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ABSTRACT dure (Proceduré€) that screens inferior systems with subset

selection, then allocates second-stage replications to provide
One use of simulation is to inform decision makers that an indifference-zone guarantee. They also show that Pro-
seek to select the best of several alternative systems. ThecedureC performs quite well in a battery of empirical tests.
system with the highest (or lowest) mean value for simulation For a review of the indifference-zone and subset selection
output is often selected as best, and simulation output is formulations, see Bechhofer, Santner, and Goldsman (1995)
used to infer the value of the unknown mean of each system. or Goldsman and Nelson (1998).
Statistical procedures that help to identify the best system by Chen (1996) proposes the optimal computer budget
suggesting an appropriate number of replications for each allocation (OCB.A), a third formulation for selection pro-
system are therefore useful tools in simulation. This article cedures. The idea is to sequentially allocate replications in
explores the performance of representative procedures from order to improve the evidence for correct selection, based
two approaches to develop statistical procedures, with the on a thought experiment involving the Bayesian poste-
goal of understanding tradeoffs involving the ease of use, rior probability of correct selection. Empirical experiments
computational requirements, and the range of applicability. demonstrate that this procedure can result in significant effi-
The focus is primarily on procedures that use common ciency improvements, as measured by the expected number
random numbers to sharpen comparisons between systemsreplications required to obtain a given empirical fraction of

correct selections, when the means of each system differ
1 INTRODUCTION substantially (Chen, Chen, Lin, and Ylcesan 1999).

The fourth formulation is the Bayesian decision-
One use of simulation is to inform decision makers that theoretic framework developed by Chick and Inoue (2000b).
want to select the best of several alternative manufacturing Both two-stage and sequential procedures are available. The
or service systems (Law and Kelton 1991; Banks, Carson, idea is to improve the expected value of information of ad-
and Nelson 1996), where best is defined in terms of the ditional replications. One innovation is that replications
mean performance of each system. This motivates the needcan be allocated to either improve the probability of correct
for procedures to help simulation experiments efficiently selection (Procedure 0d8)), or to reduce the expected op-
identify the best system. portunity cost of a potentially incorrect decision (Procedure
Four distinct formulations for selecting the best system LL(B5)).
have emerged. Indifference-zone procedures selects one Both the indifference-zone and subset selection for-
system that is guaranteed to be best with a prespecified mulations guarantee a bound on the probability of correct
probability P*, as long as the mean of the best system selection statements using the smallest number of repli-
is better than a smallest practically significant difference cations. The Bayesian procedureé8CB.A and work of
8* than the others. Matejcik and Nelson (1995) indicate Chick and Inoue 2000b) attempt to maximally improve the
that many indifference-zone procedures can also select aevidence for correct selection using a constrained number
system withins* of the best with probability?*, regardless of replications. The Bayesian approaches therefore avoid
of the configuration of the means. The subset selection the statistical conservativeness of the indifference-zone ap-
formulation, on the other hand returns a subset of simulated proach, but require several approximations to allow for a
systems that contains the best system with a prespecified quickly computable allocation of replications, and do not
probability. Nelson, Swann, Goldsman, and Song (1999) yet have a provable probability of correct selection guaran-
unify these approaches with a two-stage combined proce- tee. Given these tradeoffs, empirical evaluations can shed
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light on which procedure may be best suited for a given Bayesian decision-theoretic alternatives have also been
application. developed. Chick and Inoue (1999) and Chick and Inoue
A number of papers compare the performance of these (2000a) describe two-stage procedures that allocate replica-
various approaches when simulation replications use inde- tions to either improve the probability of correct selection
pendent random numbers. Nelson, Swann, Goldsman, and(Procedure 0-4m) or reduce the expected opportunity cost
Song (1999) have a large empirical study that describes a of a potentially incorrect selection (Proced@€crn).
variety settings where Procedwgrovides significant effi- Both Procedures Ocn andOCcrn allow for screening,
ciencies relative to the well-known two-stage indifference- in the sense that a subset of systems might be simulated
zone procedure of Rinott (1978). Inoue, Chick, and Chen during the second stage, in order to improve the expected
(1999) indicate that the sequential procedures of Chen (1996) value of information from the additional replications. The
and Chick and Inoue (2000b) outperform Rinott’s proce- use of CRN implies that information gained about systems
dure over a range of empirical experiments, with respect to simulated during the second stage also gives information
several measures of effectiveness. Chick and Inoue (2000b) about systems that were screened from the second stage, and
indicate that the two-stage versions of Proceduresi)-1 the procedures use missing data analysis to account for that
and LL(B) seem to select the unique best system some- information. Unfortunately, Procedures @rd and OCcrn
what better than Procedufein a small empirical study, yet impose a large computational burden to screen the systems
Procedure® often selects a good system (withif of best) (if there arek systems, they check alf2- 1 subsets that
when the unique best system is not selected. Each of thesemight be screened out). Chick and Inoue (2000a) therefore
procedures has roughly the same computational burden to present heuristics that check at malssRbsets for screening,
allocate the replications for a given stage. Procedures O4kn-nh and OCern:h
The relative performance of procedures that use com- These procedures and their major assumptions are sum-
mon random numbers (CRN) to sharpen comparisons, how- marized in Table 1.
ever, is less well understood. This paper compares the
empirical performance of selection procedures that allow  Table 1: Characteristics of Two-Stage Selection Pro-
the use of CRN. A subset of the numerical results below,  cedures that use Common Random Numbers (CRN)

supply data that are alluded to, but not presented, can be Assumption for CRN

found in a submitted work (Chick and Inoue 2000a). None Sphericity
Indifference-Zone

2 SELECTION PROCEDURES WITH CRN (PCS= pP*, cy NM
no screening)

Common random numbers (CRN) can be used to sharpen Bayesian 0-1¢rn,0-1¢rn:h

comparisons between systems (Law and Kelton 1991; Banks, (Value of Info, OCcrn,OCqrn:h | (none yet)

Carson, and Nelson 1996). There are a handful of selection screening ok)

procedures that allow for CRN, and each is run as a two-stage

procedure. In the first stage, a small number of replications Inoue (2000) derives the probability models required for

is run for each system. The sample means, variances anda two-stage Bayesian procedure, given a known correlation
covariances from the first stage are then used to determine srycture. Since the correlation is typically unknown in

the number of second stage replications for each system. nractice, that procedure is not evaluated here.
The second stage of each procedure depends on assumptions

about the covariance structure due to CRN, and which of 3 gSELECTION PROBLEM SETUP

the four selection procedure approaches is taken.

Clark and Yang (1986) introduced the first indifference-  The procedures are applied to both a simple but realistic
zone selection procedure to use CRN (Proceddfe They simulation problem, as well as a stylized problem. The first
do not make assumptions about the correlation structure s an inventory policy selection problem considered initially
induced by CRN. Nelson and Matejcik (1995) present an py Koenig and Law (1985) and analyzed later by Nelson and

alternative two-stage procedure (Procedtfé) that can  Matejcik (1995). There are fives, S) inventory policies
reduce the number of replications, but presume a sphericity for controlling the inventory level of a discrete product with
condition (if X; ; is the output of thej-th replication of stochastic demand. If the inventory level drops belgw
system, then VafX; ;] = 2¢; +t2, and CovX; ;, X ;] = then an order is placed to bring the level upStoDifferent

¢i + ¢y for systemsi = i'). They show empirically that  yajues fors and$ lead to different inventory policies. The
the procedure is robust to QeV|at|ons from sphericity. Both pagt system is the policy that has the minimum expected
Procedure<y and V.M simulate all systems the same  cost per period, evaluated over 30 periods, where cost is
number of times during the second stage. measured in thousands of dollars.
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The stylized problem is in the monotone decreasing of Little (1976) forv (see the appendix). Sample averages
means (MDM) configuration, so the means of each system from multiple applications of a selection procedure are used
are evenly spacedy; = w1 —8*-(i —1)/7,fori =2,.. k. to estimateE[BPCS.

Here we set = 2, §* = 1/,/r1, and presume the sphericity A third figure of merit is PredBPCS, is the predicted

condition, testing four combinations of covariance settings Bonferroni-like approximation for the probability of correct

when CRN is used (variancel.2 = 1 and 4; correlation selection, given that the first stage has been completed but

p = 0.5 and 075). Each procedure is evaluated by (i) the second stage has not. See Chick and Inoue (2000a) for

running a common first stage wiih = 10 replications of a fuller discussion.

each system, using CRN across systems, (ii) determining the Some results also present the average total number of

number of replications for each system during the second second stage replications (including zeros), denoted ‘ANR’.

stage, (iii) then running a separate second stage for each

procedure, using CRN across systems. The performance5 RESULTS

of each system is measured with the figures of merit in

Section 4, based on 3000 applications of each procedure. There are different ways to compare the procedures, cor-
responding to different ways of selecting the second-stage

4 FIGURES OF MERIT budgetb.

The first figure of merit is the empirical probability of

correct selection (PCS), the fraction of times that a procedure

correctly selects the best system.
The second figure of merit is the expectation of the
Bonferroni bound, BPCS, for the posterior probability of

correct selection after output from both stages is observed.

Inoue and Chick (1998) indicate that BPCS also has an
interpretation as the Bonferroni bound for frequentist evi-
dence for correct selection based Brvalues. To compute

that bound, the estimate of the mean performaﬁpand
correlations; ; after both stages are required. L#t de-

5.1 Screening Compared to IZ Procedures

Screening might improve performance by running more
replications per system, but simulating fewer systems so
that the total number of replications is the same. This
section evaluates whether screening can improve the ability
to correctly select the best system by assuming that the
number of replications for the Bayesian procedures is set
to equal the total number of replications suggested by an
indifference-zone procedure. After a common first-stage is
run for each procedure, the second-stage allocation com-

note the system that is selected as best. We use the MLE Puted for Procedurg/M is used as the budgét=k - r>

to estimate BPCS after observing output from both stages,

BPCS = 1- » (1-P 1
iti£[k]
P = @, [(ﬁ[k] - ﬁ;) )»1_1/2] (2)
A= (e — E[k])COV[I:LV fb] (ei — em))

whered®,, is the cumulative distribution function (cdf) for the
standards-distributed variable withy degrees of freedom,

P; is the P-value for the hypothesis that the mean for system
[k] exceeds the mean for systém; is the unit vector in

the i-th coordinate direction, and C ﬁ ﬁ is estimated

with formulas of Anderson (1957) (see the appendix).
The formulas require a missing data analysis when
screening is used. Lél, be the set of systems simulated
in both stages, an@ be the set of systems only simulated
during the first stage. Leb be the number of replications

for the number of second stage of replications of the four
Bayesian procedures, Q¢h:h 0-1crn, OCern:h @andOCqrn.
‘ANR’ is therefore the same for each procedure. A similar
process compares Proceddi® with Procedures Ogkn:p,
0-1¢crn, Occm:h, and OCcrn.

Table 2 summarizes the figures of merit for the MDM
experimentk = 5 systems; commo:ml.2 =1 or 4; common
correlationp = 0.75; r1 = 10; 8* = 1/4/10). Some
PCS are belowP* = 0.95 because the indifference-zone
constraint is not satisfied. The benefits of screening and
average-case analysis apparently outweigh the deleterious
effects of the approximations for this specific experiment,
at least for Procedures Qqh:-h, OCern:h @nd OCern, as
these Bayesian procedures outperform both indifference-
zone procedures on each figure of merit. This is particularly
true when the variance is smaller for each systggm

When the variance is larger, however, the benefit is not
particularly sizable, as the proximity of the means reduces
the ability of the procedure to screen effectively. Alarger first
stage sampling size may serve to help the screening of the
Bayesian procedures by providing more certainty about the

per system simulated during the second stage. We use gjfferences in means between each system. Procedusig 0-1

v = r1 + ro — 1 degrees of freedom when[k] € Co,
and usev = r; — 1 wheni, [k] € C1. Wheni € C» and
[k] € C1 or vice versa, we use a missing-data approximation
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extra approximation in its derivation, and it is therefore not
recommended for general use. Further experiments indicate
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Table 2: Results for the MDM Selection Problein=£

5, p = 0.75) in a Test to Evaluate the Benefit Screening
of Bayesian Procedures when the Budget is Determined
by an Indifference-zone Procedure wifi = 0.95 (see

Section 5.1)
Variance Procedure ANR PCS E[BPCS
c?=1 NM 73 0.854  0.769
0-Icrn:h 0.897 0.813
0-1crn 0.874 0.801
OCe¢rn:h 0.896 0.824
OCcrn 0.892 0.824
cy 325 0.971 0.917
0-Iernch 0.987 0.937
0-1crn 0.965 0.927
OCe¢rn:h 0.985 0.939
OCcrn 0.984 0.941
c?=4 NM 449 0.851  0.774
0-Iern-h 0.863 0.785
0-1crn 0.835 0.785
OCe¢rn:h 0.860 0.797
OCcrn 0.868 0.793
cy 1178 0.949 0.892
0-Iernch 0.957 0.897
0-1crn 0.938 0.893
OCe¢rn:h 0.957 0.902
OCcrn 0.955 0.900

that Procedure Ogln:-h beats Procedure Ocfy because it
avoids looking at some negative correlation estimates, as
discussed below.

ProcedureV' M performs better than the Bayesian pro-
cedures wheral.2 =4 andp = 0.5, but the Bayesian proce-
dures (except O<kn) perform better when eithe'rf =1land
p = 0.5, or whenp = 0.75. Further experimentation may
therefore warranted to evaluate whether Proceduit#!

dominates the Bayesian procedures over a broader range of,

experiments where the variance is larger and the covariance
is weak.

When the number of systems is increased fklom 5 to
10 (and withry increased to 20), the relative performance
of the heuristic Bayesian procedures improves. Table 3
presents the results fer? = 4, p = 0.75. Similar results
hold wheno? = 1.

All four Bayesian procedures outperform both
indifference-zone procedures on each measure of effective-
ness for the inventory selection problem whei = 0.95
andés* = 2 (all differences are statistically significant with
95% confidence, except for the comparisons with Procedure
CY with respect to PCS). WheR* = 0.95 ands* = 1, the
PCS is essentially 1, since a very large number of replica-

tions are taken, and the Bayesian procedures have a slightly

higher E[BPCS than Procedure8) and N M, except that
ProcedureC) slightly outperforms Procedure Qrh.
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Table 3: Results for the MDM Selection Problem, Now
with k = 10 Systemsq{ = 0.75) in a Test to Evaluate
the Benefit Screening of Bayesian Procedures when
the Budget is Determined by an Indifference-zone
Procedure (see Section 5.1)

Variance Procedure ANR PCS E[BPCS
o7=4 NM 2170 0.882  0.804
0-1¢rn:h 0.928 0.848
OCern:h 0.926 0.862
cy 5391 0.968 0.912
0-1ern:h 0.977 0.932
OCern:h 0.982 0.940

5.2 Benefit of Screening with CRN

We compare the performance of the four Bayesian selection
procedures with the procedure that does no screening, as
a function of the second stage buddet The procedure
that does no screening provides no PCS guarantee, but
otherwise resembles Procedu@¥ and MM in that it
deterministically allocates the same number of replications
(b/ k) to each of thek systems during the second stage.
The value of CRN for Bayesian selection procedures is
evaluated by comparing the four Bayesian procedures that
allow correlation from CRN with two analogous procedures
(Procedure 0-@B) to improve the probability of correct se-
lection, and Procedur€£(B) to improve the expected op-
portunity cost) that presume independent replications (Chick
and Inoue 2000b). While CRN can sharpen comparisons by
inducing a positive correlation, the requirement that some
subsetC, each be simulated the same number of times is
somewhat restrictive, and may be a source of inefficiency.
Table 4 summarizeB[BPCS as afunction of the second
stage budgeb for the inventory selection problem. The
rightmost 5 columns of the table support the assertion that
screening is of benefit for this problem, as the four Bayesian
procedures significantly outperform the procedure that does
not screen. The relative performance of the procedures
with respect to PCS is very similar. Table 4 also indicates
that CRN improves the ability to correctly select the best
system. When there are no second stage replications, the
use of CRN improves th&[BPCY from 0.676 to 0.835.
Essentially the same conclusions are obtained for the
MDM experimentsk = 5, four variations for the covariance
matrix). Figure 1 illustrates the PCS improvement with a
common variance:i2 = 1 and correlationo = 0.75. The
output for the procedures that require independent replica-
tions has a simulated correlation of 0 in this experiment.

5.3 Predictive Value of Second-Stage
Information about the unknown mean and variance is ob-

tained after observing the first stage output. This gives
information about what the output might be, before it is
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Table 4: The Expected Bonferroni Bound on the Posterior Probability of Correct Selection
(E[BPCS) on the Inventory Selection Problem, for Two Bayesian Procedures that Require
Independent Replications (G43) and £LL£(1)); the Four Bayesian Procedures that Allow
Correlation from CRN; and the Procedure that does not Screen (see Section 5.2)

Second-Stage Procedure
Budget,b | 0-1B) LLMB) | 0-lgm:h  O-lern OCer:h OCern | No Screen
0 0.676 0.676 | 0.835 0.835 0.835 0.83 0.835
50 0.777 0.781| 0.949 0.948 0.949 0.94 0.894
100 0.818 0.828| 0980 0.979 0.983 0.98 0.928
150 0.846 0.857 | 0.991 0.990 0.993 0.99 0.954

Table 5: Approximation for the Predicted Proba-
bility of Correct Selection (PredBPCS) for Two
Indifference-zone Procedures (with a Fixé&d P*)
in the Experiment of Section 5.3
Procedure §* P* ANR PredBPCS
cy 0.1 0.80 42,890 0.9996
0.90 65,345 0.9998
0.95 92,080 0.9998
@0 Procedure 0-1(5) 0.5 080 1,665 0.9904
T e 0.90 2,565 0.9937
0.95 3,635 0.9955

0.65 —=a Procedure oflcm,h B
¢——=  Procedure 0-1

n

o R 1 NM 0.1 0.80 16,345 0.9990
ot Nosween ] 0.90 26,845 0.9994
0s S S W 0.95 37,745 0.9996

0 100 200 300 Busggl o a:dO\gonm S:r?]?ﬂes 700 800 900 1000 05 080 605 09745
Figure 1: Empirical Fraction of Correct Selections (PCS) 0.90 1,025 0.9846
as a Function of the Total Budgkfor Additional Samples 095 1,460 0.9891

for the MDM Example ¢? = 1; p = 0.5) in Section 5.2

o ) ] replications total, whers* = 0.5, P* = 0.9 to achieve
observed, and therefore gives information about how likely predBPCS= 0.9937.
it is that the best system will actually be selected as best. In Procedure 0O-&n:h Was then checked with a variety
this section, we examine the predictive probability that the o second stage budgetsto attempt to achieve the same
correct system will be selected as best for the indifference predBPCS. Table 6 presents some of the results. It requires
zone and heuristic Bayesian procedures. b = 310 total replications (Proceduré M required 1025)
Specifically, the measure of evidence is PredBPCS, a {9 achieve PredBPCS: 0.9846; and requiredh = 780

Bonferroni-like approximation to the predictive probability {5 achieve PredBPCS- 0.9937 (Procedur€) required
that the best system will actually be selected as best. That >565),

is, based on a noninformative prior distribution and the first

stage output, what is the probability (approximately) that Table 6: Approximation for the Pre-
the best system will actually be chosen as best, given that dicted Probability of Correct Aelection
a certain number of replications will be run. (PredBPCS) for Procedure Q¢h:nin
In this experiment, we the second stage budget for the Experiment of Section 5.3

both indifference zone procedures for a specific batch of Procedure ANR PredBPCS
first stage output from the inventory selection problem for a 0-Iernch 310 0.9846
variety of settingsq{* = 0.01, 0.05, 0.1, 0.5P* = 0.8, 0.9, 500 0.9904
0.95, 0.99; simulated 60 rather than 30 months). Some of 780 0.9937
the results are presented in Table 5. Settingé*adnd P* 1,090 0.9955

that led to a PredBPCS of roughly 0.99 were then noted
for each procedure. For instance, Procedfpé requires
513 replications per system, @& = 2565 second stage
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6 DISCUSSION 7 CONCLUSIONS
The Bayesian procedures with CRN perform as well as or Existing indifference-zone procedures that use CRN guar-
better than both the analogous Bayesian procedures that re-antee a minimum PCS, given the worst-case least-favorable
quire independent replications, as well as both indifference- configuration, but do not allow screening during the sec-
zone procedures with CRN, for most of the experiments in ond stage. The Bayesian approach does not provide a
Section 5. Bayesian procedures with CRN can therefore be PCS guarantee, but overcomes statistical conservativeness
of practical value. This is not surprising, as CRN is known by allocating replications to improve the expected value
to sharpen comparisons (Law and Kelton 1991), and two of information gained from the second stage by screening.
of the systems in the inventory example could typically be The use of screening entails a missing data analysis, but the
screened due to their poorer performance. We believe that difficulty of that analysis can be hidden from an end user
the relative value of screening can improve if there are more with a well-designed software package. An added benefit
vastly inferior systems. Procedure @rd is somewhat in- of the Bayesian approach is that simulation practitioners
ferior, empirically, to the other Bayesian procedures, due to can consider either the expected opportunity cost of a po-
approximations in its derivation, so the others are preferred. tentially incorrect selection, rather than the probability of
There is an exception to the assessment that the Bayesiancorrect selection.

procedures outperform the indifference-zone procedures.
ProcedureN M outperforms the Bayesian procedures for
the MDM experiment with a larger variance and smaller cor-
relation. The strong performance &fM is not surprising,

Experiments indicate that the screening of the Bayesian
procedures can provide a significantimprovement in the abil-
ity to identify the best system. Proceduf®n-n seems
particularly effective. The Bayesian procedures require more

since it assumes sphericity, an assumption that is satisfied in CPU time than the indifference-zone procedures, however,
our MDM experiments. We conject that further efficiencies so the indifference-zone approaches may be preferable if
can be obtained by developing a Bayesian procedure that the number of systems is rather large, or the runtime of

also uses the sphericity assumption.

Even though the heuristic procedures check at mbst 2
of the ¥ — 1 = 31 subsetg, considered by the exhaustive
Bayesian procedures, the heuristics perform slightly bet-
ter. Further experiments indicate that the performance of

the replications is small. The sphericity assumption behind
ProcedureN' M provides an improvement over Procedure
C). These observations suggest a potential benefit to de-
veloping a new procedure that draws upon the advantages
of Bayesian screening and the sphericity assumption.

the exhaustive procedures can be degraded if at least one

covariance estimate is negative. If a negative covariance
estimate is observed when positive correlation is justified by
the structure of the problem, a somewhat larger first stage
can be run in order to improve the correlation estimate,
and therefore improve the performance of the procedures.
Bayesian procedures that presume a sphericity condition
might also reduce the chance of obtaining a negative cor-
relation estimate, assuming that CRN induces a positive
correlation.

A criticism of the Bayesian procedures is that screening
incurs a CPU time cost that is not incurred by Procedures
CY and N M. In Section 5, Procedures @rh and OCcrn
took 5-6 times as long as the heuristics@nlhy andOCe¢rn:h
to pick a screening subsés, which required an average of
about 0.7 CPU seconds (implemented in Matlab, run on a
PC). More generally, the heuristics run @k*) time, but
Procedure€) and AN M run in O (k%) time. For largek or
small simulation runtimes, CPU time might be better spent
running replications rather than selectig For smallk,
or large b or simulation runtimes, the relative benefit of
screening seems to improve. The development of more
efficient heuristics is an area for further research.
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8 APPENDIX

Let x; be the vector of output of thg-th first-stage repli-
cation, so the first-stage sample statistics are:

r1

Ro= ) x/n 3)
j=1

A = 1

Y = S/n= Z(Xj — ) (xj — p)/r1. (4)

j=1

Let y; be the vector of output of thg-th second-stage
replication. Suppose that a subs@i of systems is
simulated r, times during the second stage, and that
C1 = {1,...,k}\C2 is the subset of systems simulated
during the first stage alone. We use subscripts here
to denote appropriate subvectors and submatrices for
systems inC, or C1, such asii = (jc, ite,) for sub-
vectors of the estimate of the mean Sprc, for the sample
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variance of systems if;. Two hats or bars indicate an
estimate based on two stages of output, such as

SCzCz = Z(XCQ,i - ﬂCg)t (XCQ,i - ﬁ/Cz)
i=1
r2
+ Z(yC2,j - ﬁCz)t(yCQ,j - ﬁC2)'
=1

Cov [ﬁ ﬁ] in Equation 2.  Anderson (1957) shows
that the MLE forX given both stages of output is

>:3c2c2 — S0/ (ri412) (5)
§3c102 = [ﬁczcl]t =3c0, iEZJbZﬁCzCz
Soa = Poa - SacSoeien
+ % C1C2 252102 2ﬁiczcz figzlcz ZA:CQC;]_
and that
Cov [Iicz, I:ch] = )Eczcz/ (r1+r2) (6)

Cov[ﬁcl, ﬁcz] = Cov[ﬁcz, ﬁcl]t = ):Jclcz/(rl +r2)
COV[fLCl, Iicl] = [ﬁclcl - )A:clczigzlczf:czcl] /r
+ SclczégchCov [Iicz, ftcz] nglczéczcl
Degrees of freedom in Equation 2. Sup-
posei € C» and j € C1. Let d 1/(r1 +

r2), —2/(r1 + r2), 1/r2), estimate the correlation gs =
A A A 2 oA .~ 2-1
a,-,j(a,-,,-crj,j) 1/2(0'1",‘O‘i’il)l/z(O'j,jO'jyj)l/z, and let

22 2 22 22 2
52(a) = a56i0 j j +4aza36; ;6 +2a56; ;(1— 0)?

216 + azij + aso j )2
Little (1976) suggests the missing-data approximation

ri+ro—1
V=

14 (2 = 11+ r2)(A - 5)8%a)

for the degrees of freedom of the difference in means of
systems and j, given both stages of output.

ACKNOWLEDGMENTS

The authors are pleased to acknowledge the financial sup-

Inoue

assistance from the members of the ERC (both industry and
academia).

REFERENCES

Anderson, T. W. 1957. Maximum likelihood estimates for
a multivariate normal distribution when some observa-
tions are missingJournal of the American Statistical
Association52: 200-203.

Banks, J., J. S. Carson, and B. L. Nelson. 1998&crete-
event system simulatiq@nd ed.). Upper Saddle River,
NJ, USA: Prentice-Hall, Inc.

Bechhofer, R. E., T. J. Santner, and D. M. Goldsman. 1995.
Design and analysis for statistical selection, screening,
and multiple comparisondNew York: John Wiley &
Sons, Inc.

Chen, C.-H. 1996. A lower bound for the correct subset-
selection probability and its application to discrete event
simulations. IEEE Transactions on Automatic Con-
trol 41(8): 1227-1231.

Chen, H.-C., C.-H. Chen, J. Lin, and E. Yicesan. 1999.
An asymptotic allocation for simultaneous simulation
experiments. IrProceedings of the Winter Simulation
Conference ed. P. A. Farrington, H. B. Nembhard,
D. Sturrock, and G. Evans, 359-366. Piscataway, NJ:
Institute of Electrical and Electronics Engineers, Inc.

Chick, S. E., and K. Inoue. 1999. A decision-theoretic
approach to screening and selection with common ran-
dom numbers. IfProceedings of the Winter Simulation
Conference ed. P. A. Farrington, H. B. Nembhard,
D. Sturrock, and G. Evans, 603—-610. Piscataway, NJ:
Institute of Electrical and Electronics Engineers, Inc.

Chick, S. E., and K. Inoue. 2000a. New procedures for
identifying the best simulated system using common
random numbersn resubmission

Chick, S. E., and K. Inoue. 2000b. New two-stage and
sequential procedures for selecting the best simulated
system.Operations Researctio appear.

Clark, G. M., and W.-N. Yang. 1986. A Bonferroni selec-
tion procedure when using common random numbers
with unknown variances. IRroceedings of the Winter
Simulation Conferengeed. J. Wilson, J. Hendriksen,
and S. Roberts, 313-315. Piscataway, NJ: Institute of
Electrical and Electronics Engineers, Inc.

Goldsman, D., and B. L. Nelson. 1998. Statistical screen-
ing, selection, and multiple comparisons in computer
simulation. InProceedings of the Winter Simulation
Conference ed. D. J. Madeiros, E. F. Watson, J. S.
Carson, and M. S. Manivannan, 159-166. Piscataway,
NJ: Institute of Electrical and Electronics Engineers,
Inc.

port of the Engineering Research Center for Reconfigurable Inoue, K. 2000Decision-theoretic comparison of alternative

Machining Systems (NSF grant # EEC-9529125), and the

560

system configurations using stochastic simulatieh.



Chick and Inoue

D. thesis, The University of Michigan, Ann Arbor, MI. KOICHIRO INOUE completed his Ph.D. in Industrial
Dept. of Industrial and Operations Engineering. and Operations Engineering at the University of Michigan,
Inoue, K., and S. E. Chick. 1998. Comparison of Bayesian Ann Arbor in August 2000. He received a BS degree in
and frequentist assessments of uncertainty for selecting Industrial and Systems Engineering from Aoyama Gakuin
the best system. IProceedings of the Winter Simu-  University, Tokyo in 1992, he received an MS degree in
lation Conferenceed. D. J. Medeiros, E. J. Watson, Industrial and Operations Engineering at the University
M. Manivannan, and J. Carson, 727—-734. Piscataway, of Michigan, Ann Arbor in 1995. His email address is
NJ: Institute of Electrical and Electronics Engineers, <koichiro@engin.umich.edu>.
Inc.
Inoue, K., S. E. Chick, and C.-H. Chen. 1999. An empir-
ical evaluation of several methods to select the best
system ACM Transactions on Modeling and Computer
Simulation9(4): in press
Koenig, L. W., and A. M. Law. 1985. A procedure for
selecting a subset of size containing the? best ofk
independent normal populations, with applications to
simulation. Commun. Statist.-Simulation and Compu-
tation 14(3): 719-734.
Law, A. M., and W. D. Kelton. 1991Simulation modeling
& analysis (2nd ed.). New York: McGraw-Hill, Inc.
Little, R. J. A. 1976. Inference about means from incomplete
multivariate dataBiometrika63(3): 593-604.
Matejcik, F. J., and B. L. Nelson. 1995. Two-stage multiple
comparisons with the best for computer simulation.
Operations Research3: 633—-640.
Nelson, B. L., and F. J. Matejcik. 1995. Using common
random numbers for indifference-zone selection and
multiple comparisons in simulatiodManagement Sci-
ence4l: 1935-1945.
Nelson, B. L., J. Swann, D. Goldsman, and W. Song. 1999.
Simple procedures for selecting the best simulated sys-
tem when the number of alternatives is large. Technical
report, Northwestern University, Department of Indus-
trial Engineering and Management Science, Evanston,
IL.
Rinott, Y. 1978. On two-stage selection procedures and
related probability-inequalitiesCommunications in
StatisticsA7: 799-811.

AUTHOR BIOGRAPHIES

STEPHEN E. CHICK is an assistant professor of Industrial
and Operations Engineering at the University of Michigan,
Ann Arbor. In addition to stochastic simulation, his research
interests include Bayesian statistics, epidemiology models,
decision analysis, reliability, and computational methods in
statistics. His research is motivated by projects in man-
ufacturing and health care. His work experience includes
several years of materials handling system design for the au-
tomotive industry using simulation analysis. His email and
web addresses axsechick@engin.umich.edu> and
<http://www.engin.umich.edu/ ~sechick/>.

561



	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print

