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ABSTRACT

One use of simulation is to inform decision makers th
seek to select the best of several alternative systems.
system with the highest (or lowest) mean value for simulati
output is often selected as best, and simulation output
used to infer the value of the unknown mean of each syste
Statistical procedures that help to identify the best system
suggesting an appropriate number of replications for ea
system are therefore useful tools in simulation. This artic
explores the performance of representative procedures fr
two approaches to develop statistical procedures, with
goal of understanding tradeoffs involving the ease of us
computational requirements, and the range of applicabil
The focus is primarily on procedures that use comm
random numbers to sharpen comparisons between syste

1 INTRODUCTION

One use of simulation is to inform decision makers th
want to select the best of several alternative manufactur
or service systems (Law and Kelton 1991; Banks, Cars
and Nelson 1996), where best is defined in terms of t
mean performance of each system. This motivates the n
for procedures to help simulation experiments efficient
identify the best system.

Four distinct formulations for selecting the best syste
have emerged. Indifference-zone procedures selects
system that is guaranteed to be best with a prespeci
probability P ∗, as long as the mean of the best syste
is better than a smallest practically significant differen
δ∗ than the others. Matejcik and Nelson (1995) indica
that many indifference-zone procedures can also selec
system withinδ∗ of the best with probabilityP ∗, regardless
of the configuration of the means. The subset select
formulation, on the other hand returns a subset of simula
systems that contains the best system with a prespeci
probability. Nelson, Swann, Goldsman, and Song (199
unify these approaches with a two-stage combined pro
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dure (ProcedureC) that screens inferior systems with subse
selection, then allocates second-stage replications to prov
an indifference-zone guarantee. They also show that P
cedureC performs quite well in a battery of empirical tests
For a review of the indifference-zone and subset selecti
formulations, see Bechhofer, Santner, and Goldsman (199
or Goldsman and Nelson (1998).

Chen (1996) proposes the optimal computer budg
allocation (OCBA), a third formulation for selection pro-
cedures. The idea is to sequentially allocate replications
order to improve the evidence for correct selection, bas
on a thought experiment involving the Bayesian poste
rior probability of correct selection. Empirical experiments
demonstrate that this procedure can result in significant ef
ciency improvements, as measured by the expected num
replications required to obtain a given empirical fraction o
correct selections, when the means of each system dif
substantially (Chen, Chen, Lin, and Yücesan 1999).

The fourth formulation is the Bayesian decision
theoretic framework developed by Chick and Inoue (2000b
Both two-stage and sequential procedures are available. T
idea is to improve the expected value of information of ad
ditional replications. One innovation is that replication
can be allocated to either improve the probability of corre
selection (Procedure 0-1(B)), or to reduce the expected op-
portunity cost of a potentially incorrect decision (Procedur
LL(B)).

Both the indifference-zone and subset selection fo
mulations guarantee a bound on the probability of corre
selection statements using the smallest number of rep
cations. The Bayesian procedures (OCBA and work of
Chick and Inoue 2000b) attempt to maximally improve th
evidence for correct selection using a constrained numb
of replications. The Bayesian approaches therefore avo
the statistical conservativeness of the indifference-zone a
proach, but require several approximations to allow for
quickly computable allocation of replications, and do no
yet have a provable probability of correct selection guara
tee. Given these tradeoffs, empirical evaluations can sh
4
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light on which procedure may be best suited for a give
application.

A number of papers compare the performance of the
various approaches when simulation replications use ind
pendent random numbers. Nelson, Swann, Goldsman, a
Song (1999) have a large empirical study that describes
variety settings where ProcedureC provides significant effi-
ciencies relative to the well-known two-stage indifference
zone procedure of Rinott (1978). Inoue, Chick, and Che
(1999) indicate that the sequential procedures of Chen (199
and Chick and Inoue (2000b) outperform Rinott’s proce
dure over a range of empirical experiments, with respect
several measures of effectiveness. Chick and Inoue (200
indicate that the two-stage versions of Procedures 0-1(B)
andLL(B) seem to select the unique best system som
what better than ProcedureC in a small empirical study, yet
ProcedureC often selects a good system (withinδ∗ of best)
when the unique best system is not selected. Each of th
procedures has roughly the same computational burden
allocate the replications for a given stage.

The relative performance of procedures that use com
mon random numbers (CRN) to sharpen comparisons, ho
ever, is less well understood. This paper compares t
empirical performance of selection procedures that allo
the use of CRN. A subset of the numerical results below
supply data that are alluded to, but not presented, can
found in a submitted work (Chick and Inoue 2000a).

2 SELECTION PROCEDURES WITH CRN

Common random numbers (CRN) can be used to sharp
comparisons between systems (Law and Kelton 1991; Ban
Carson, and Nelson 1996). There are a handful of selecti
procedures that allow for CRN, and each is run as a two-sta
procedure. In the first stage, a small number of replicatio
is run for each system. The sample means, variances a
covariances from the first stage are then used to determ
the number of second stage replications for each syste
The second stage of each procedure depends on assumpt
about the covariance structure due to CRN, and which
the four selection procedure approaches is taken.

Clark and Yang (1986) introduced the first indifference
zone selection procedure to use CRN (ProcedureCY). They
do not make assumptions about the correlation structu
induced by CRN. Nelson and Matejcik (1995) present a
alternative two-stage procedure (ProcedureNM) that can
reduce the number of replications, but presume a spheric
condition (if Xi,j is the output of thej -th replication of
systemi, then Var[Xi,j ] = 2φi+τ2, and Cov[Xi,j , Xi′,j ] =
φi + φi′ for systemsi 6= i′). They show empirically that
the procedure is robust to deviations from sphericity. Bo
ProceduresCY andNM simulate all systems the same
number of times during the second stage.
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Bayesian decision-theoretic alternatives have also be
developed. Chick and Inoue (1999) and Chick and Inou
(2000a) describe two-stage procedures that allocate repli
tions to either improve the probability of correct selectio
(Procedure 0-1crn) or reduce the expected opportunity cos
of a potentially incorrect selection (ProcedureOCcrn).

Both Procedures 0-1crn andOCcrn allow for screening,
in the sense that a subset of systems might be simula
during the second stage, in order to improve the expect
value of information from the additional replications. The
use of CRN implies that information gained about system
simulated during the second stage also gives informati
about systems that were screened from the second stage,
the procedures use missing data analysis to account for t
information. Unfortunately, Procedures 0-1crn andOCcrn
impose a large computational burden to screen the syste
(if there arek systems, they check all 2k − 1 subsets that
might be screened out). Chick and Inoue (2000a) therefo
present heuristics that check at most 2k subsets for screening,
Procedures 0-1crn:h andOCcrn:h.

These procedures and their major assumptions are su
marized in Table 1.

Table 1: Characteristics of Two-Stage Selection Pro-
cedures that use Common Random Numbers (CRN)

Assumption for CRN
None Sphericity

Indifference-Zone
(PCS≥ P ∗, CY NM
no screening)
Bayesian 0-1crn,0-1crn:h,
(Value of Info, OCcrn,OCcrn:h (none yet)
screening ok)

Inoue (2000) derives the probability models required fo
a two-stage Bayesian procedure, given a known correlati
structure. Since the correlation is typically unknown in
practice, that procedure is not evaluated here.

3 SELECTION PROBLEM SETUP

The procedures are applied to both a simple but realis
simulation problem, as well as a stylized problem. The firs
is an inventory policy selection problem considered initiall
by Koenig and Law (1985) and analyzed later by Nelson an
Matejcik (1995). There are five(s, S) inventory policies
for controlling the inventory level of a discrete product with
stochastic demand. If the inventory level drops belows,
then an order is placed to bring the level up toS. Different
values fors andS lead to different inventory policies. The
best system is the policy that has the minimum expecte
cost per period, evaluated over 30 periods, where cost
measured in thousands of dollars.
5
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The stylized problem is in the monotone decreasing
means (MDM) configuration, so the means of each system
are evenly spaced,wi = w1−δ∗ ·(i−1)/τ , for i = 2, . . . k.
Here we setτ = 2, δ∗ = 1/

√
r1, and presume the sphericity

condition, testing four combinations of covariance setting
when CRN is used (varianceσ 2

i = 1 and 4; correlation
ρ = 0.5 and 0.75). Each procedure is evaluated by (i)
running a common first stage withr1 = 10 replications of
each system, using CRN across systems, (ii) determining th
number of replications for each system during the secon
stage, (iii) then running a separate second stage for ea
procedure, using CRN across systems. The performan
of each system is measured with the figures of merit in
Section 4, based on 3000 applications of each procedure

4 FIGURES OF MERIT

The first figure of merit is the empirical probability of
correct selection (PCS), the fraction of times that a procedur
correctly selects the best system.

The second figure of merit is the expectation of the
Bonferroni bound, BPCS, for the posterior probability of
correct selection after output from both stages is observe
Inoue and Chick (1998) indicate that BPCS also has a
interpretation as the Bonferroni bound for frequentist evi
dence for correct selection based onP -values. To compute
that bound, the estimate of the mean performanceˆ̂µi and
correlation ˆ̂σ i,j after both stages are required. Let[k] de-
note the system that is selected as best. We use the ML
to estimate BPCS after observing output from both stage

BPCS = 1−
∑
i:i 6=[k]

(1− Pi (1)

Pi = 8ν

[( ˆ̂µ[k] − ˆ̂µi) λ−1/2
i

]
(2)

λi = (ei − e[k])Cov
[ ˆ̂µ, ˆ̂µ] (ei − e[k])t

where8ν is the cumulative distribution function (cdf) for the
standardt-distributed variable withν degrees of freedom,
Pi is the P-value for the hypothesis that the mean for syste
[k] exceeds the mean for systemi, ei is the unit vector in

the i-th coordinate direction, and Cov
[ ˆ̂µ, ˆ̂µ] is estimated

with formulas of Anderson (1957) (see the appendix).
The formulas require a missing data analysis when

screening is used. LetC2 be the set of systems simulated
in both stages, andC1 be the set of systems only simulated
during the first stage. Letr2 be the number of replications
per system simulated during the second stage. We u
ν = r1 + r2 − 1 degrees of freedom wheni, [k] ∈ C2,
and useν = r1 − 1 when i, [k] ∈ C1. When i ∈ C2 and
[k] ∈ C1 or vice versa, we use a missing-data approximatio
55
s

e
d
ch
ce

.

e

d.
n
-

E
s,

m

se

n

of Little (1976) for ν (see the appendix). Sample average
from multiple applications of a selection procedure are use
to estimateE[BPCS].

A third figure of merit is PredBPCS, is the predicted
Bonferroni-like approximation for the probability of correct
selection, given that the first stage has been completed b
the second stage has not. See Chick and Inoue (2000a)
a fuller discussion.

Some results also present the average total number
second stage replications (including zeros), denoted ‘ANR

5 RESULTS

There are different ways to compare the procedures, co
responding to different ways of selecting the second-stag
budgetb.

5.1 Screening Compared to IZ Procedures

Screening might improve performance by running mor
replications per system, but simulating fewer systems s
that the total number of replications is the same. Thi
section evaluates whether screening can improve the abil
to correctly select the best system by assuming that th
number of replications for the Bayesian procedures is s
to equal the total number of replications suggested by a
indifference-zone procedure. After a common first-stage
run for each procedure, the second-stage allocation co
puted for ProcedureNM is used as the budgetb = k · r2
for the number of second stage of replications of the fou
Bayesian procedures, 0-1crn:h, 0-1crn,OCcrn:h, andOCcrn.
‘ANR’ is therefore the same for each procedure. A simila
process compares ProcedureCY with Procedures 0-1crn:h,
0-1crn, OCcrn:h, andOCcrn.

Table 2 summarizes the figures of merit for the MDM
experiment (k = 5 systems; commonσ 2

i = 1 or 4; common
correlation ρ = 0.75; r1 = 10; δ∗ = 1/

√
10). Some

PCS are belowP ∗ = 0.95 because the indifference-zone
constraint is not satisfied. The benefits of screening an
average-case analysis apparently outweigh the deleterio
effects of the approximations for this specific experimen
at least for Procedures 0-1crn:h, OCcrn:h, andOCcrn, as
these Bayesian procedures outperform both indifferenc
zone procedures on each figure of merit. This is particular
true when the variance is smaller for each systemσ 2

i .
When the variance is larger, however, the benefit is no

particularly sizable, as the proximity of the means reduce
the ability of the procedure to screen effectively. A larger firs
stage sampling size may serve to help the screening of t
Bayesian procedures by providing more certainty about th
differences in means between each system. Procedure 0-1crn
performs less well than the other procedures, as it makes
extra approximation in its derivation, and it is therefore no
recommended for general use. Further experiments indica
6
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Table 2: Results for the MDM Selection Problem (k =
5,ρ = 0.75) in a Test to Evaluate the Benefit Screening
of Bayesian Procedures when the Budget is Determined
by an Indifference-zone Procedure withP ∗ = 0.95 (see
Section 5.1)

Variance Procedure ANR PCS E[BPCS]
σ 2
i = 1 NM 73 0.854 0.769

0-1crn:h 0.897 0.813
0-1crn 0.874 0.801
OCcrn:h 0.896 0.824
OCcrn 0.892 0.824
CY 325 0.971 0.917
0-1crn:h 0.987 0.937
0-1crn 0.965 0.927
OCcrn:h 0.985 0.939
OCcrn 0.984 0.941

σ 2
i = 4 NM 449 0.851 0.774

0-1crn:h 0.863 0.785
0-1crn 0.835 0.785
OCcrn:h 0.860 0.797
OCcrn 0.868 0.793
CY 1178 0.949 0.892
0-1crn:h 0.957 0.897
0-1crn 0.938 0.893
OCcrn:h 0.957 0.902
OCcrn 0.955 0.900

that Procedure 0-1crn:h beats Procedure 0-1crn because it
avoids looking at some negative correlation estimates,
discussed below.

ProcedureNM performs better than the Bayesian pro
cedures whenσ 2

i = 4 andρ = 0.5, but the Bayesian proce-
dures (except 0-1crn) perform better when eitherσ 2

i = 1 and
ρ = 0.5, or whenρ = 0.75. Further experimentation may
therefore warranted to evaluate whether ProcedureNM
dominates the Bayesian procedures over a broader range
experiments where the variance is larger and the covarian
is weak.

When the number of systems is increased fromk = 5 to
10 (and withr1 increased to 20), the relative performance
of the heuristic Bayesian procedures improves. Table
presents the results forσ 2 = 4, ρ = 0.75. Similar results
hold whenσ 2 = 1.

All four Bayesian procedures outperform both
indifference-zone procedures on each measure of effectiv
ness for the inventory selection problem whenP ∗ = 0.95
andδ∗ = 2 (all differences are statistically significant with
95% confidence, except for the comparisons with Procedu
CY with respect to PCS). WhenP ∗ = 0.95 andδ∗ = 1, the
PCS is essentially 1, since a very large number of replic
tions are taken, and the Bayesian procedures have a sligh
higherE[BPCS] than ProceduresCY andNM, except that
ProcedureCY slightly outperforms Procedure 0-1crn.
s
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Table 3: Results for the MDM Selection Problem, Now
with k = 10 Systems (ρ = 0.75) in a Test to Evaluate
the Benefit Screening of Bayesian Procedures when
the Budget is Determined by an Indifference-zone
Procedure (see Section 5.1)

Variance Procedure ANR PCS E[BPCS]
σ 2
i = 4 NM 2170 0.882 0.804

0-1crn:h 0.928 0.848
OCcrn:h 0.926 0.862
CY 5391 0.968 0.912
0-1crn:h 0.977 0.932
OCcrn:h 0.982 0.940

5.2 Benefit of Screening with CRN

We compare the performance of the four Bayesian select
procedures with the procedure that does no screening,
a function of the second stage budgetb. The procedure
that does no screening provides no PCS guarantee,
otherwise resembles ProceduresCY and NM in that it
deterministically allocates the same number of replicatio
(b/k) to each of thek systems during the second stage.

The value of CRN for Bayesian selection procedures
evaluated by comparing the four Bayesian procedures t
allow correlation from CRN with two analogous procedure
(Procedure 0-1(B) to improve the probability of correct se-
lection, and ProcedureLL(B) to improve the expected op-
portunity cost) that presume independent replications (Chi
and Inoue 2000b). While CRN can sharpen comparisons
inducing a positive correlation, the requirement that som
subsetC2 each be simulated the same number of times
somewhat restrictive, and may be a source of inefficienc

Table 4 summarizesE[BPCS]as a function of the second
stage budgetb for the inventory selection problem. The
rightmost 5 columns of the table support the assertion th
screening is of benefit for this problem, as the four Bayesi
procedures significantly outperform the procedure that do
not screen. The relative performance of the procedur
with respect to PCS is very similar. Table 4 also indicate
that CRN improves the ability to correctly select the be
system. When there are no second stage replications,
use of CRN improves theE[BPCS] from 0.676 to 0.835.

Essentially the same conclusions are obtained for t
MDM experiments (k = 5, four variations for the covariance
matrix). Figure 1 illustrates the PCS improvement with
common varianceσ 2

i = 1 and correlationρ = 0.75. The
output for the procedures that require independent replic
tions has a simulated correlation of 0 in this experiment

5.3 Predictive Value of Second-Stage

Information about the unknown mean and variance is o
tained after observing the first stage output. This give
information about what the output might be, before it i
57
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Table 4: The Expected Bonferroni Bound on the Posterior Probability of Correct Select
(E[BPCS]) on the Inventory Selection Problem, for Two Bayesian Procedures that Requ
Independent Replications (0-1(B) andLL(B)); the Four Bayesian Procedures that Allow
Correlation from CRN; and the Procedure that does not Screen (see Section 5.2)

Second-Stage Procedure
Budget,b 0-1(B) LL(B) 0-1crn:h 0-1crn OCcrn:h OCcrn No Screen

0 0.676 0.676 0.835 0.835 0.835 0.835 0.835
50 0.777 0.781 0.949 0.948 0.949 0.949 0.894
100 0.818 0.828 0.980 0.979 0.983 0.983 0.928
150 0.846 0.857 0.991 0.990 0.993 0.993 0.954
ly
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Figure 1: Empirical Fraction of Correct Selections (PCS)
as a Function of the Total Budgetb for Additional Samples
for the MDM Example (σ 2

i = 1; ρ = 0.5) in Section 5.2

observed, and therefore gives information about how like
it is that the best system will actually be selected as best.
this section, we examine the predictive probability that th
correct system will be selected as best for the indifferen
zone and heuristic Bayesian procedures.

Specifically, the measure of evidence is PredBPCS,
Bonferroni-like approximation to the predictive probability
that the best system will actually be selected as best. Th
is, based on a noninformative prior distribution and the fir
stage output, what is the probability (approximately) tha
the best system will actually be chosen as best, given th
a certain number of replications will be run.

In this experiment, we the second stage budget f
both indifference zone procedures for a specific batch
first stage output from the inventory selection problem for
variety of settings (δ∗ = 0.01, 0.05, 0.1, 0.5;P ∗ = 0.8, 0.9,
0.95, 0.99; simulated 60 rather than 30 months). Some
the results are presented in Table 5. Settings ofδ∗ andP ∗
that led to a PredBPCS of roughly 0.99 were then note
for each procedure. For instance, ProcedureCY requires
513 replications per system, orb = 2565 second stage
55
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Table 5: Approximation for the Predicted Proba-
bility of Correct Selection (PredBPCS) for Two
Indifference-zone Procedures (with a Fixedδ∗, P ∗)
in the Experiment of Section 5.3

Procedure δ∗ P ∗ ANR PredBPCS
CY 0.1 0.80 42,890 0.9996

0.90 65,345 0.9998
0.95 92,080 0.9998

0.5 0.80 1,665 0.9904
0.90 2,565 0.9937
0.95 3,635 0.9955

NM 0.1 0.80 16,345 0.9990
0.90 26,845 0.9994
0.95 37,745 0.9996

0.5 0.80 605 0.9745
0.90 1,025 0.9846
0.95 1,460 0.9891

replications total, whenδ∗ = 0.5, P ∗ = 0.9 to achieve
PredBPCS= 0.9937.

Procedure 0-1crn:h was then checked with a variety
of second stage budgetsb to attempt to achieve the same
PredBPCS. Table 6 presents some of the results. It requi
b = 310 total replications (ProcedureNM required 1025)
to achieve PredBPCS= 0.9846; and requiredb = 780
to achieve PredBPCS= 0.9937 (ProcedureCY required
2565).

Table 6: Approximation for the Pre-
dicted Probability of CorrectAelection
(PredBPCS) for Procedure 0-1crn:h in
the Experiment of Section 5.3

Procedure ANR PredBPCS
0-1crn:h 310 0.9846

500 0.9904
780 0.9937

1,090 0.9955
8
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6 DISCUSSION

The Bayesian procedures with CRN perform as well as o
better than both the analogous Bayesian procedures that
quire independent replications, as well as both indifferenc
zone procedures with CRN, for most of the experiments i
Section 5. Bayesian procedures with CRN can therefore
of practical value. This is not surprising, as CRN is known
to sharpen comparisons (Law and Kelton 1991), and tw
of the systems in the inventory example could typically b
screened due to their poorer performance. We believe th
the relative value of screening can improve if there are mo
vastly inferior systems. Procedure 0-1crn is somewhat in-
ferior, empirically, to the other Bayesian procedures, due
approximations in its derivation, so the others are preferre

There is an exception to the assessment that the Bayes
procedures outperform the indifference-zone procedure
ProcedureNM outperforms the Bayesian procedures fo
the MDM experiment with a larger variance and smaller cor
relation. The strong performance ofNM is not surprising,
since it assumes sphericity, an assumption that is satisfied
our MDM experiments. We conject that further efficiencies
can be obtained by developing a Bayesian procedure th
also uses the sphericity assumption.

Even though the heuristic procedures check at most 2k

of the 2k −1= 31 subsetsC2 considered by the exhaustive
Bayesian procedures, the heuristics perform slightly be
ter. Further experiments indicate that the performance
the exhaustive procedures can be degraded if at least o
covariance estimate is negative. If a negative covarian
estimate is observed when positive correlation is justified b
the structure of the problem, a somewhat larger first stag
can be run in order to improve the correlation estimate
and therefore improve the performance of the procedure
Bayesian procedures that presume a sphericity conditi
might also reduce the chance of obtaining a negative co
relation estimate, assuming that CRN induces a positiv
correlation.

A criticism of the Bayesian procedures is that screenin
incurs a CPU time cost that is not incurred by Procedure
CY andNM. In Section 5, Procedures 0-1crn andOCcrn
took 5-6 times as long as the heuristics 0-1crn:handOCcrn:h
to pick a screening subsetC2, which required an average of
about 0.7 CPU seconds (implemented in Matlab, run on
PC). More generally, the heuristics run inO(k4) time, but
ProceduresCY andNM run inO(k2) time. For largek or
small simulation runtimes, CPU time might be better spen
running replications rather than selectingC2. For smallk,
or large b or simulation runtimes, the relative benefit of
screening seems to improve. The development of mo
efficient heuristics is an area for further research.
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7 CONCLUSIONS

Existing indifference-zone procedures that use CRN gua
antee a minimum PCS, given the worst-case least-favorab
configuration, but do not allow screening during the sec
ond stage. The Bayesian approach does not provide
PCS guarantee, but overcomes statistical conservativene
by allocating replications to improve the expected value
of information gained from the second stage by screening
The use of screening entails a missing data analysis, but th
difficulty of that analysis can be hidden from an end use
with a well-designed software package. An added benefi
of the Bayesian approach is that simulation practitioner
can consider either the expected opportunity cost of a po
tentially incorrect selection, rather than the probability of
correct selection.

Experiments indicate that the screening of the Bayesia
procedures can provide a significant improvement in the abi
ity to identify the best system. ProcedureOCcrn:h seems
particularly effective. The Bayesian procedures require mor
CPU time than the indifference-zone procedures, howeve
so the indifference-zone approaches may be preferable
the number of systems is rather large, or the runtime o
the replications is small. The sphericity assumption behin
ProcedureNM provides an improvement over Procedure
CY. These observations suggest a potential benefit to d
veloping a new procedure that draws upon the advantag
of Bayesian screening and the sphericity assumption.

8 APPENDIX

Let xj be the vector of output of thej -th first-stage repli-
cation, so the first-stage sample statistics are:

µ̂ =
r1∑
j=1

xj /r1 (3)

6̂ = S̄/r1 =
r1∑
j=1

(xj − µ̂)t (xj − µ̂)/r1. (4)

Let yj be the vector of output of thej -th second-stage
replication. Suppose that a subsetC2 of systems is
simulated r2 times during the second stage, and tha
C1 = {1, . . . , k}\C2 is the subset of systems simulated
during the first stage alone. We use subscripts her
to denote appropriate subvectors and submatrices fo
systems inC2 or C1, such asµ̂ = (µ̂C2

µ̂C1
) for sub-

vectors of the estimate of the mean, orS̄C2C2 for the sample
9
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variance of systems inC2. Two hats or bars indicate an
estimate based on two stages of output, such as

¯̄SC2C2 =
r1∑
i=1

(xC2,i − ˆ̂µC2
)t (xC2,i − ˆ̂µC2

)

+
r2∑
j=1

(yC2,j − ˆ̂µC2
)t (yC2,j − ˆ̂µC2

).

Cov
[ ˆ̂µ, ˆ̂µ] in Equation 2. Anderson (1957) shows

that the MLE for6 given both stages of output is

ˆ̂
6C2C2 = ¯̄SC2C2/(r1+ r2) (5)

ˆ̂
6C1C2 =

[ ˆ̂
6C2C1

]t
= 6̂C1C26̂

−1
C2C2

ˆ̂
6C2C2

ˆ̂
6C1C1 = 6̂C1C1 − 6̂C1C26̂

−1
C2C2

6̂C2C1

+ 6̂C1C26̂
−1
C2C2

ˆ̂
6C2C26̂

−1
C2C2

6̂C2C1

and that

Cov
[ ˆ̂µC2

, ˆ̂µC2

]
= ˆ̂6C2C2/(r1+ r2) (6)

Cov
[ ˆ̂µC1

, ˆ̂µC2

]
= Cov

[ ˆ̂µC2
, ˆ̂µC1

]t = ˆ̂6C1C2/(r1+ r2)
Cov

[ ˆ̂µC1
, ˆ̂µC1

]
=
[
6̂C1C1 − 6̂C1C26̂

−1
C2C2

6̂C2C1

]
/r1

+ S̄C1C2S̄−1
C2C2

Cov
[ ˆ̂µC2

, ˆ̂µC2

]
S̄−1
C2C2

S̄C2C1

Degrees of freedom in Equation 2. Sup-
pose i ∈ C2 and j ∈ C1. Let at = (1/(r1 +
r2),−2/(r1 + r2),1/r2), estimate the correlation aŝ̂ρ =
σ̂i,j (σ̂i,i σ̂j,j )

−1/2( ˆ̂σ i,i σ̂−1
i,i )

1/2(σ̂j,j ˆ̂σ−1
j,j )

1/2, and let

δ2(a) = a2
2
ˆ̂σ i,i ˆ̂σ j,j + 4a2a3

ˆ̂σ i,j ˆ̂σ j,j + 2a2
3
ˆ̂σ j,j (1− ˆ̂ρ)2

2(a1
ˆ̂σ i,i + a2

ˆ̂σ i,j + a3
ˆ̂σ j,j )2

.

Little (1976) suggests the missing-data approximation

ν = r1+ r2− 1

1+ ( 1
r1
− 1/(r1+ r2))(1− ˆ̂ρ2

)δ2(a)

.

for the degrees of freedom of the difference in means o
systemsi andj , given both stages of output.
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