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duced, the assumptions of unimodality and boundedness are
dropped, special considerations are given to the tails of func-

This paper considers the development of envelope methodstions and higher order envelopes are constructed. Evans and
as a tool for simulation. Envelope methods are based on the Swartz (1998c) also use envelopes to approximate integrals

construction of simple envelopes to functions. The proposed
envelopes are general, require little input from the user and

and provide exact error bounds.
In section 2, we describe the general framework for

are based on the concavity structure of the function or some constructing lower and upper envelopes to general functions.

transformation of the function. The construction of these

In section 3, we consider the application of the envelopes to

envelopes facilitates variate generation using the adaptive variate generation based on the adaptive rejection algorithm.

rejection algorithm.
1 INTRODUCTION

Simulation is fundamental to the investigation of complex

Various new examples based on non-standard distributions
are provided to highlight the utility of the methods.

2 ENVELOPE CONSTRUCTION

stochastic systems. To that end, various general techniquesConsider the construction of a lower enveldje) and an

have been developed to simulate from particular distribu-
tions. For example, inversion and the ratio-of-uniforms algo-
rithm are two long-standing strategies for simulating from
continuous univariate distributions (see Fishman, 1996).

Nevertheless, there arise in practice non-standard distribu-

tions for which standard simulation strategies are inappli-
cable. In this context it would be useful if “black-box”

upper envelope(x) to a function f (x) defined onR.

We begin with the specification of a transformation
T : [0, 00) — R and an integer > 0. The specification of
T andn provides the ingredients for envelope construction.
There are many possible transformaticfisthat may be
considered such as the logarithm transformation (Gilks and
Wild, 1992) and the class of power transformati@hig’) =

generators were available so that variate generation could 7. This is a very general framework; we may choose a

be accomplished without extensive effort. Simulation using

singleT overR or we may defing" piecewise. With respect

the envelope methods described in this paper is an attemptto choosing the integer, it is generally true that increasing

in this general direction.

The construction of envelopes for general random vari-
ate generation has historical precedents in the work of
Marsaglia and Tsang (1984), Devroye (1986) and Zaman
(1991). In Gilks and Wild (1992), a useful generator is
formed by adaptively constructing upper and lower lin-
ear splines to the logarithm of log-concave functions and
then applying the rejection algorithm. Hoermann (1995)
introduces the idea of’-concavity which extends variate
generation to densitieg whereT (f) is concave.

In Evans and Swartz (1998a, 1998b), generalizations
of Gilks and Wild (1992) and Hoermann (1995) are con-
sidered for the purpose of variate generation. For example,
the notion of7-concavity is extended]-convexity is intro-

572

the value ofn improves the accuracy of the envelopes at
the expense of simplicity. We expand on the choicelof
andn as we continue.

Having defined’” andn, we obtain the inflections points
X1 < - < xp OF (T(f))™. The inflection points are often
easily obtained via a symbolic package such as Maple. As
demonstrated in Evans and Swartz (1998b), typically the
calculation of inflection points can be entirely avoided. It
follows that the function T (£))™ has constant concavity
in an interval(x;, x,) wherer =I/+1andl=1,...,m—1.
If (T(f))™ is concave onx;, x,) then the chord

(TN ) = (TN ()

Xp — X]

(T(NH™ (x)+

(x—x7) (1)
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bounds(T'(f))™ from below; moreover, an upper bound
on (T(f)™ is the tangent

(TN @)+ (TN ) (x = x). 2
If (T'(f))™ is convex on(x;, x,), then the chord and tangent
expressions are simply reversed.

It is the specification of’ andn, and the calculation of
X1, ..., X, that we view as the minimal information needed
for envelope construction. Because of the minimal informa-
tion, we refer to the resultant algorithms as “semi-automatic”
or “nearly black-box” procedures. This development allows
for the construction of envelopes fd@x) on intervals(x;, x;)
as given by the following proposition.

Proposition 1. Consider the intervalx;, x,). Sup-
pose thatT is an increasing invertible function withh+ 3
derivatives and thatT (f))™ is concave. Then for every
x € (x7, xr), we have thal(x) < f(x) < u(x) where

" T FH®
R [Z ( (f)lz! ) (0 ok
k=0
(TN ) = (TUN™ () (x — xz)n“]
+
Xy — X] (n+1)!
and
n+1 k)
V() = 71 [2] (T(f)lz! @) xﬂ .
k=

Proof: The proof generalizes Lemma 2 in Evans and
Swartz (1998a) which proceeds by taking the anti-derivatives
of (1) and (2)n times and then inverting via 1.

If (T(f))™ is convex on(x;, x,) then the expressions
for /(x) andu(x) in Proposition 1 are reversed. The ex-
pressions are again reversedlifis a decreasing function.

Now there are various way that the approximating en-
veloped (x) andu(x) can be improved. First, the envelopes
can generally be made tighter by choosimg- 0 which
results in higher order envelopes. Wheg= 0, the approx-
imations to7 () are linear. Second, it is a simple matter to
improve the envelopes on any interyaf, x,) by compound-
ing. By introducing a new point* wherex; < x* < x,, the
concavity structure orix;, x*) and (x*, x,) is the same as
on (x;, x,). Therefore improved lower and upper envelopes
can be defined on each of the subintervals.

The above developmentis all that is needed to construct

envelopes for truncated function&x). For suppose that
f(x) has a left truncation pointy; and a right truncation
point . Then we simply sekg = 11 and x,,+1 = 2 and
note that the interval&g, x1) and(x,,, x,,+1) have constant
concavity. Truncated functions are common in Bayesian
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statistics wheref is a density function and is a parameter
subject to order restrictions.

In problems where we have tails, special consideration
is given to the construction of the upper envelage). As
a first priority, we should choosey and x,,.1 somewhat
extreme so as to limit the impact of tail calculations for
variate generation. Without loss of generality, suppose that
we are interested in constructing an upper envelope for the
right tail. We should choose a smooth and invertible function
T such thatl ~1(« + Bx) is integrable or(x,,,1, c0). Now
suppose thatf is T-concave on(x,+1,00) when T is
increasing off' -convex on(x,,+1, oo) whenT is decreasing.
Then forx € (x,,4+1, 00) we have that

T(f(x) < T(f CmsD)+T'(f CmsD) [ Com21) (X —Xm+1)

when f is T-concave and

T(f () =2 T(f CmsD)+T'(f Cm4)) [ Com2) (6 —Xm4.1)

when f is T-convex. Then taking th&-inverse of both of
these inequalities we obtain

T7HT (f (Xms1)
+ T (fComaD) f G (X — Xmy1) ]

u(x)

which serves as an upper bound fgix) when x €
(Xm+1, 00).

Example 1 The Exponential Distribution

With such a tractable distribution as the exponential,
there is certainly no need to develop new algorithms to
generate exponential variates. However, our methods are
easily and effectively implemented, and more importantly,
the results provide building blocks for more complex prob-
lems.

Therefore consider the functiorf(x) = ¢™* and
chooseT equal to the identity map. Note théé"‘)(”) =
(—=1)™ ¢=* and so then — rh derivative is concave when
n is odd and convex when is even. Therefore, on the
interval (a, b), using then — th derivative, we obtain the
upper envelope foe™ which is given by

ok
et C(x —a)  nodd
M(.X) - _ 1 k
e ko %(X —a)
_1)1 p—b_,—a
+ ((n—H{)! e (x — ay**+t n even

and the lower envelope fer* is obtained by reversing the
expressions for odd andn even.
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3 VARIATE GENERATION

The rejection algorithm is a general method for variate gen-
eration from a density that is proportional o Suppose
then that the functiory (x) is bounded above by an upper
envelopeM g (x) whereM > 0 is a known constant argdx)

is a standard density function from which we can sample.
Then generat& ~ g and generatev ~ Uniform(0, 1). If

w < f(x)/Mg(x), then retainX and note thatX arises
from a distribution with density proportional tb. It is easy

to show thatX is accepted with probability f (x) dx/M.
Therefore, a successful implementation of rejection sam-
pling involves obtainingg and M such thatM is not too
large andg is a density from which we can efficiently
generate variates.

Using the piecewise envelopegx) and [(x) from
section 2, implementation of rejection sampling is straight-
forward. We simply seMg(x) = u(x) where the constant
M is determined by integrating(x) over the support of
f(x). The density (x) is viewed as a mixture with mixture
intervals determined byo, ..., x;+1-

To sample fromg(x), we must first sample a mixture
component. This is done using the aliasing method (see
Devroye (1986)) and only requires the generation of a
single uniform variate. Once the mixture component has
been determined, our second step in the rejection algorithm
involves the generation of a variate from the particular
mixture. Suppose then that we are sampling from the
mixture on (x;, x,). A similar development can be given
for the tails. The distribution function for this mixture is
given by

f;j u(z)dz

U=
O = T

®3)

Now, we need to be able to generate variates ftd¢m) in
(3). A direct method is to generage~ U (0, 1) and then
solve U(X) = p for X. Note that becaus& is strictly
increasing on(x;, x,), there is a uniqueX and this is the
unique root ofU(x) — p lying in the interval. Note that
if T is the identity map, therV is a polynomial whose
coefficients are easily calculated. In this case, the root
can be obtained using polynomial root-finding algorithms
although we have found that the secant method is usually
more efficient. For certain other choices (¢§.= In and
n = 0), U(x) reduces to convenient forms that are also
easily invertible.

The lower envelopé(x) > 0 which boundsf from
below can also be used in the rejection algorithm.f Ifs

computationally expensive to evaluate, then the squeezing

condition w < I(x)/Mg(x) is checked prior to checking
w < f(x)/Mg(x). Ifthe squeezing condition holds, there is
no need to check the expensive conditiorc f(x)/Mg(x)
as we know that it also holds.
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Swartz

As described above, the final step in the rejection al-
gorithm involves checking whether we retain the variste
This step leads to an adaptive algorithm. For if we reject
the variate X, then we replace the intervdlk;, x,) with
the 2 subintervalgx;, X) and (X, x,) and update the en-
velopes. The expensive part of adaptive rejection sampling
is the setup time for aliasing. Accordingly, it makes sense
to stop adapting when the upper and lower envelopes pro-
vide accurate approximations 6 As discussed in Evans
and Swartz (1998a), a good rule is to stop adapting in the
interval (x;, x,) when the ratio

f;j’ I(z)dz
f;’ u(z)dz
is sufficiently close to 1.

The above algorithm leaves open the question of what
is a suitable choice of the order of the approximatiA
natural criterion to assess this is efficiency of computation;
namely which choice of: leads to the fewest rejection
steps or, perhaps more importantly, the fastest computation
time. However, as is shown in some of the examples, the
choicen = 0 frequently leads to a perfectly satisfactory
algorithm. The real virtue of the higher order polynomial
envelopes is that such envelopes can often be computed
very easily. For example, suppose thaican be factored
as f(x) = g(x)h(x) whereg > 0,2 > 0 and we have
linear (i.e.n = 0) envelopesd, < g <u, andl, <h <uy
for these functions. We then have quadratic envelopes
lely < f < uguy for f. Application of techniques similar
to this can often allow us to entirely avoid the computation
of derivatives off and also the need to calculate inflection
points of such derivatives.

Example 2 Generating from Truncated Exponentials

As mentioned in Example 1, there is certainly no need to
develop new algorithms for generating from the exponential
distribution. Therefore this example serves as somewhat
of a worse case scenario for the envelope methodology
described in this paper. We consider the generation &f 10
variates from the standard exponential distribution truncated
on the interval(1.0, 5.0). We first use the IMSL procedure
DRNUN to generate a uniform variateand then obtain the
required variate = — logle 1—(e~1—e~2)u] viainversion.
This requires 10 seconds of computation. Note that this
is one of the few practical examples where inversion leads
to an analytic formula. We compare this to the envelope
methodology where a degree= 0 expansion is used in
the expression given in Example 1. The generation &f 10
variates requires 70 seconds of computation.

Example 3 Generating from Truncated Student Dis-
tributions

A naive approach to this problem involves generating
a variatex from the full Student distribution and retaining
the variate if it lies within the required bounds. Evans
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and Swartz (1998a) develop a new and simple algorithm
for generating from the Student family and truncations of

Swartz

implementation of Proposition 1 wherg is chosen as
the identity map and derivatives are obtained via the Faa

Students. The approach is based on the recognition thatdi Bruno formula. As an example, consider the prod-

the Studentw) distribution is T-convex everywhere when
T(f) — f—l/()»-f—l)_

As an example, we consider generating from a Stu-
dent(.5) distribution truncated to (-1,2). Generating® 10
values using our methods requires 38 seconds of CPU time.
For comparison purposes, generatin§ tGncated variates
using the naive approach with IMSL routines requires 76
seconds of CPU time. The advantage of our algorithm is
even more dramatic with shorter truncation intervals.

We mention that these sorts of truncated distributions
are common in Bayesian analyses with order restrictions.
In another context, Evans and Swartz (1996) generate from
truncated F distributions to implement stratified multivariate
Student importance sampling.

Example 4 Generating from Truncated Polynomial
Distributions

Chan (2000) considered the estimation of pupping prob-
abilities of Grey Seals captured over a period of years. Based
on independent binomial models, latent data and certain or-
der constraints on the pupping probabilities, the analysis
requires simulation from distributions whose densities are
proportional to truncated polynomials.

For example, suppose that we need to generate the
variate p, (e.g. the probability that a female Grey Seal
gives birth at age’) where the density op, is proportional
to a non-negative-th degree polynomiaf (p,) truncated
betweena andb. The simple but inefficient approach in
Chan (2000) begins with a root-finding algorithm to obtain
the valuep which maximizesf on (a, b). The rejection
algorithm is then used wherne is generated according to
the Uniform(0, 1) distribution, p, is generated according
to the Uniform(a, b) distribution andp, is retained ifu <
FP/f ().

Envelope methods can be used in this application by
choosingT equal to the identity map and choosing= 0.

The critical points are easily obtained using a root-finding
algorithm for polynomials. The adaptive aspect of the
algorithm quickly provides good envelopes to the function
f. Alternatively, choosing” equal to the identity map and
choosingn = g — 1 gives essentially an inversion method
as the upper envelopg(p,) is equal tof (py).

Example 5 Rational Normal Generators

We consider densities (possibly truncated) that are prod-
ucts of normal densities and positive rational functions (i.e.
the quotient of 2 polynomials). We note that this is a huge
family of distributions accomodating a wide range of shapes.
Such distributions may have Bayesian applications in prior
elicitation and importance sampling.

Evans and Swartz (1998b) develop algorithms for vari-
ate generation from these distributions as well as rational-
beta distributions. One approach is based on a direct
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uct of the Norma(l0, 1) density with the rational function
(x2 + 4x + 4.01)(x2 — 4x + 4.01)/(x%2 + 1). Using a gen-
erator with ordern = 2, the acceptance rate is a highly
respectable .74.

Example 6. Gibbs Sampling from CIHM

Albert and Chib (1997) consider the Bayesian analysis
of conditionally independent hierarchical models (CIHM).
These are a broad and useful class of models which may
be analysed using Markov chain Monte Carlo methods.
In one such exampley; ~ Poissotin;), 6; = In(n;) ~
Normakx! 8, 72) and (8, t?) are independent witlp ~
NormakBo, Bo‘l) andt? ~ Inverse Gammé, b). For this
problem, the conditional distribution @ is proportional
to

0 —xI'p

explyi6; — e’ }¢ <—> “4)

T

where ¢ is the density function of the standard normal
distribution.

Albert and Chib (1997) recommend the Gibbs sampling
algorithm with an imbedded Metropolis step to sample
from the non-standard conditional distributions &y i =
1,...,n. Rather than using the Metropolis step, one can
sample from (4) directly using the envelope methods in this
paper. For example, perhaps the simplest generator involves
choosingT = In. In this case, the conditional density is
T-concave and choosing = 0 gives a slight variation of
the Gilks and Wild (1992) algorithm. Note th#gt and ¢
in (4) are changing in each iteration of Gibbs sampling;
therefore it does not make sense to spend too much time
finding efficient generators for specific valuespfindz.

Example 7. Generation in FOA Models

Swartz (2000) considered empirical Bayes models with
latent variables to analyze bidding behaviour in final offer
arbitration (FOA). One step in the posterior analysis requires
simulation from non-standard distributions with densities
proportional to

1
f(5) = Spexpla+b/y+ c/y%)

whered < y < e. Swartz (2000) implements the simulation
using the rejection algorithm based on the rejection density
g(y) = de(e — d)~1/y? defined ond < y < e. This also
requires the simple maximization of e+ b/y + ¢/y?}
ond < y < e. The approach can be extremely inefficient
for certain values of:, b, ¢, d ande.

Alternatively, an envelope approach can be used in this
application by first obtaining envelopésy) and u(y) to
expla + b/y + ¢/y?} based on the exponential expansion
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