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ABSTRACT ables falls betweefandyl. LettingX1, X2, ..., Xgdenote
the U(0,1) random variables, the desired probability is

Input modeling that involves fitting standard univariate para-

metric probability distributions is typically performed using 7

an input modeling package. These packages typically fit Pf(- <

several distributions to a data set, then determine the dis-

tribution with the best fit by comparing goodness-of-fit

statistics. But what if an appropriate input model is not

included in one of these packages? The modeler must re-

sort to deriving the appropriate estimators by hand for the

appropriate input model. The purpose of this paper is to

investigate the use of a prototype Maple-based probabil-

ity language, known as APPL (A Probability Programming

Language), for input modeling. This language allows an

analyst to specify a standard or non-standard distribution

for an input model, and have the derivations performed 8:

automatically. Input modeling serves as an excellent arena X LjniformRV(O 1);

for illustrating the applicability and usefulness of APPL. Y = ConvolutionII’D(X, n):

Besides including pre-defined types for over 45 different CDF(Y, 11 / 2) - CD’F(Y’ 71 2);

continuous and discrete random variables and over 30 proce- ' ' '

dures for manipulating random variables (e.g., convolution, golve the problem exactly, yielding

transformation), APPL contains input modeling procedures

for parameter estimation, plotting empirical and fitted CDFs, 3580151

and performing goodness-of-fit tests. Using examples, we 5160960

illustrate its utility for input modeling.

8

ZXZ'<1—21>.

i=1

The two standard methods fapproximatinghe probability

are the central limit theorem and Monte Carlo simulation.
The central limit theorem approximation gives only one
digit of accuracy for this particular problem. Monte Carlo
simulation, on the other hand, converges to the exact value if
agood random number generator is used, but requires custom
coding and requires a 100-fold increase in computing time
for each additional digit of accuracy. The APPL statements

ConvolutionllD computes the exact distribution of the
1 PRELIMINARY EXAMPLES sum and stores the result ¥ This may be coded up more
compactly as

There have been dozens of statistical languages developed
over the years to relieve the computations associated with
interactive or batch processing of data. APPL’s data struc-
tures and algorithms were initially developed to accommo-
date probability problems, but may be used to solve input
modeling problems as well. In order to illustrate the syntax
and capability of APPL, we begin with some simple exam-
ples from probability theory in this section, then address
some input modeling problems in the next section.
Example 1. Find the probability that the sum of eight

independent and identically distributed U(0,1) random vari-

Y :=ConvolutionlID(UniformRV(0, 1), 8);
CDF(Y, 11/ 2) - CDF(Y , 71 2);

Example 2. Let X ~ triangular(1,2,3) andY ~
U(,2). If X andY are independent, find the distribution
of V = XY. The APPL code to solve this problem is

TriangularRV(1, 2, 3);
UniformRV(1,2);
Product(X, Y);

X
Y
\Y
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which returns the probability density function gfas

v—In(v) -1 l<v<?2
—%’v+4|n(v)+4—5|n(2) 2<v<3
—%v—l—ln(%—%v)%—l 3<v<4
1v-3In(v) -3+In(216 4<v <B6.

fr(v) =

More complicated distributions than the triangular and uni-
form can be input in a similar manner.

Example 3. Let X be arandom variable associated with
the Kolmogorov—Smirnov test statistic in the all-parameters-
known case for sample size= 5 underHyp. Similarly, letY
be a Kolmogorov—Smirnov random variable (all parameters
known) withn = 3. If X andY are independent, find
Var[max{X, Y}]. The APPL code to solve this problem is

X KSRV(5);
Y KSRV(3);
Z Maximum(X, Y);

Variance(2);

1036875145231938755837167

which yields g aoondd! aPproximately

0.0155362.
Since the base language for APPL is the symbolic lan-

guage Maple, symbolic parameters can be accommodated,

as illustrated in the next example.

Example 4. Let X have the triangular distribution with
minimum a, modeb, and maximunmc. Find the CDF of
X. The APPL code to determine the CDF is

X := TriangularRV(a, b, c);

CDF(X);
which yields
0 x<a
ﬂ a < X < b
_) (c—a)b—-a)
Fx) = B ( — x) , <
(c—a)(c—b) e
1 X > c.

APPL is capable of computing the distribution of order
statistics, as shown in the following two examples.

Example 5. Consider a sample of size= 7 from a
Weibull distribution with scale parameter= % and shape
parametex = 2 with PDF
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Calculate the mean of the second order statistic. The mean
of the second order statistic is

7 6
6 Y% 6r — ? Vit = 10456613

which is computed with the APPL commands

X = WeibullRV(1 / 2, 2);
Y := OrderStat(X, 7, 2);
Mean(Y);

Additionally, APPL is capable of performing operations
on discrete random variables. The APPL data structure is
similar to that for continuous random variables. There is
a single format for continuous random variables, but two
formats for discrete random variables.

Example 6. Define a geometric random variabké
with parameterp = 711 to model the number of trials up

to and including the first success, i.¢x(x) = 3 - %x_l,
x =1,2,.... Calculate the median of the maximum order
statistic whemm = 5 items are sampledith replacement

from this geometric distribution. The APPL statements

X := GeometricRV(1 / 4);
Y := OrderStat(X, 5, 5);
IDF(Y, 0.5);

return the median of the distribution as 8.

A modeler is not limited to the built-in distributions
introduced so far (e.g., UniformRV, TriangularRV, KSRV,
WeibullRV). Any discrete or continuous random variable
can be accommodated by using the data structure illustrated
in the next example.

Example 7. Let the random variablg have hazard
function

A
At

O0<t<l1
hr(t) = { t>1
for A > 0. Find the survivor functior§ (1) = Pr(T > t).
The APPL code requires inputting the hazard function
for T as a list of three sublists

assume(lambda > 0);

T = [[t -> lambda, t -> lambda * t],
[0, 1, infinity],
["Continuous", "HF"];

SFE(T);

where theassume statement defines the parameter space.
This yields the survivor function

—At

e O<t<1
e—x(z2+1)/2

t > 1.

St (1) ={
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Example 8. (Hogg and Craig 1995, page 287) L¥t
and X2 be iid observations drawn from a population with
PDF

f(x):@)cef1 O<x <1,

whered > 0. TestHp: 8 = 1 versusHy: 6 > 1 us-
ing the test statisticX; X2 and the critical regionC =
{(X1, X2)|X1X2 > 3/4}. Find the significance level and
power function for the test. The APPL code to compute
the power function is

n = 2;

crit = =3/ 4

assume(theta > 0);

X = [[x -> thet a*x "~ (theta - 1),
[0, 1], ["Continuous”, "PDF"];

T := ProductlID(X, n);

power := SF(T, crit);

which yields
Pr(rejecting Hol0) = 1 — (3/4)? +6(3/4)? In(3/4).

The fact that the population distribution is non-standard
indicates thatX must be defined using the list of three
sublists data structure shown above.

To compute the significance level of the test, the addi-
tional Maple statement

alpha := subs(theta = 1, power);

is required, yieldingr = 1/4+(3/4)In(3/4) = 0.0342. To
plot the power function requires the additional statement

plot(power, thet a=20. 4);

Obviously, this example can be generalized for different
sample sizes, population distributions, and critical values
with only minor modification.

Example 9. Consider the independent random vari-
ablesU1 ~ U(0,1) and U, ~ U(0,1). The Box—Muller
algorithm for generating a single standard normal deviate
V can be coded in one line (Devroye 1996) as

V < +/=2InUyco92rnU>),
where U3 and U, are independent random numbers. Us-
ing the Transform  (Glen, Leemis, and Drew 1997) and
Product procedures together, one can determine the PDF
of V. Dueto the principle inverse difficulty with trigonomet-
ric functions, however, the transformation must be rewritten

as

V <« /=2InUicoqnUs)
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before usingTransform on the second factor in the ex-
pression. The APPL code

Ul := UniformRV(0, 1);
U2 := UniformRV(0, 1);
gl := [[x -> In(x)], [0, infinity]];
X1 := Transform(Ul, gl);
92 = [[x > -2 * x],
[-infinity, infinity]];
X2 := Transform(X1, g2);
g3 = [[x -> sqrt(x)],
[0, infinity]];
X3 := Transform(X2, g3);
hl = [[x -> Pi * x],
[-infinity, infinity]];
Y1 := Transform(U2, hl);
h2 = [[x -> cos(X)],
[-infinity, infinity]];
Y2 := Transform(Y1, h2);
V := Product(X3, Y2);

yields the following PDF forv

v O e*UZ/(zxz)
— ——dx —o0o<v<0
h _ ﬂ/;lxzx/l—xz
(U)— v 1 eiv2/(2x2)
— ——dx O<v<oo.
ﬂ/é x2/1— x2

While this form in not easily recognizable as the PDF for
the normal distribution, it is mathematically equivalent to
the more standard

h(v) = —v?/2

e -0 <V <.

1
Nz
We anticipate that future versions of Maple will be able to
simplify these integrals.

Example 10. This example considers the use of the
Kolmogorov—Smirnov test for assessing model adequacy
(goodness of fit) for the prime modulus multiplicative linear
congruential random number generator:

Zi+l = azi mod m
fori =0,1,..., wherezg is a seedg = 7° = 16, 807, and
m = 231 — 1 = 2 147,483 647 (Park and Miller 1988).
The random numbers generated arém, zo2/m, etc. If the
seedzp = 987, 654, 321 is used, then the first five random
numbers generated are

1, 605, 065 384 1,791 818 921 937,423 366
2,147,483 647 2,147,483 647 2,147,483 647
1,334, 477,970 252 032 522

2,147,483 647 2,147,483 647
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or, approximately which measures the largest vertical distance between the two
cumulative distribution functions, the following additional
0.7474168 (8343807 04365218 command must be issued

0.6214147 01173618 TestStat := KSTest(U, Sample, []);
Since these five data values are being evaluated for their
uniformity, there should be a reasonable match between
their empirical cumulative distribution function and the cu-
mulative distribution function for a U(0, 1) random variable.
If we let the listSample contain the five random numbers
generated above, then the APPL statements required to plot
these two functions over the interval (0, 1), shown in Figure

The approximate value of the test statistic for the five
random numbers is 0.2365, which occurs just to the left of
the random number 0.4365.

Since large values of the test statistic indicate a poor
fit and the cumulative distribution functiofp.(y) of the
test statistic is (Drew, Glen and Leemis 2000)

1, are 0 y < %0
ﬁ(Zle—l)5 l<y<l
n = 5 Ezzssex 44 240,38 — 1464,2, 672, _ 96 iTj<7y< 3
S 1605 — 240,41 426734 15,3 > 60 3% 3 3
a:==7"5; —20x5 4 7444 4 4563 224 2 _To8 625 é0<_v'< °
seed := 987654321, 12:5 6d - .34 2, 2, 52gx1351 i;\<§
m:=2"31- 1 20,5+ 32,5 19,3 o i, g %gRg
Sample = []; —8x5 42254 - 92x3+ o+ I8 zf(§y<§
. 5 <y<
for J from 1ton dO ix —10x4 +20x 20x +10x — 1 )E;ly 1
seed : = a * seed mod m: o
Sample := [op(Sample), seed / m]: the p-value for this particular test is found with the additional
p p
od; APPL statement
U := UniformRV(0, 1)
PlotEmpVsFittedCDF(U,Sample,[],0,1); p = SF(KSRV(5), TestStat);

The five parameters to the plotting function are the random which yields p = 0.8838.

variable whose CDF is to be plotted, the data values in If this process is repeated for a total of 1000 groups of
a list, the parameters associated with the random variable nonoverlapping consecutive sets of five random numbers,
(empty in this case of U(0, 1)), and the optional lower and the empirical CDF of the Kolmogorov—Smirnov statistics
upper horizontal plotting limits. should be close to the theoretical from APPL if the random
number generator is valid. Figure 2 is a plot of the empirical
CDF of the 1000 Kolmogorov—Smirnov statistics versus the
theoretical Kolmogorov—Smirnov CDF with = 5. The

14

08 empirical CDF lies slightly above the theoretical. If this
experiment were performed repeatedly, the empirical CDFs
061 should fluctuate around the theoretical CDF.

CDF
1

0.4+

0.8+

0.2+

0.6

0 02 o4 o6 08 1 CDF
Figure 1: The Empirical CDF of 047
Sample and the Theoretical U(O,
1) CDF 0.2
Let F(x) be the hypothesized CDF arfg(x) be the . / ‘ ‘ ‘ ‘
empirical CDF. In order to determine the Kolmogorov— 02 04 0808
Smirnov test statistic, Figure 2: Empirical CDF of 1000
Kolmogorov—Smirnov Statistics
Ds = sup|F(x) — Fs5(x)|, and the Theoretical Kolmogorov—
x Smirnov CDF forn =5
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2 INPUT MODELING

Both APPL and Maple can easily be adapted for use in
input modeling. This section gives several examples of

cases where a symbolic language is of use in analyzing a

data set.

Example 11. Model selection. One of the tools for
selecting a suitable input model is a plot of the coefficient
of variation ¢ = o/u) versus the skewness

w5

After constructing this plot, the sample coefficient of vari-

ation and sample skewness can be plotted for a particular
data set or data sets to determine an appropriate distribution

for modeling the data.

The code that produces the plot in Figure 3 for the
Weibull, gamma, log normal, and log logistic distribu-
tions uses the additional APPL procedu@zefOfVar and
Skewness . The statements necessary to plot the gamma
distribution’s coefficient of variation versus skewness are
shown below. The plots for the other distributions are cal-
culated similarly. The Maple statement used to display all
four plots in one graphic is also provided.

unassign(’kappa’);

lambda = 1;

X = GammaRV(lambda, kappa);

c .= CoefOfVar(X);

s := Skewness(X);

GammaPlot := plot([c, s, kappa
0.5 .. 999],labels = [cv, skew]):

plots[display]({GammaPlot,WeibullPlot,
LogNormalPlot, LogLogisticPlot},
scaling = unconstrained);

The unassign command in Maple is used to unassign
any previous value given to an existing variable name, such
as . Futureunassign statements will be omitted for
brevity.

Example 12. The followingn = 23 ball bearing failure
times (in 16 revolutions) will be analyzed to determine a
parametric input model in a discrete-event simulation. The
failure times are (Lawless 1982, page 228)

17.88 28.92 33.00 4152 4212 45.60

48.48 51.84 5196 54.12 5556 67.80

68.64 68.64 68.88 84.12 93.12 98.64
105.12 105.84 12792 128.04 173.40.
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—11
Figure 3: Coefficient of Variation,
y, Versus Skewnessys, for the
Gamma, Weibull, Log Normal, and
Log Logistic Distributions

(The same principles that apply to the modeling of these
ball bearing failure times also apply to the modeling of
service times or stationary interarrival times for a queueing
system.)

First, consider fitting an exponential distribution to this
data set using maximum likelihood. The data set for the ball
bearing failure timesBallBearing , is a pre-defined list
in APPL. The APPL procedurBILEreturns the maximum
likelihood estimators as a list. Its arguments are the model,
the data, and the parameters to be estimated. The APPL
statements

X
lamhat

ExponentialRV(lambda);
:= MLE(X,BallBearing,[lambda]);

return A = 0.0138 as the maximum likelihood estimator.
The additional APPL command

PlotEmpVsFittedCDF(X, BallBearing,
[lambda = lamhat[1]], 0, 180);

wherelambda = lamhat[1] assigns the value in the list
lamhat tolambda , produces a plot of the empirical and
fitted CDFs on one set of axes, as seen in Figure 4.

In order to assess the model adequacy, either a formal
goodness-of-fit test can be performed, or goodness-of-fit
statistics can be compared for competing models. The
Kolmogorov—Smirnov test statistic, for example, can be
computed with the additional APPL statement

KSTest(X, BallBearing,
[lambda=lamhat[1]]);

which returns 0.3068, indicating a rather poor fit.

As an alternative, one might consider fitting tieeip-
rocal of an exponential random variable to the ball bearing
failure times, as suggested in the following example.
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0.8
0.6
CDF

0.4+

0.2
/

070 I 6080 100 120 140 160 180
Figure 4: Empirical and Fitted Expo-

nential Cumulative Distribution Func-
tions for the Ball Bearing Data Set

Example 13. Fit the reciprocal of an exponential
random variable to the ball bearing failure times in the
previous example.

The APPL statements required to find the distribution
of the reciprocal of an exponential random variable and find
the MLE for the unknown parameter are

X = ExponentialRV(lambda);

g = [[x -> 1/ x], [0, infinity]];

Y := Transform(X, g);

lamhat := MLE(Y,BallBearing,[lambdal);

which derives the PDF of to be

A ,
fry) = ;e—m y>0

and calculates the MLE = 55.06. The functiong is used
to find the distribution ofY = g(X) = 1/ X.

As can be seen in Figure 5, the reciprocal of the
exponential also provides a poor fit to the ball bearing
data.

0.8
0.6
CDF

0.4+

0.2

07720 40 60 80,100 120 140 160 180
Figure 5: Empirical and Reciprocal Ex-

ponential Fitted Cumulative Distribution
Functions for the Ball Bearing Data Set
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Neither the exponential model nor its reciprocal are
appropriate for modeling the failure times. It might be ap-
propriate to consider two-parameter distributions as potential
models, as shown in the next example.

Example 14. Fit the inverse Gaussian and Weibull
distributions to the ball bearing failure times. Again using
the APPL procedureSILEand KSTest ,

X = InverseGaussianRV(lambda, mu);

hat :=MLE(X,BallBearing,[lambda,muy]);

KSValue := KSTest(X, BallBearing,
[lambda = hat[1l], mu = hat[2]]);

yields an improved fit with. = 23167, 4 = 72.22, and a
Kolmogorov—Smirnov test statistic of 0.088. The procedure
MLE is able to return the appropriate values because the
maximum likelihood estimators are in closed form for this
particular distribution. Unfortunately, the statements

Y := WeibullRV(lambda, kappa);
hat := MLE(Y, BallBearing,
[lambda, kappal);

fail to return the MLEs in APPL. The Maple numerical
equation solving procedurisolve is not clever enough

to exploit some of the structure in the score vector that is
necessary to find the MLEs. Therefore a special routine,
MLEWeibull , has been written that computes MLEs for
the Weibull distribution.

Besides the procedur@dotEmpVsFittedCDF  and
KSTest , fit can be assessed visually using a Q-Q or P—P
plot (Law and Kelton 2000, pages 352-358). The APPL
statements used to produce the Q—Q and P-P plots for the
Weibull fit to the ball bearing failures displayed in Figures
6 and 7 are

QQPIlot(Y, BallBearing,

[lambda = hat[1], kappa = hat[2]]);
PPPIot(Y, BallBearing,

[lambda = hat[1], kappa = hat[2]]);

To conclude the ball bearing data set examples, Table 1
summarizes the Kolmogorov—Smirnov test statistic values
for various distributions that were fit to the data in APPL
via maximum likelihood estimation.

Table 1: Kolmogorov—Smirnov Test Statistic
Values for Various Distributions

Model Test statistic
Exponential 0.307
Reciprocal of Exponential 0.306
Weibull 0.151
Gamma 0.123
Arctangent 0.094
Log normal 0.090
Inverse Gaussian 0.088
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Q-Q Plot
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0 720 40 60 80 100 120 140 160 180
sample

Figure 6: Q-Q Plot of Ball Bearing
Data with Fitted Weibull Distribution

P-P Plot
14 Of

0.8
0.6
model

0.4+

0.2+

0 02 0"45ampleo"6 08 1
Figure 7: P—P Plot of Ball Bearing
Data with Fitted Weibull Distribution

Another wrinkle that can present itself in input modeling
is the presence of censoring. A right-censored data set,
for example, often occurs in reliability and biostatistical
applications. Examples likely to arise in discrete-event
input modeling situations include machine failure times
(when some machines have not yet failed) and the analysis
of rare events.

Example 15 Consider the problem of determining
an input model for the remission time for the treatment
group in the study concerning the drug 6-MP (Gehan 1965).
Letting an asterisk denote a right-censored observation, the
remission times (in weeks) are

6 6 6 6*
19* 20*

7 9% 10 10*
22 23 25 32*

11~
32*

13 16
17* 34* 35*,

Both MP6 and MP6Censor are pre-defined lists in
APPL. MP6is simply the 21 data values given above, and
MP6Censor is the list

[1, 1,10 1,0, 1, 0,0, 1, 1,
0,001100,0,0, 0]
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where O represents a censored value and 1 represents an
uncensored value. The statements used to determine the
MLE for an exponential distribution are

X
hat :

ExponentialRV(lambda);
MLE(X,MP6,[lambda],MP6Censor);

The code yields. = 525. Similarly, the statement

hat :

MLEWeibull(MP6, MP6Censor);

yields the MLE estimates. = 0.03 and< = 1.35 for
the Weibull distribution. The Kaplan—Meier product-limit
survivor function estimate for thelP6data set, along with
the fitted Weibull survivor function, are plotted in Figure 8
using the additional APPL statements

Y := WeibullRV(lambda, kappa);

PlotEmpVsFittedSF(Y, MP6,
[lambda = hat[1], kappa
MP6Censor, 0, 23);

hat[2]],

The downward steps in the estimated survivor function occur
only at observed remission times. The six parameters to the

11—
0.8

0.6

SF

0.4+

0.2

0 5 0, 15 20
Figure 8: Product-Limit Survivor
Function Estimate and Fitted
Weibull Survivor Function for the

6-MP Treatment Group

plotting function are the random variable whose SF is to be
plotted, the data values in a list, the parameters associated
with the random variable, the right-censoring vector in a
list, and the lower and upper plotting limits. Note that the
product-limit estimator cuts off after the largest observed
remission time (Lawless 1982).

All of the input modeling examples thus far have been
limited to continuous data. The next example fits the geo-
metric distribution as a model for daily demand at a vending
machine.

Example 16. A vending machine has capacity for
24 cans of “Purple Passion” grape drink. The machine is
restocked to capacity every day at noon. Restocking time is
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negligible. The last five days have produced the following 92360, 94078, 98231, 99900];
Purple Passion sales: X = WeibullRV(lambda, kappa);
hat := MLENHPP(X, CarFailures,

14 24 18 20 24 [lambda,kappa],100000);

The demandfor Purple Passion at this particular vending The last argument in MLENHPP tells the procedure that
machine can be estimated from the data by treating the 24- the failures were observed over the interval [0, 100,000]
can sales figures asght-censoreddemand observations. ~ Miles. The additional APPL statement

If demand has the geometric distribution, with probability )
function PlotEmpVsFittedCIF(X, Sample,

[lambda = hat[1], kappa = hat[2]],
fO=pd-p' 1=012... 0, 100000);

produces a plot of the empirical cumulative intensity function

find the MLE for p. and the fitted Weibull cumulative intensity function as shown

As discussed in the introductory section, many proce-

dures, likeMLE are able to handle discrete distributions. in Figure 9.
Since the pre-defined geometric distribution in APPL is pa- 12
rameterized for = 1, 2, . . ., we need to define a geometric
random variable with the different parameterization (used 104
above) in the list of three sublists data structure. No new
APPL commands are needed to compute the MLE for 8
The statements oF 6]
X =[x ->p*@-p " x, R
[0 .. infinity],
['Discrete”, "PDF"]]; 5]
PurplePass := [14, 24, 18, 20, 24];
PurplePassCensor := [1, O, 1, 1, O]; o : : ‘
MLE(X, PurplePass, [p], . 20000 40000 X-GOOOO 80000- 100000
PurplePassCensor); Figure 9: Cumulative Intensity Func-
tion Estimate and Fitted Weibull Cu-
yield p = 3. Model adequacy is not considered for this mulative Intensity Function for the
particular example. CarFailures Data Set

. All previous ex_amples have con5|de_red time- Every example considered thus far has used maximum
independent observations. There are occasions When ajyeingod to estimate the unknown parameters. APPL in-
serles_ of eve_nt times may be time depen_dent, and a more cludes the procedurdlOMor computing the method of
complicated input model may be appropriate. moments estimators.

Example 17. Ignoring preven_tive maintenance, twere Example 18. (Larsen and Marx, 2001, page 319) Hurri-
O(Idome.ter readings (from a certalq model of car)'assomated canes typically strike the eastern and southern coastal regions
with failures appearing over the first 100,000 miles are of the United States, although they occasionally sweep inland

before completely dissipating. The U.S. Weather Bureau
égf:; 518;33 ggggg 97;35?; 9883533 gsgggg reported that during the period from 1900 to 1969 a total of
’ ’ ’ ’ ' """ 36 hurricanes moved as far as the Appalachian Mountains.
Consider fitting a nonhomogeneous Poisson process to 1h€ maximum 24-hour precipitation levels (measured in
the above data set, where the ending time of the observation inches) recorded from those 36 storms during the time they
interval is assumed to be 100,000 miles. The data can be Were over the mountains are shown below and at the top
approximated by a power law process (i.e., the intensity Of the following page. . .
function has the same parametric form as the hazard func- A histogram of the data, which can be plotted in Maple,
tion for a Weibull random variable). The following APPL ~ Suggests that the random variallewhich is the maximum
statements, including the additional procedure MLENHPP, 24-hour precipitation, might be well approximated by the

return i = 0.000026317 and = 2.56800: gamma distribution.
CarFailures := [12942, 28489, 65561, 31.00 2.82 3.98 4.02 9.50 450
78254, 83639, 85603, 88143, 91809, 11.40 1071  6.31 4.95 5.64 5.51
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13.40 9.72 6.47 10.16 4.21 11.6
4.75 6.85 6.25 3.42 11.80 0.80
3.69 3.10 22.22 7.43 5.00 4.58
4.46 8.00 3.73 3.50 6.20 0.67.

Differentiating with respect ta yields

af  —b- a)? 4+ 2(x1 — a)(b — a)
da b—a) '

The following APPL code finds the method of moments When the derivative is equated to zero and the resulting

estimates for the parametersand «, whereHurricane
is the above data set pre-defined in APPL

X = GammaRV(lambda, kappa);
hat := MOM(X, Hurricane,
[lambda, kappal));

954000 ~
4252153

The resulting estimates for the parametersiate

0.224 andé = $32225= 1 64.

3 FURTHER WORK

Some ongoing work in the area of input modeling in APPL
is described here. First, most distributions containing 3 or

4 unknown parameters (e.g., the Johnson distributions) are

not going to have closed-form maximum likelihood estima-
tors. Based on our experience with the Weibull distribution
illustrated in Example 14, it will be necessary to write cus-
tom code for many of these distributions. This is precisely
what is required from the batch and interactive software
packages that perform input modeling. Fortunately, there
is significant literature concerning the numerical methods
required to arrive at these estimators.

Second, some distributions, such as the Erlang distri-

bution, have both a discrete and a continuous parameter.
In order to compute parameter estimates, it is necessary to

prove results that will expedite their calculation. In using
maximum likelihood on the Erlang, for example, it would

not be possible to calculate the MLEs for the scale parameter

for all shape parameters in the parameter space. Thus som
results concerning the monotonicity of the likelihood func-

tion as the shape parameter varies are necessary to provid

an algorithm for calculating the MLEs.

Third, some distributions have their unknown param-
eters as part of their support. Consider finding the MLEs
for the triangularg, b, ¢) distribution for a sample size of
n = 2. Without loss of generality, assume < x2. Sym-
metry dictates that

A~ X1+ X2
b= ——
2

and thath — a = ¢ — b. Thus the problem of finding the
MLE for a, for example, boils down to maximizing

2(x1—a) _ x1—a
(c—a)b—a) (b-a)?

flxya) =
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equation is solved fou, the MLE is

2x1 — b.

a

Likewise,

¢ =2xp— b.

Moving to the case of = 3 is more complicated since it

is not clear whether the middle data value should have its
likelihood function considered part of the left or the right
support of the PDF. An algorithm must be developed in
order to compute the MLEs for general

Fourth, an asymptotic confidence region for unknown
parameters based on the likelihood ratio statistic can be
determined by plotting the appropriate contour of the log
likelihood function. Maple’s symbolic and numeric abili-
ties can be exploited to produce these plots for arbitrary
distributions and data sets.

In conclusion, APPL is a platform which can be used
for input modeling in an interactive, as opposed to a batch
platform. Its ability to interface with probability theory
presents some advantages for calculating exact probabil-
ity measures. For further reading concerning the APPL
software, see Glen, Leemis, and Evans (2000).
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