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ABSTRACT

Input modeling that involves fitting standard univariate para
metric probability distributions is typically performed using
an input modeling package. These packages typically
several distributions to a data set, then determine the d
tribution with the best fit by comparing goodness-of-fi
statistics. But what if an appropriate input model is no
included in one of these packages? The modeler must
sort to deriving the appropriate estimators by hand for th
appropriate input model. The purpose of this paper is t
investigate the use of a prototype Maple-based probab
ity language, known as APPL (A Probability Programming
Language), for input modeling. This language allows a
analyst to specify a standard or non-standard distributio
for an input model, and have the derivations performe
automatically. Input modeling serves as an excellent are
for illustrating the applicability and usefulness of APPL.
Besides including pre-defined types for over 45 differen
continuous and discrete random variables and over 30 proc
dures for manipulating random variables (e.g., convolution
transformation), APPL contains input modeling procedure
for parameter estimation, plotting empirical and fitted CDFs
and performing goodness-of-fit tests. Using examples, w
illustrate its utility for input modeling.

1 PRELIMINARY EXAMPLES

There have been dozens of statistical languages develop
over the years to relieve the computations associated w
interactive or batch processing of data. APPL’s data stru
tures and algorithms were initially developed to accommo
date probability problems, but may be used to solve inpu
modeling problems as well. In order to illustrate the synta
and capability of APPL, we begin with some simple exam
ples from probability theory in this section, then addres
some input modeling problems in the next section.

Example 1. Find the probability that the sum of eight
independent and identically distributed U(0,1) random var
57
-

t
s-

t
e-
e
o
il-

n
n
d
a

t
e-
,
s
,
e

ed
th
-
-
t

x
-
s

-

ables falls between72 and11
2 . LettingX1, X2, . . . , X8 denote

the U(0,1) random variables, the desired probability is

Pr

(
7

2
<

8∑
i=1

Xi <
11

2

)
.

The two standard methods forapproximatingthe probability
are the central limit theorem and Monte Carlo simulation.
The central limit theorem approximation gives only one
digit of accuracy for this particular problem. Monte Carlo
simulation, on the other hand, converges to the exact value
a good random number generator is used, but requires custo
coding and requires a 100-fold increase in computing time
for each additional digit of accuracy. The APPL statements

n := 8;
X := UniformRV(0, 1);
Y := ConvolutionIID(X, n);
CDF(Y, 11 / 2) - CDF(Y , 7 / 2);

solve the problem exactly, yielding

3580151

5160960
.

ConvolutionIID computes the exact distribution of the
sum and stores the result inY. This may be coded up more
compactly as

Y := ConvolutionIID(UniformRV(0, 1), 8);
CDF(Y, 11 / 2) - CDF(Y , 7 / 2);

Example 2. Let X ∼ triangular(1,2,3) and Y ∼
U(1,2). If X andY are independent, find the distribution
of V = XY . The APPL code to solve this problem is

X := TriangularRV(1, 2, 3);
Y := UniformRV(1,2);
V := Product(X, Y);
7
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which returns the probability density function ofV as

fV (v) =


v − ln(v)− 1 1< v ≤ 2
−3

2v + 4 ln(v)+ 4− 5 ln(2) 2< v ≤ 3

−1
2 v + ln(27

32 v)+ 1 3< v ≤ 4
1
2 v − 3 ln(v)− 3+ ln(216) 4< v < 6.

More complicated distributions than the triangular and uni
form can be input in a similar manner.

Example 3. LetX be a random variable associated with
the Kolmogorov–Smirnov test statistic in the all-parameters
known case for sample sizen = 5 underH0. Similarly, letY
be a Kolmogorov–Smirnov random variable (all parameter
known) with n = 3. If X and Y are independent, find
Var [max{X, Y }] . The APPL code to solve this problem is

X := KSRV(5);
Y := KSRV(3);
Z := Maximum(X, Y);
Variance(Z);

which yields 10368751452319387558371671
667392326753906250000000000or approximately

0.0155362.
Since the base language for APPL is the symbolic lan

guage Maple, symbolic parameters can be accommodate
as illustrated in the next example.

Example 4. LetX have the triangular distribution with
minimum a, modeb, and maximumc. Find the CDF of
X. The APPL code to determine the CDF is

X := TriangularRV(a, b, c);
CDF(X);

which yields

F(x) =



0 x ≤ a
(x − a)2

(c − a)(b − a) a < x ≤ b

1− (c − x)2
(c − a)(c − b) b < x ≤ c

1 x > c.

APPL is capable of computing the distribution of order
statistics, as shown in the following two examples.

Example 5. Consider a sample of sizen = 7 from a
Weibull distribution with scale parameterλ = 1

2 and shape
parameterκ = 2 with PDF

fX(x) = 1

2
xe−

1
4 x

2
x > 0.
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Calculate the mean of the second order statistic. The me
of the second order statistic is

7

6

√
6π − 6

7

√
7π ∼= 1.0456613,

which is computed with the APPL commands

X := WeibullRV(1 / 2, 2);
Y := OrderStat(X, 7, 2);
Mean(Y);

Additionally, APPL is capable of performing operations
on discrete random variables. The APPL data structure
similar to that for continuous random variables. There i
a single format for continuous random variables, but two
formats for discrete random variables.

Example 6. Define a geometric random variableX
with parameterp = 1

4 to model the number of trials up

to and including the first success, i.e.,fX(x) = 1
4 · 3

4
x−1

,
x = 1,2, . . .. Calculate the median of the maximum order
statistic whenn = 5 items are sampledwith replacement
from this geometric distribution. The APPL statements

X := GeometricRV(1 / 4);
Y := OrderStat(X, 5, 5);
IDF(Y, 0.5);

return the median of the distribution as 8.
A modeler is not limited to the built-in distributions

introduced so far (e.g., UniformRV, TriangularRV, KSRV,
WeibullRV). Any discrete or continuous random variable
can be accommodated by using the data structure illustrat
in the next example.

Example 7. Let the random variableT have hazard
function

hT (t) =
{
λ 0< t < 1
λt t ≥ 1

for λ > 0. Find the survivor functionS(t) = Pr(T ≥ t).
The APPL code requires inputting the hazard function

for T as a list of three sublists

assume(lambda > 0);
T := [[t -> lambda, t -> lambda * t],

[0, 1, infinity],
["Continuous", "HF"]];

SF(T);

where theassume statement defines the parameter space
This yields the survivor function

ST (t) =
{
e−λt 0< t < 1

e−λ(t2+1)/2 t ≥ 1.
8
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Example 8. (Hogg and Craig 1995, page 287) LetX1
andX2 be iid observations drawn from a population with
PDF

f (x) = θxθ−1 0< x < 1,

where θ > 0. TestH0: θ = 1 versusH1: θ > 1 us-
ing the test statisticX1X2 and the critical regionC =
{(X1, X2)|X1X2 ≥ 3/4}. Find the significance levelα and
power function for the test. The APPL code to compu
the power function is

n := 2;
crit : = 3 / 4;
assume(theta > 0);
X := [[x -> thet a * x ˆ (theta - 1)],

[0, 1], ["Continuous", "PDF"]];
T := ProductIID(X, n);
power := SF(T, crit);

which yields

Pr(rejecting H0|θ) = 1− (3/4)θ + θ(3/4)θ ln(3/4).

The fact that the population distribution is non-standa
indicates thatX must be defined using the list of three
sublists data structure shown above.

To compute the significance level of the test, the add
tional Maple statement

alpha := subs(theta = 1, power);

is required, yieldingα = 1/4+ (3/4) ln(3/4) ∼= 0.0342. To
plot the power function requires the additional statemen

plot(power, thet a = 0 .. 4);

Obviously, this example can be generalized for differe
sample sizes, population distributions, and critical valu
with only minor modification.

Example 9. Consider the independent random var
ablesU1 ∼ U(0,1) andU2 ∼ U(0,1). The Box–Muller
algorithm for generating a single standard normal devia
V can be coded in one line (Devroye 1996) as

V ← √−2 lnU1 cos(2πU2),

whereU1 andU2 are independent random numbers. Us
ing theTransform (Glen, Leemis, and Drew 1997) and
Product procedures together, one can determine the PD
ofV . Due to the principle inverse difficulty with trigonomet-
ric functions, however, the transformation must be rewritte
as

V ← √−2 lnU1 cos(πU2)
5
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before usingTransform on the second factor in the ex-
pression. The APPL code

U1 := UniformRV(0, 1);
U2 := UniformRV(0, 1);
g1 := [[x -> ln(x)], [0, infinity]];
X1 := Transform(U1, g1);
g2 := [[x -> -2 * x],

[-infinity, infinity]];
X2 := Transform(X1, g2);
g3 := [[x -> sqrt(x)],

[0, infinity]];
X3 := Transform(X2, g3);
h1 := [[x -> Pi * x],

[-infinity, infinity]];
Y1 := Transform(U2, h1);
h2 := [[x -> cos(x)],

[-infinity, infinity]];
Y2 := Transform(Y1, h2);
V := Product(X3, Y2);

yields the following PDF forV

h(v) =


v

π

∫ 0

−1

e− v2/(2x2)

x2
√

1− x2
dx −∞ < v < 0

v

π

∫ 1

0

e− v2/(2x2)

x2
√

1− x2
dx 0< v <∞.

While this form in not easily recognizable as the PDF for
the normal distribution, it is mathematically equivalent to
the more standard

h(v) = 1√
2π
e−v2/2 −∞ < v <∞.

We anticipate that future versions of Maple will be able to
simplify these integrals.

Example 10. This example considers the use of the
Kolmogorov–Smirnov test for assessing model adequac
(goodness of fit) for the prime modulus multiplicative linear
congruential random number generator:

zi+1 = azi mod m

for i = 0,1, . . ., wherez0 is a seed,a = 75 = 16,807, and
m = 231− 1 = 2,147,483,647 (Park and Miller 1988).
The random numbers generated arez1/m, z2/m, etc. If the
seedz0 = 987,654,321 is used, then the first five random
numbers generated are

1,605,065,384

2,147,483,647

1,791,818,921

2,147,483,647

937,423,366

2,147,483,647
1,334,477,970

2,147,483,647

252,032,522

2,147,483,647
79
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or, approximately

0.7474168 0.8343807 0.4365218

0.6214147 0.1173618.

Since these five data values are being evaluated for th
uniformity, there should be a reasonable match betwe
their empirical cumulative distribution function and the cu
mulative distribution function for a U(0, 1) random variable
If we let the listSample contain the five random numbers
generated above, then the APPL statements required to p
these two functions over the interval (0, 1), shown in Figur
1, are

n := 5;
a := 7 ˆ 5;
seed := 987654321;
m := 2 ˆ 31 - 1;
Sample := [];
for j from 1 to n do

seed : = a * seed mod m:
Sample := [op(Sample), seed / m]:

od;
U := UniformRV(0, 1)
PlotEmpVsFittedCDF(U,Sample,[],0,1);

The five parameters to the plotting function are the rando
variable whose CDF is to be plotted, the data values
a list, the parameters associated with the random varia
(empty in this case of U(0, 1)), and the optional lower an
upper horizontal plotting limits.

0

0.2
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0.6

0.8

1

CDF

0.2 0.4 0.6 0.8 1x

Figure 1: The Empirical CDF of
Sample and the Theoretical U(0,
1) CDF

Let F(x) be the hypothesized CDF andF5(x) be the
empirical CDF. In order to determine the Kolmogorov–
Smirnov test statistic,

D5 = sup
x
|F(x)− F5(x)| ,
58
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which measures the largest vertical distance between the t
cumulative distribution functions, the following additional
command must be issued

TestStat := KSTest(U, Sample, []);

The approximate value of the test statistic for the five
random numbers is 0.2365, which occurs just to the left o
the random number 0.4365.

Since large values of the test statistic indicate a poo
fit and the cumulative distribution functionFD5(y) of the
test statistic is (Drew, Glen and Leemis 2000)

0 y < 1
10

24
625 (10x − 1)5 1

10 ≤ y < 1
5

−288x4 + 240x3 − 1464
25 x2 + 672

125 x − 96
625

1
5 ≤ y < 3

10
160x5 − 240x4 + 424

5 x3 + 12x2 − 168
25 x + 336

625
3
10 ≤ y < 2

5
−20x5 + 74x4 − 456

5 x3 + 224
5 x2 − 728

125 x
2
5 ≤ y < 1

2
12x5 − 6x4 − 56

5 x3 + 24
5 x2 + 522

125 x − 1 1
2 ≤ y < 3

5
−20y6 + 32y5 − 185

9 y3 + 175
36 y2 + 3371

648 y − 1 1
2 ≤ y < 3

5
−8x5 + 22x4 − 92

5 x3 + 12
25 x

2 + 738
125 x − 1 3

5 ≤ y < 4
5

2x5 − 10x4 + 20x3 − 20x2 + 10x − 1 4
5 ≤ y < 1

1 y ≥ 1,

thep-value for this particular test is found with the additiona
APPL statement

p := SF(KSRV(5), TestStat);

which yieldsp ∼= 0.8838.
If this process is repeated for a total of 1000 groups o

nonoverlapping consecutive sets of five random number
the empirical CDF of the Kolmogorov–Smirnov statistics
should be close to the theoretical from APPL if the random
number generator is valid. Figure 2 is a plot of the empirica
CDF of the 1000 Kolmogorov–Smirnov statistics versus th
theoretical Kolmogorov–Smirnov CDF withn = 5. The
empirical CDF lies slightly above the theoretical. If this
experiment were performed repeatedly, the empirical CDF
should fluctuate around the theoretical CDF.

0

0.2

0.4

0.6

0.8

1

 CDF

0.2 0.4 0.6 0.8 1x

Figure 2: Empirical CDF of 1000
Kolmogorov–Smirnov Statistics
and the Theoretical Kolmogorov–
Smirnov CDF forn = 5
0
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2 INPUT MODELING

Both APPL and Maple can easily be adapted for use
input modeling. This section gives several examples o
cases where a symbolic language is of use in analyzing
data set.

Example 11. Model selection. One of the tools for
selecting a suitable input model is a plot of the coefficien
of variation (γ = σ/µ) versus the skewness

γ3 = E
[(

X − µ
σ

)3
]
.

After constructing this plot, the sample coefficient of vari-
ation and sample skewness can be plotted for a particu
data set or data sets to determine an appropriate distribut
for modeling the data.

The code that produces the plot in Figure 3 for th
Weibull, gamma, log normal, and log logistic distribu-
tions uses the additional APPL proceduresCoefOfVar and
Skewness . The statements necessary to plot the gamm
distribution’s coefficient of variation versus skewness ar
shown below. The plots for the other distributions are ca
culated similarly. The Maple statement used to display a
four plots in one graphic is also provided.

unassign(’kappa’);
lambda := 1;
X := GammaRV(lambda, kappa);
c := CoefOfVar(X);
s := Skewness(X);
GammaPlot := plot([c, s, kappa =

0.5 .. 999],labels = [cv, skew]):
.
.
.

plots[display]({GammaPlot,WeibullPlot,
LogNormalPlot, LogLogisticPlot},
scaling = unconstrained);

The unassign command in Maple is used to unassign
any previous value given to an existing variable name, suc
as κ. Future unassign statements will be omitted for
brevity.

Example 12. The followingn = 23 ball bearing failure
times (in 106 revolutions) will be analyzed to determine a
parametric input model in a discrete-event simulation. Th
failure times are (Lawless 1982, page 228)

17.88 28.92 33.00 41.52 42.12 45.60
48.48 51.84 51.96 54.12 55.56 67.80
68.64 68.64 68.88 84.12 93.12 98.64
105.12 105.84 127.92 128.04 173.40.
58
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0.2 0.4 0.6 0.8 1 1.2 1.4
cv

Figure 3: Coefficient of Variation,
γ , Versus Skewness,γ3, for the
Gamma, Weibull, Log Normal, and
Log Logistic Distributions

(The same principles that apply to the modeling of thes
ball bearing failure times also apply to the modeling of
service times or stationary interarrival times for a queuein
system.)

First, consider fitting an exponential distribution to this
data set using maximum likelihood. The data set for the ba
bearing failure times,BallBearing , is a pre-defined list
in APPL. The APPL procedureMLEreturns the maximum
likelihood estimators as a list. Its arguments are the mode
the data, and the parameters to be estimated. The APP
statements

X := ExponentialRV(lambda);
lamhat := MLE(X,BallBearing,[lambda]);

return λ̂ ∼= 0.0138 as the maximum likelihood estimator.
The additional APPL command

PlotEmpVsFittedCDF(X, BallBearing,
[lambda = lamhat[1]], 0, 180);

wherelambda = lamhat[1] assigns the value in the list
lamhat to lambda , produces a plot of the empirical and
fitted CDFs on one set of axes, as seen in Figure 4.

In order to assess the model adequacy, either a form
goodness-of-fit test can be performed, or goodness-of-
statistics can be compared for competing models. Th
Kolmogorov–Smirnov test statistic, for example, can be
computed with the additional APPL statement

KSTest(X, BallBearing,
[lambda=lamhat[1]]);

which returns 0.3068, indicating a rather poor fit.
As an alternative, one might consider fitting therecip-

rocal of an exponential random variable to the ball bearing
failure times, as suggested in the following example.
1
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Figure 4: Empirical and Fitted Expo-
nential Cumulative Distribution Func-
tions for the Ball Bearing Data Set

Example 13. Fit the reciprocal of an exponential
random variable to the ball bearing failure times in the
previous example.

The APPL statements required to find the distribution
of the reciprocal of an exponential random variable and fin
the MLE for the unknown parameter are

X := ExponentialRV(lambda);
g := [[x -> 1 / x], [0, infinity]];
Y := Transform(X, g);
lamhat := MLE(Y,BallBearing,[lambda]);

which derives the PDF ofY to be

fY (y) = λ

y2e
−λ/y y > 0

and calculates the MLÊλ ∼= 55.06. The functiong is used
to find the distribution ofY = g(X) = 1/X.

As can be seen in Figure 5, the reciprocal of the
exponential also provides a poor fit to the ball bearing
data.

0

0.2

0.4

0.6

0.8

1

 CDF

20 40 60 80 100 120 140 160 180x

Figure 5: Empirical and Reciprocal Ex-
ponential Fitted Cumulative Distribution
Functions for the Ball Bearing Data Set
58
d

Neither the exponential model nor its reciprocal are
appropriate for modeling the failure times. It might be ap-
propriate to consider two-parameter distributions as potentia
models, as shown in the next example.

Example 14. Fit the inverse Gaussian and Weibull
distributions to the ball bearing failure times. Again using
the APPL proceduresMLEandKSTest ,

X := InverseGaussianRV(lambda, mu);
hat :=MLE(X,BallBearing,[lambda,mu]);
KSValue := KSTest(X, BallBearing,

[lambda = hat[1], mu = hat[2]]);

yields an improved fit witĥλ ∼= 231.67, µ̂ ∼= 72.22, and a
Kolmogorov–Smirnov test statistic of 0.088. The procedure
MLE is able to return the appropriate values because th
maximum likelihood estimators are in closed form for this
particular distribution. Unfortunately, the statements

Y := WeibullRV(lambda, kappa);
hat := MLE(Y, BallBearing,

[lambda, kappa]);

fail to return the MLEs in APPL. The Maple numerical
equation solving procedurefsolve is not clever enough
to exploit some of the structure in the score vector that i
necessary to find the MLEs. Therefore a special routine
MLEWeibull , has been written that computes MLEs for
the Weibull distribution.

Besides the proceduresPlotEmpVsFittedCDF and
KSTest , fit can be assessed visually using a Q–Q or P–P
plot (Law and Kelton 2000, pages 352–358). The APPL
statements used to produce the Q–Q and P–P plots for t
Weibull fit to the ball bearing failures displayed in Figures
6 and 7 are

QQPlot(Y, BallBearing,
[lambda = hat[1], kappa = hat[2]]);

PPPlot(Y, BallBearing,
[lambda = hat[1], kappa = hat[2]]);

To conclude the ball bearing data set examples, Table
summarizes the Kolmogorov–Smirnov test statistic value
for various distributions that were fit to the data in APPL
via maximum likelihood estimation.

Table 1: Kolmogorov–Smirnov Test Statistic
Values for Various Distributions

Model Test statistic
Exponential 0.307

Reciprocal of Exponential 0.306
Weibull 0.151
Gamma 0.123

Arctangent 0.094
Log normal 0.090

Inverse Gaussian 0.088

2
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Figure 6: Q–Q Plot of Ball Bearing
Data with Fitted Weibull Distribution

P-P Plot
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Figure 7: P–P Plot of Ball Bearing
Data with Fitted Weibull Distribution

Another wrinkle that can present itself in input modeling
is the presence of censoring. A right-censored data s
for example, often occurs in reliability and biostatistica
applications. Examples likely to arise in discrete-even
input modeling situations include machine failure time
(when some machines have not yet failed) and the analy
of rare events.

Example 15. Consider the problem of determining
an input model for the remission time for the treatmen
group in the study concerning the drug 6-MP (Gehan 1965
Letting an asterisk denote a right-censored observation, t
remission times (in weeks) are

6 6 6 6* 7 9* 10 10* 11* 13 16
17* 19* 20* 22 23 25* 32* 32* 34* 35*.

Both MP6 and MP6Censor are pre-defined lists in
APPL. MP6 is simply the 21 data values given above, an
MP6Censor is the list

[1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1,
0, 0, 0, 1, 1, 0, 0, 0, 0, 0]
s

58
t,
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where 0 represents a censored value and 1 represents
uncensored value. The statements used to determine th
MLE for an exponential distribution are

X := ExponentialRV(lambda);
hat := MLE(X,MP6,[lambda],MP6Censor);

The code yieldŝλ = 9
359. Similarly, the statement

hat := MLEWeibull(MP6, MP6Censor);

yields the MLE estimateŝλ ∼= 0.03 and κ̂ ∼= 1.35 for
the Weibull distribution. The Kaplan–Meier product-limit
survivor function estimate for theMP6data set, along with
the fitted Weibull survivor function, are plotted in Figure 8
using the additional APPL statements

Y := WeibullRV(lambda, kappa);
PlotEmpVsFittedSF(Y, MP6,

[lambda = hat[1], kappa = hat[2]],
MP6Censor, 0, 23);

The downward steps in the estimated survivor function occu
only at observed remission times. The six parameters to th

0

0.2

0.4

0.6

0.8

1

 SF

5 10 15 20x

Figure 8: Product-Limit Survivor
Function Estimate and Fitted
Weibull Survivor Function for the
6-MP Treatment Group

plotting function are the random variable whose SF is to be
plotted, the data values in a list, the parameters associate
with the random variable, the right-censoring vector in a
list, and the lower and upper plotting limits. Note that the
product-limit estimator cuts off after the largest observed
remission time (Lawless 1982).

All of the input modeling examples thus far have been
limited to continuous data. The next example fits the geo-
metric distribution as a model for daily demand at a vending
machine.

Example 16. A vending machine has capacity for
24 cans of “Purple Passion” grape drink. The machine is
restocked to capacity every day at noon. Restocking time i
3
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negligible. The last five days have produced the followin
Purple Passion sales:

14 24 18 20 24.

The demandfor Purple Passion at this particular vendin
machine can be estimated from the data by treating the
can sales figures asright-censoreddemand observations.
If demand has the geometric distribution, with probabilit
function

f (t) = p(1− p)t t = 0,1,2, . . .

find the MLE for p̂.
As discussed in the introductory section, many proc

dures, likeMLE, are able to handle discrete distribution
Since the pre-defined geometric distribution in APPL is p
rameterized fort = 1,2, . . ., we need to define a geometric
random variable with the different parameterization (us
above) in the list of three sublists data structure. No ne
APPL commands are needed to compute the MLE forp̂.
The statements

X := [[x -> p * (1 - p) ˆ x],
[0 .. infinity],
["Discrete", "PDF"]];

PurplePass := [14, 24, 18, 20, 24];
PurplePassCensor := [1, 0, 1, 1, 0];
MLE(X, PurplePass, [p],

PurplePassCensor);

yield p̂ = 3
103. Model adequacy is not considered for thi

particular example.
All previous examples have considered time

independent observations. There are occasions whe
series of event times may be time dependent, and a m
complicated input model may be appropriate.

Example 17. Ignoring preventive maintenance, twelv
odometer readings (from a certain model of car) associa
with failures appearing over the first 100,000 miles are

12,942 28,489 65,561 78,254 83,639 85,60
88,143 91,809 92,360 94,078 98,231 99,90

Consider fitting a nonhomogeneous Poisson process
the above data set, where the ending time of the observa
interval is assumed to be 100,000 miles. The data can
approximated by a power law process (i.e., the intens
function has the same parametric form as the hazard fu
tion for a Weibull random variable). The following APPL
statements, including the additional procedure MLENHP
return λ̂ ∼= 0.000026317 and̂κ ∼= 2.56800:

CarFailures := [12942, 28489, 65561,
78254, 83639, 85603, 88143, 91809,
5

g

g
4-

y

e-
.

a-

d
w

s

-
n a
ore

ted

3
.

to
ion
be

ity
nc-

P,

92360, 94078, 98231, 99900];
X := WeibullRV(lambda, kappa);
hat := MLENHPP(X, CarFailures,

[lambda,kappa],100000);

The last argument in MLENHPP tells the procedure that
the failures were observed over the interval [0, 100,000]
miles. The additional APPL statement

PlotEmpVsFittedCIF(X, Sample,
[lambda = hat[1], kappa = hat[2]],
0, 100000);

produces a plot of the empirical cumulative intensity function
and the fitted Weibull cumulative intensity function as shown
in Figure 9.
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Figure 9: Cumulative Intensity Func-
tion Estimate and Fitted Weibull Cu-
mulative Intensity Function for the
CarFailures Data Set

Every example considered thus far has used maximum
likelihood to estimate the unknown parameters. APPL in-
cludes the procedureMOMfor computing the method of
moments estimators.

Example 18. (Larsen and Marx, 2001, page 319) Hurri-
canes typically strike the eastern and southern coastal region
of the United States, although they occasionally sweep inlan
before completely dissipating. The U.S. Weather Bureau
reported that during the period from 1900 to 1969 a total of
36 hurricanes moved as far as the Appalachian Mountains
The maximum 24-hour precipitation levels (measured in
inches) recorded from those 36 storms during the time they
were over the mountains are shown below and at the to
of the following page.

A histogram of the data, which can be plotted in Maple,
suggests that the random variableX, which is the maximum
24-hour precipitation, might be well approximated by the
gamma distribution.

31.00 2.82 3.98 4.02 9.50 4.50
11.40 10.71 6.31 4.95 5.64 5.51
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13.40 9.72 6.47 10.16 4.21 11.6
4.75 6.85 6.25 3.42 11.80 0.80
3.69 3.10 22.22 7.43 5.00 4.58
4.46 8.00 3.73 3.50 6.20 0.67.

The following APPL code finds the method of moments
estimates for the parametersλ andκ, whereHurricane
is the above data set pre-defined in APPL

X := GammaRV(lambda, kappa);
hat := MOM(X, Hurricane,

[lambda, kappa]);

The resulting estimates for the parameters areλ̂ = 954000
4252153

∼=
0.224 andκ̂ = 6952275

4252153
∼= 1.64.

3 FURTHER WORK

Some ongoing work in the area of input modeling in APPL
is described here. First, most distributions containing 3 o
4 unknown parameters (e.g., the Johnson distributions) a
not going to have closed-form maximum likelihood estima-
tors. Based on our experience with the Weibull distribution
illustrated in Example 14, it will be necessary to write cus-
tom code for many of these distributions. This is precisely
what is required from the batch and interactive software
packages that perform input modeling. Fortunately, ther
is significant literature concerning the numerical method
required to arrive at these estimators.

Second, some distributions, such as the Erlang distr
bution, have both a discrete and a continuous paramete
In order to compute parameter estimates, it is necessary
prove results that will expedite their calculation. In using
maximum likelihood on the Erlang, for example, it would
not be possible to calculate the MLEs for the scale paramet
for all shape parameters in the parameter space. Thus so
results concerning the monotonicity of the likelihood func-
tion as the shape parameter varies are necessary to prov
an algorithm for calculating the MLEs.

Third, some distributions have their unknown param-
eters as part of their support. Consider finding the MLEs
for the triangular(a, b, c) distribution for a sample size of
n = 2. Without loss of generality, assumex1 < x2. Sym-
metry dictates that

b̂ = x1+ x2

2

and thatb̂ − â = ĉ − b̂. Thus the problem of finding the
MLE for a, for example, boils down to maximizing

f (x1; a) = 2(x1− a)
(c − a)(b − a) =

x1− a
(b − a)2 .
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Differentiating with respect toa yields

∂f

∂a
= −(b − a)

2+ 2(x1− a)(b − a)
(b − a)4 .

When the derivative is equated to zero and the resultin
equation is solved fora, the MLE is

â = 2x1− b̂.

Likewise,

ĉ = 2x2− b̂.
Moving to the case ofn = 3 is more complicated since it
is not clear whether the middle data value should have i
likelihood function considered part of the left or the right
support of the PDF. An algorithm must be developed in
order to compute the MLEs for generaln.

Fourth, an asymptotic confidence region for unknown
parameters based on the likelihood ratio statistic can b
determined by plotting the appropriate contour of the log
likelihood function. Maple’s symbolic and numeric abili-
ties can be exploited to produce these plots for arbitrar
distributions and data sets.

In conclusion, APPL is a platform which can be used
for input modeling in an interactive, as opposed to a batc
platform. Its ability to interface with probability theory
presents some advantages for calculating exact probab
ity measures. For further reading concerning the APP
software, see Glen, Leemis, and Evans (2000).
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