. It is very natural to generalize the
notion of discrepancy to a non-uniform distribution on more
general domains. Indeed, more general distributions on the
unit hypercube have already been considered in the literature
(Niederreiter, Tichy and Turnwald 1990).

Let w be a probability distribution on some st R4,

Let B denote a class of-measurable sets if. For a given
sequence of points = {u(k)} with u(k) € R, define the
m-discrepancy of: to be

Ay (B;
D7 (B; u) = sup M
BeB n

—n(B)|. (7)

Note the similarity of (7) to (6). In particular, the goal
of this definition is to characterize the property that the
sequence is an analogue of the probability distributian
on S. Niederreiter, Tichy and Turnwald (1990) studied a
more general version of this definition where weights could
be assigned to each of the points in the sequenceut
restricted the domai to be the unit hypercube.

We will say thatu is a quasi-random sequence of
numbers with distributionr if

D7 (B;u) - 0

asn — oo, whereB is the class of all sets of the form

[ [, o),
i=1

where—oco <a; <b; <o0,i= 1,...,d.

Our goal is to use such sequences to estimate expecta-
tions of the formEg(X), whereX is distributed according
tor.
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So how can a sequence for which thediscrepancy
rapidly converges to 0 be computed? Our goal in the next
section is to show how, for the class of distributions that
can be obtained through a NORTA transformation, to use a
quasi-random sequence of point$@1)¢ to obtain a quasi-
random sequence of points with the desired distribution.

4 THE QUARTA METHOD

We would like to be able to generate quasi-random vectors
with given marginals and given feasible correlation matrix
(where the exact meaning of this statement is given in the
previous section). We do so by extending the NORTA
method, and term the method QUARTA, which is intended
to be mnemonic for “quasi-random to anything”.

Suppose thatu(n) : n > 1) is a quasi-random sequence
of d-dimensional vectors in the unit hyperculfie 1)¢ with
independent components (recall from the previous section
that there is an appropriate notion of “independence” in
this setting where the vectors are actually deterministic).
We wish to transform these vectors into a quasi-random
sequencéx(n) : n > 1) of d-dimensional random vectors
with marginalsF; and feasible correlation matrixy. We
will transform u (i) into x(i) for i > 1. Note that in the
following procedure the index on theu(i)'s and x(i)’s
has been dropped for ease of readability.

1. Identify a correlation matrixxz; that yields (at
least approximately) the appropriate correlation
matrix Xx exactly as in the Monte Carlo ver-
sion of NORTA. Computer, a Cholesky factor of
¥z, so thatx; = RTR.

2. Transformu into y, wherey has normal marginals,
viay; = d7L(u)).

3. Setz = Ry, so thatz is standard multivariate
normal with correlation matrix: ;.

4. Computex via a NORTA transformation of, i.e.,
setx; = F; H(®(z)) for j=1,....d.

The time-consuming Step 1 above need only be done
once, and then the required dependent quasi-random vectors
can be rapidly generated (Step 2 can be performed very
quickly; see Marsaglia, Zaman and Marsaglia 1994). These
guasi-random vectors are analogous to i.i.d. random vectors
with a distributionzz say, with the required marginals and
(at least approximately) the required covariance matrix.

When all of the marginal distribution functiorfs have
densitiesf; with respect to Lebesgue measure, itis a simple
matter to specify the distributionr using the “change of
variables technique”; see p. 408 of Apostol (1969) for
example. When this is not the case, one can of course still
specifyr, but not in such a nice form.

The primary use for vectors distributed according tis
in numerical integration, and more specifically, in calculating
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an expected value with respect to the distribution In
particular, one can approximameé fRd g(x)m(dx) via

Al .
= ;g(x(l)),

where each vectok (i) is generated according to the pro-
cedure outlined above. We will give two examples of such
a calculation in Section 5.

5 NUMERICAL EXAMPLES

In this section we present two examples where we wish to

computex 2 Eg(X) for some functiorg and some random
vectorX. Both examples are contrived, but serve to demon-
strate the potential applicability of the ideas presented in
this paper. We will compare the error of an estimataic
based on a pure Monte Carlo approach to one obtained
using our proposed QMC methodologymc It is easy

to assess the error in a pure Monte Carlo experiment using
the sample variance. However, it is more difficult to assess
the error using QMC methods.

In both of our examples, we will use an approach
suggested by Cranley and Patterson (1976) for assessing
the errorin the QMC approach. Inthe QMC methég,(X)
is estimated viaz 1 Y i_18&(x(k)) for some deterministic
sequence of pointsc(k)}. The sequencéx(k)} is, in turn,
based upon a deterministic sequefcé)} of points in the
d-dimensional unit hypercubgd, 1)¢. The error may be
assessed by randomly shifting the sequefucé)} several
times, each time computing an estimate £¢(X). The
resulting estimates are i.i.d. and unbiased, and consequently
the error may be assessed. The procedure is as follows.

1. Select a run lengtlz, and for each = 1,...,m
perform Steps 2, 3 and 4 below.

2. Generate a random vectdr that is uniformly
distributed in[0, 1)¢.

Compute ii(k) = (u(k) + U) mod 1, where the

mod operation is performed componentwiges
1,...,n.
Compute

Y; =ntYy (),

k=1

where thex (k)’s are obtained from th&(k)'s using
a NORTA transformation.

5. Compute the sample meagmc and sample vari-
ancev,, of (Y1,...,Y,).
6. Compute a confidence interval fofr, given by

agmc= z4/vm/m, wherez is chosen from normal
tables to ensure the required confidence level.
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An assessment of the error in the estimatgimc is shows a slope of approximatehky1, indicating that the
the confidence interval halfwidth/v,, /m. rate of convergence is approximately of the ordet. Of

To enable a fair comparison, the pure Monte Carlo course, we would not expect a term of the ordegn)?
estimatoramc should be based on the same number of to show up in such a plot.
function evaluations, namelyn.

We used Sobol’ sequences as implemented in Press et
al. (1992) to generate the required quasi-random sequences
for both examples. |

Our first example is low-dimensional, and in such sit-
uations, other methods for numerical integration such as
guadrature schemes are typically preferred to either Monte
Carlo or quasi-Monte Carlo approaches. However, the ex-
ample serves as a useful first demonstration that there is
potentially value in the quasi-Monte Carlo approach. ‘

Example 1  Suppose thatX = (Xi, X»2), where !
eachX; is exponentially distributed with mean 1, and the =
correlation betweeX; and X is 0.4. We wish to compute }
E(X1+ X>) using both standard Monte Carlo methods, and © e 10 . 10°
guasi-Monte Carlo methods. It is useful, for comparison
purposes, to note that the exact answer is 2.

The ARTAGEN software package (Cario and Nelson
1997) was used to determine the appropriate normal correla-
tion (0.4464) required in the NORTA procedure to arrive at
a correlation of 0.4 between 2 exponential random variables.
In our experiments, we first took = 128 (a quasi-random
sequence of length 128), amd= 100.

The resulting confidence interval fd& (X1 + X2) was
2.0004 0.007. In contrast, a confidence interval generated
using the standard Monte Carlo method (again generating
the X;'s using NORTA) with 12800 realizations gave a
confidence interval of 224+ 0.03. Thus, the quasi-random
approach reduces variance by a factoi®3/0.007)2 ~ 18
over standard Monte Carlo. (This variance reduction factor
was recomputed several times, and each time was of the
same order of magnitude, namely approximately 20.) It is,
of course, important to also consider the time required to
achieve these results. These results were each obtained in

. . . . and
approximately 2 minutes of computation using MATLAB

log(Error)

Figure 1: Log-log Plot of Confidence Interval
Halfwidth Versusn for the Quasi-random Esti-
mator in Example 1

This first example certainly lends support to the notion
that the use of quasi-random numbers can lead to computa-
tional improvements in Monte Carlo calculations involving
the use of the NORTA method. Our second example rein-
forces this notion through a more interesting application.

Example 2 Suppose that we wish to compute the
expected length of the longest path in a stochastic activity
network as shown in Figure 2. We assume that the time
required to complete task (arg)in the network is expo-
nentially distributed with meap ;, and that the correlation
matrix of the task durations iEx. Specifically, we set

n= (10,512 115,5),

on a Sun Sparc 2. A more precise reporting of the times 1 05 05 03 0 O

is not relevant, since no attempt was made to optimize 1 05 0 03 O

the code for either of the implementations, and a more 1 0 05 03

precise comparison depends on both the implementation Xx = 1 01 05

and computer architecture. What is important is that the 1 03

variance reduction reported above essentially “comes for 1

free”, in the sense that both methods require approximately

the same amount of computation. (Only the upper half of this positive semidefinite matrix

In fact, we expect that the variance reduction factor s specified as it is symmetric.) The correlation matrix
above will increase with, since the quasi-random estima- 5, which yields ©x after a NORTA transformation was
tor is expected to converge at rate’(logn)?, while the again obtained using the ARTAGEN software. The matrix
standard Monte Carlo estimator is expected to converge at ., is obtained from=y by simply replacing all &'s
raten~%/2. To gauge the rate of convergence of the quasi- with 0.54656, all 03's with 0.34208, and all (I's with

random estimator, in Figure 1 we plotted the log of the (.11936. The resulting: is positive definite. We again
confidence interval halfwidth as determined by the Cranley took m = 100 andn = 128.
Patterson procedure versus The resulting graph clearly
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Figure 2: Stochastic Activity Network Example
with Arc Labels as Shown

Once again, both the quasi-Monte Carlo approach and
the standard Monte Carlo approach took approximately the
same time to compute. The resulting quasi-Monte Carlo
confidence interval for the expected length of the longest
path was 2662+ 0.09. The corresponding standard Monte
Carlo confidence interval was B+ 0.3. We see that
the quasi-Monte Carlo estimator reduces variance from the
standard estimator by a factor (3.3/0.09)2 ~ 11.

Furthermore, as in Example 1, we expect that the quasi-

random estimator converges at a rate that is close to linear.

Figure 3 below lends credence to this supposition.

log(Error)

10"
10

log (n)
Figure 3: Log-log Plot of Confidence Interval
Halfwidth Versusn for the Quasi-random Esti-
mator in Example 2

In both of these examples the quasi-Monte Carlo esti-
mator outperforms the standard Monte Carlo estimator, as

we might have expected. These results reinforce the notion
that the use of dependent quasi-random numbers can lead

to useful efficiency improvements over estimators based on

gest that the improvements can be expected to grow without
bound as the runlength increases.

Appendix

Before proving Theorem 2, we first give two preliminary
results.

Lemma 5  Suppose thak is a nondegenerate ran-
dom variable, and thag; : R -~ R andg> : R - R are
continuous, strictly increasing functions. Egiz(X) < 00
for i = 1,2, then covgi1(X), g2(X)) > 0, i.e., the covari-
ance isstrictly positive.

Proof: Fori =1, 2, definegi‘l(~) as in (3). We have
that

cov(g1(X), g2(X))
/ / P(g1(X) < x,g2(X) <y) —

P(g1(X) < x)P(g2(X) < y) dx dy ®)
- / f P(X < min{g; (). g5 0)) —
P(g1(X) < x)P(g2(X) < y)dxdy 9

> 0.

The first equality (8) above is given in Whitt (1976), who
attributes the result to Hoeffding (1940). The inequality
follows since the integrand in (9) is given ®(g1(X) <
X)P(g2(X) > y) if gi(x) < g7'(y), and P(ga(X) >
x)P(g2(X) < y) otherwise.

It remains to show that the above inequality is, in fact,
strict. Define

V={w:PX<v)P(X >v) >0}

to be the set of valuessuch thatX has positive probability
of being both less than or equal t¢ and greater tham.
Note thatV is an interval of strictly positive length, by our
assumption thak is nondegenerate. Henge(V) = {x :
x = g;i(v),v € V}is an interval of strictly positive length,
fori =1,2. Choosev; € V, v € V with v1 < vy.

Now selectwy, wy € [v1, v2] with wy < wa, and define
x = g1(w1), andy = go(w2). Observe that

P(X <w1)P(X > w2)
> 0,

P(g1(X) = x)P(g2(X) > y)
and that this holds for all1 < wy withvy < w1 < wo < vo.
Equivalently, this holds for alk, y with

g1(v1) < x < g1(v2) and ga(g7 1 (x)) < y < g2(v2).
(10)

pseudo-random numbers, and the log-log plots above sug-
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Observe that (10) is a set of positive Lebesgue measure (in 2 Clemen R. T., and T. Reilly. 1999. Correlations and copulas

dimensions), and it immediately follows that the covariance
(9) is strictly positive.

We also need the following result, which strengthens
Lemma 2 of Cario and Nelson (1997).

Lemma 6 Let (Z1, Z2) have a standard bivari-
ate normal distribution with cdiZ1, Z) = p1. Let
(N1, N») have a standard bivariate normal distribution
with cor(N1, N2) = p2 > p1. Letg1, g2 be continuous and
strictly increasing, and suppose thak; (N)2 < oo, where
N has a standard normal distribution, far= 1, 2. Then

Eg1(N1)g2(N2) > Egi1(Z1)g2(Z2).

The proof of this result uses the result of Lemma 5,
and is virtually identical to that of Theorem 1 of Cario and
Nelson (1997). It is therefore omitted.

Proof of Theorem 2. Let 1 <i,j < d, and set
g1 = F_ {(®(), and gz = F;{(@(). Theng; and g2
satisfy the conditions of Lemma 6, and soXf and X,
are generated via the NORTA method frafiy and Z;,
we immediately see thakEX;X; is a strictly increasing
function of the correlatiorp betweenZ; and Z;. Hence
the covariance betweeXi; and X ; is strictly increasing in
o, and so (4) can have at most one solution.
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