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ABSTRACT  
 
Nonhomogeneous Poisson processes (NHPPs) are 
frequently used in stochastic simulations to model 
nonstationary point processes. These NHPP models are 
often constructed by estimating the rate function from one 
or more observed realizations of the process. Both 
parametric and nonparametric models have been developed 
for the NHPP rate function. The current parametric models 
require prior knowledge of the behavior of the NHPP under 
study for model selection. The current nonparametric 
estimators, in general, require the storage of all of the 
observed data. Other hybrid approaches have also been 
developed. This paper focuses on the nonparametric 
estimation of the rate function of a nonhomogeneous 
Poisson process using wavelets. The advantages of 
wavelets include the flexibility of a nonparametric 
estimator enabling one to model the nonstationary rate 
function of an NHPP without prior knowledge or 
assumptions about the behavior of the process. 
Furthermore, this method has some advantages of current 
nonparametric techniques. Thus, using wavelets we can 
develop an efficient yet highly flexible NHPP rate 
function. In this paper, we develop the methodology 
required for constructing a wavelet estimator for the NHPP 
rate function. In addition, we present an experimental 
performance evaluation for this method. 
 
1 INTRODUCTION 
 
In this paper, we focus on arrival processes that can be 
classified, as nonstationary point processes.  For these 
processes we are able to observe the arrival time of each 
entity where the rate at which arrivals occur changes over 
time.  Under certain assumptions, these nonstationary 
arrival processes can be represented by a nonhomogeneous 
Poisson process (see Çinlar 1975).  
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The main objective of the research is to develop a 
nonparametric model for the estimation of the rate function 
of a nonhomogeneous Poisson process (NHPP) using 
wavelets.  There are several advantages to using wavelets 
as a modeling tool. Wavelets are very flexible in terms of 
their ability to model complex and irregular behavior that 
can be found in arrival processes. In addition, wavelets can 
be used as an estimator without prior knowledge or 
assumptions about the behavior of the process.   

In the following sections, we present the methodology 
for constructing a wavelet estimator for the NHPP rate 
function. We then present a method for generating arrivals 
from an NHPP having a wavelet rate function that utilizes 
the standard method of thinning. In addition, we present an 
experimental performance evaluation for the wavelet 
procedure to evaluate the goodness of fit for the wavelet 
model. Finally, we present our conclusions and 
recommendations for future work. 

 
1.1 Nonhomogeneous Poisson Processes  
 
A nonhomogeneous Poisson process  }0:)({ >ttN is a 
generalization of the Poisson process in which the 
instantaneous arrival rate )(tλ  at time t is a non-negative 
integrable function of time.  The mean-value function (or 
the integrated rate function) of the NHPP is given as, 
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where )(tN  is the number of arrivals in ],,0( t for all 

0≥t  (Çinlar 1975). 
Nonhomogeneous Poisson processes have been 

applied successfully to model nonstationary point 
processes for a large class of problems. The distribution of 
the NHPP is completely defined by the rate (intensity) 
function. Therefore the objective of this research is to 
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estimate the rate function, )(tλ . The rate function of these 
NHPPs may exhibit many types of systematic or irregular 
behavior. These may include cyclic behavior as well as 
long-term evolutionary trends. The cyclic behavior may 
involve multiple periodicities and may be asymmetric in 
nature. Therefore, a flexible method is needed for 
modeling the rate function. Both parametric and 
nonparametric models have been developed for the NHPP 
rate function. The current parametric models require prior 
knowledge of the behavior of the NHPP under study for 
model selection. The current nonparametric estimators, in 
general, require the storage of all of the observed data. 
Other hybrid approaches have also been developed. We 
propose a nonparametric estimate of the rate function of an 
NHPP  using wavelets. 

 
1.2 Wavelets 
 
Wavelet theory is the mathematics associated with building 
a model for a signal, system, or a process with a set of 
�special signals� called wavelets. Wavelets are useful in a 
broad range of applications, such as data compression, 
signal and image processing, nonparametric statistical 
estimation, numerical analysis, chemistry, astronomy, 
oceanography, turbulence, human vision, radar, and 
earthquake prediction  (Bruce, et al. 1997). 

Wavelets are the functions that satisfy certain 
mathematical requirements and are used in representing 
data or other functions. These functions cut the data into 
different frequencies and then study each component 
matched to its scale. In wavelet analysis, linear 
combinations of wavelet functions are used to represent 
signals or data.  

For a function to qualify to be a wavelet, it must be 
oscillatory and have amplitudes that quickly decay to zero 
in both the positive and negative directions. The required 
oscillatory condition leads to using sinusoidal type 
functions as the wavelet basis functions.  These two 
conditions must be simultaneously satisfied for the 
function to be a wavelet (Young 1996). 

Wavelets consist of two types of functions, scaling 
function and mother wavelet, that work together to provide 
wavelet approximations. The scaling function is 
denoted )(tφ and has the property that 

 
∫ = .1)( dttφ  

 
The second type of the function used in wavelet analysis is 
called the mother wavelet or analyzing wavelet and is 
denoted )(tψ . The mother wavelet has the property that 
 

∫ = .0)( dttψ  
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The scaling function is comparatively better than the 
mother wavelet at modeling low frequency and smooth 
parts of the signal or data. The mother wavelet can be 
effectively used to approximate the detailed and high 
frequency parts of the signal or data. 

The mother wavelet provides the underlying functional 
form for the approximation at various levels (resolutions) 
such that  

 
Mother wavelet = a-1/2 {Scaled Wavelet} 

 
or 
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In equation (2), the factor a-1/2 is called an energy 
normalizing term and is determined such that the mother 
wavelet and the scaled wavelet have the same amount of 
energy (Young 1996). Furthermore, wavelets are sets of 
functions formed by dilations of the mother wavelet, which 
are controlled by the positive real number +∈Ra , and 
translations of the mother wavelet, which are controlled by 
the real number b . Visually, the mother wavelet appears to 
model the local oscillation, or wave, in which most of the 
energy of the oscillation is located in a narrow region in the 
physical space.  The dilation parameter a  controls the 
width and rate of this local oscillation and can be 
considered to be controlling the frequency of )(xψ . The 
translation parameter b  moves the wavelet throughout the 
domain (Erlebacher, et al.  1996). 

The parameter scale in the wavelet analysis is similar 
to the scale used in the maps. As in the case of maps, larger 
scales correspond to a non-detailed global view, and small 
scales correspond to a detailed view. Similarly, in terms of 
frequency, low frequency (large scales) corresponds to 
global information of a signal, and the high frequencies 
(small scales) correspond to detailed information of short-
lived pattern in the signal. The translation and dilation 
operations applied to the mother wavelet are performed to 
calculate the wavelet coefficients, which represent the 
correlation between the wavelet and a localized section of 
the signal. The wavelet coefficients are calculated for each 
wavelet segment, giving a time-scale function relating the 
wavelets correlation to the signal. This process of 
translation and dilation of the mother wavelet at different 
scales is referred to as multiresolution analysis where a 
higher resolution corresponds to a higher level of detail. 

 
2 THE WAVELET ESTIMATION  

PROCEDURE 
 
In this section, we develop a wavelet estimator to 
approximate the rate function of an NHPP that represents 
3
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an arrival process. Since the arrival rate of NHPPs cannot 
be negative, a positive wavelet estimator has been 
developed. The devolopment of this methodology is based 
on Walter and Shen (1998) where the theory for 
developing the positive wavelet estimator for the 
approximation of a density function is presented.  The 
properties of the arrival rate of an NHPP are similar in 
several aspects to the properties of a density function 
including non-negativity. Therefore, we develop a positive 
wavelet estimator for approximating the arrival rate of 
NHPP in a similar manner. 
 
2.1 Selecting Wavelet Basis Functions 
 
The first step in the methodology is the selection of the 
wavelet system consisting of the mother wavelet and 
scaling function. From the selected wavelet system, the 
scaling function will be used for approximation of the rate 
function of the NHPP.  

The mother wavelet must be selected such that it 
constitutes an orthonormal function. That is, the inner 
product (dot product) of the mother wavelet must be equal 
to one. The mother wavelet or the orthonormal basis has 
the form 

 
)2(2)( 2/ ntt mm

mn −= −− ψψ  
 
where m is the level of resolution and n  is the shift or 
translation. The mother wavelet is constructed in 
conjunction with the scaling function.  

The scaling function )(tφ  is a real valued function that 
is m times differentiable and whose derivatives are 
continuous and rapidly decreasing.  The scaling function to 
be used for approximation is chosen such that 

 

n
dtntt

,0
)()(∫ =− δφφ  

 
and )}({ nt −φ  is an orthonormal basis function where n,0δ  
is a delta sequence.  

There are different families of wavelets that can be 
used for approximation. Haar wavelets are simple step 
wavelets that are non-continuous in nature and exhibit 
jump discontinuities (Nievergelt 1999). They cannot be 
effectively used for approximation of the continuous rate 
function of NHPPs. Another family of wavelets, 
Daubechies wavelets are continuous in nature and because 
of this property of continuity, Daubechies wavelets can be 
used to effectively approximate the rate function. 
Therefore, we will consider Daubechies wavelets for the 
approximation of the rate function of NHPPs.  Once a 
wavelet family has been established, the next step in the 
methodology is to calculate the wavelet coefficients for the 
basis function at resolution 0 which has support on V0. The 
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next subsection illustrates these calculations for a relatively 
simple Daubechies scaling function.  

 
2.2 Calculation of Daubechies Wavelets 
 
To illustrate the methodology of defining the scaling 
function, we will consider the case of the Daubechies 
scaling function with support from 0 to 3. A graph of this 
scaling function is shown in Figure 1.  
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Figure 1:  Daubechies Scaling Function with Support [0,3] 
 

The starting values for the Daubechies scaling 
function having the window width from 0 to 3 are defined 
as (Nievergelt 1999), 
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whereφ satisfies the recurrence relation 
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If constants in the recurrence equation are replaced by the 
following constants 
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then the recurrence relation now becomes 
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The values of the Daubechies wavelet at other points in 
[0,3] can be calculated using the initial values in (3) and 
the recursion (4). Sufficient values of the wavelet are 
calculated so that a smooth scaling function is obtained.  

Using this procedure, we can calculate Daubechies 
scaling functions that have other supports. The recurrence 
equation in general terms can be written as 

 

. )2()(
0
∑
=

−=
n

i
i irhr φφ     (5) 

 
Thus for Daubechies wavelet with support of 0 to 7, the 
recurrence equation will have 7 terms in the equation (5) 
and so on for different supports (Nievergelt 1999) 
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Daubechies (1992) defines the coefficient values for 
wavelets with different supports.  The number r is called a 
dyadic number if and only if, it is an integral multiple of an 
integral power of 2 (Nievergelt 1999). Figure 2 shows the 
Daubechies scaling functions having support 0 to 7.    
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Figure 2:  Daubechies Scaling Function with Support [0, 7] 
 

2.3 Estimation Using Positive Basis Functions  
 
Wavelets are in general real valued functions. We can 
observe from Figures 1 and 2 that the Daubechies wavelets 
can take on negative values. As stated previously, the rate 
function of the NHPP will require a non-negative 
estimator. Walter and Shen (1998) developed a positive 
wavelet estimator for estimating density functions. The 
wavelet estimator for the rate function of an NHPP is based 
on similar approach.  
56
Let )(tφ  be any continuous function having compact 
support that generates the space 0V . The function )(tφ  
generates a partition if  

 
 . ,1)(∑
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This property is shared by all scaling functions of compact 
support especially the Daubechies scaling functions and the 
�Coiflets� (Walter and Shen 1998). 

For 10 <<r , the sumability function or the positive 
basis function is given by, 

 

∑
∈
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n
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where the constant value r  is selected such that this 
positive basis developed is always greater than or equal to 
zero. Walter and Shen (1998) have proven the following 
for the positive basis function.  
 
2.3.1 Lemma 1  
 
Let )(tφ  be continuous and compactly supported. Further 
assume that )(tφ  satisfies equation (6) and, for positive 
constants A, and B, the frame condition 
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If 0V  is the closed linear span of { } Znnt ∈− )(φ , then there 
exist 10 0 << r such that )(tPr satisfies 
 

(i) RttPr ∈∀≥ ,0)(  
(ii) 0VPr ∈  
 

for every 10 <≤ rr . 
 The range of Zn∈ depends on the scaling function 
used to find the positive basis function rP . In this case, we 
considered the value of n varying from �7 to 7. Figure 3 
shows the positive basis function )(tPr  associated with the 
Daubechies scaling function having support of 0 to 7 for r 
= 0.3. The truncation for the positive basis is taken from �6 
to 10. The value of the positive basis function outside the 
limit will be zero. The nature of the basis function will 
depend upon the nature of the scaling function considered 
for approximation. 
5
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Figure 3:  Positive Basis Function Associated with 
Daubechies Scaling Function  

 
Using )(tPr , a positive reproducing kernel, ),( ir ttk  

in 0V is constructed from follows, 
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which in general form can be written as  
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such that, 
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and for )(2 RLf ∈ , the approximation in 0V is given by 
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This kernel satisfies the conditions needed to generates a 
positive delta sequence }{ ,mrk where 
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The wavelet estimator in mV can be written in the 
following form 
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where it are the arrival times of an NHPP whose rate 
function is to be approximated, N is the number of arrivals 
in the interval under consideration. The range for n  is 
selected in such a way that the positive basis function )(tPr , 
can translate through the entire range of arrival times and 
m , the resolution is selected based on the level of detail of 
the  approximation desired. This wavelet estimator is used to 
approximate the rate function of an NHPP.  

We have written computer code in C which is used to 
approximate the rate function of an NHPP.  Observed data is 
used for the approximation and is the input to the program. 
The output is the approximation of this arrival rate.  

 
3 GENERATION OF NHPPS HAVING WAVELET 

RATE FUNCTIONS USING THINNING 
 
Lewis and Shedlar (1979) proposed a general and simple 
method known as thinning. This method is commonly used 
to generate the arrival times of a nonhomogeneous Poisson 
process. The method of thinning is explained here briefly.  

Let )(tλ  be the approximated arrival rate of the NHPP 
using the wavelet estimator, for which the arrival times }{ it  
have to be generated. A stationary Poisson process with 
constant and finite arrival rate )}({max* tλλ =  is generated 

with arrival times }{ *
it . Figure 4 depicts the two rate 

functions used in the thinning algorithm which follows. 
 
Step (1):  Set *

itt =     
Step (2):  Generate 1U and 2U  as independent and 

identically distributed U [0,1] of any 
previous random variates where 1U is 
given as  

 

)(ln1
1*2 UU

λ
−

=  

 
Step (3):  The next arrival is found out as 
 

2
**

1 Utt ii +=+     
 

Step (4):  Replace t by *
1+it  

Step (5):  If *2
)(

λ
λ tU ≤ , we accept *

it , otherwise 

this arrival is thinned out.  
 

Using this algorithm we can easily generate the arrival 
times of an NHPP of the approximated rate function using 
the wavelet estimator. 
66
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Figure 4:  Constant Arrival Rate )(* tλ  (thin line) and the 
Fitted Wavelet Estimator of Arrival Rate )(tλ (thick line) 
 
4 EXPERIMENTAL PERFORMANCE 

EVALUATION 
 
To evaluate the wavelet estimation procedure for fitting the 
rate function of an NHPP, we have conducted the 
following experimental performance evaluations and 
evaluated the goodness-of-fit using both visual and 
numerical goodness-of-fit measures for the wavelet 
estimation procedure.  

We have considered three different cases that 
represent the different types of arrival processes. The 
three cases were selected to evaluate the estimation 
procedure for fitting rate functions of nonhomogeneous 
Poisson processes that have periodic components and/or a 
general trend over time. The cases are chosen based on 
the set of experimental cases, which were used, by Kuhl, 
Wilson, and Johnson (1997) to evaluate a maximum 
likelihood estimation procedure for NHPPs with EPTMP-
type rate functions. The underlying EPTMP-type rate 
functions from which the arrivals are generated have the 
form   

 
)},,,;(exp{)( Θpmtht =λ   ],,0[ St∈  
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Using this rate function we can generate realizations of an 
NHPP having long term trend and/or cyclic effects. 

Table 1 lists the parameters of the EPTMP-type rate 
function for each case.  Case 1 is an EPTMP-type rate 
function with one periodic component. Case 1 does not 
have a long-term trend over time. Case 2 has exponential 
rate function, which exhibits a long-term general trend and 
has one periodic component. The general trend in this case 
is represented by the polynomial of degree 2.  Case 3 has 
an EPTMP-type rate functions with two periodic 
components. 
 

5

 
Table 1:  Parameters of NHPP Used in the Experimental 
Evaluation 

Parameter 1 
Case 

2 3 
0α  3.6269 3.6269 3.6269 
1α  - -0.1000 - 
2α  - 0.0450 - 
1γ  1.0592 1.0592 1.0592 

1φ  -0.6193 -0.6193 -0.6193 
1ω  6.2831 6.2831 6.2831 
2γ  - - 0.7500 
2φ  - - 0.7000 
2ω  - - 3.1416 

 
The frequencies used in the experimentation are 

expressed in radians per unit time such that πω 21= and 

πω =2 radians per unit time. These frequencies depend 
upon the unit time considered. If the unit time is considered 
to be one year, then these frequencies represent annual and 
biennial effects, respectively. 

For these selected NHPPs, the arrival times were 
generated over the interval [0,7] using the program mp3sim 
(Kuhl, Wilson and Johnson 1997). For each case, K=20 
independent replications were simulated. Using the wavelet 
estimator procedure, the rate function was estimated for 
each replication. Based on a preliminary empirical study, 
we have determined that at resolution 4 we achieve an 
appropriate balance between the level of smoothness and 
detail desired. Therefore we have carried out the approxi-
mation of the rate function and the calculation at resolution 
4.  Note, however, that in practice the resolution selected 
will depend on the nature of the data under consideration.   

In practice, especially when the data contains a long 
term trend, we are usually only able to observe one realiza-
tion of the arrival process. Therefore, this experimental 
study centers on fitting the wavelet rate function to one 
realization of data. However, to illustrate the ability of the 
wavelet rate function estimator to converge to the 
theoretical rate function, we also investigated the case of 
multiple realizations of the observed arrival process.  

 
4.1 Formulation of Performance Measures 
 
To evaluate the performance of the wavelet estimation 
procedure, we used both visual-subjective and numerical 
goodness-of-fit criteria. Kuhl, Wilson and Johnson (1997) 
utilized several performance measures to evaluate the 
maximum likelihood estimation procedure for fitting an 
EPTMP-type rate function. These performance measures, 
are restated here for completeness. These performance 
measures are measures of the procedures ability to fit the 
67
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underlying theoretical rate and mean-value function and 
include absolute measures of error for each experiment and 
relative performance measures that can be compared across 
the different experiments.  

For replication k  of a given case ),,1( Kk …= , the 

estimated rate function is denoted by )(� tkλ and the 
estimated mean-value function is denoted by )(� tkµ . The 
average absolute error in the estimation of the rate 
function )(tλ on the kth replication is 

 

dttt
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and the maximum absolute error is 
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for Kk ,.......,1= .  

Aggregate performance measures are computed over all 
replications of a given experiment. The sample mean of the 
observations { }Kkk ,,1: …=δ is denoted by δ and the 
corresponding sample coefficient of variation δV  is given by 
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The statistics *δ  and *δV are computed similarly from the 

observations { }Kkk ,,1:* …=δ . We also calculated the 
normalized performance measures 
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since normalizing by the theoretical average arrival rate 
over [0,S] facilitates comparison of results for different rate 
functions. Aggregate performance measures analogous to 
these are also so calculated for the errors in estimating the 
the mean-value function and denoted by k∆  and *

k∆ . 
In addition, we have calculated several other 

performance measures (Kuhl, Damerdji, and Wilson 1998) 
that are based on the observed arrival process. On the kth 
replication of the NHPP ),,1( Kk …= , let 
{ })(,,1:, SNit kki …=  denote the arrival times observed in 
the time interval [0,S].  The average absolute error in  
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fitting the mean-value function to the empirical mean-value 
function on the kth replication is calculated by 
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for ),.......,1( Kk = . Let D denote the sample mean of the 
observed values { }KkDk ,....,2,1: = . The maximum 
absolute error in fitting the mean-value function to the 
empirical mean-value function on the kth replication is 
calculated by 
 

{ })(1:)(�max ,
* SNiitD kkikk ≤≤−= µ  . 

 
The sample mean of the observed values 
{ }KkD k ,,1:* …=  is denoted *D . 

The following measures compute the grand average 
level of the empirical mean-value functions taken over all 
K replications to normalize the average performance 
measures D  and *D ,  
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In addition to numerical performance measures, 

graphical methods are used to provide a visual mean of 
determining the quality of the estimates. For each case, the 
underlying theoretical rate (respectively, mean-value) 
function is graphed along with a tolerance band for the 
estimated rate (respectively, mean-value) function. 
Tolerance intervals are also obtained for the mean-value 
function )(tµ at a fixed interval of time ],0[ St∈ . 

 
4.2 Discussion of Results 
 
The statistics in Table 2 describe the errors in estimating 
the theoretical rate and mean-value functions. The statistics 
in Table 3 describe the error in fitting the empirical mean-
value functions. Figures 5-10 contain the graphs of 90% 
tolerance bands for the rate function and the mean-value 
function for Case 1, Case 2 and Case 3.  
 The experimental cases are based on those of Kuhl, 
Wilson, and Johnson (1997), so we consider their statistical 
results a benchmark for evaluating the performance of our 
wavelet estimation method. We will also compare our 
results with least square estimation method (Kuhl, 
Damerdji, and Wilson 1998). Relative to these 
benchmarks, the statistical results in Table 2 and 3 seem to 
be good for the selected measures of performance. 
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Table 2:  Statistics Describing the Errors in Estimating 
)(tλ and )(tµ  

Case 1 2 3 
)(Sµ  343 548 443 

δ  10.28 14.37 12.5 
δV  0.14 0.15 0.15 
δQ  0.21 0.18 0.20 
*δ  33.07 49.01 56.25 

*δV  0.29 0.33 0.24 
*δQ  0.67 0.63 0.88 

∆  8.49 7.12 10.81 
∆V  0.43 0.40 0.61 
∆Q  0.048 0.034 0.048 
*∆  19.56 23.52 21.85 

*∆V  0.11 0.10 0.09 
*∆Q  0.49 0.54 0.49 

 
Table 3:  Statistics Describing the Errors in Estimating N(t) 

Case 1 2 3 
)(Sµ  343 548 443 

D  1.698 2.321 2.198 
*D  5.803 8.967 7.632 
DQ  0.0091 0.0081 0.0085 

*DQ  0.0341 0.0592 0.0511 
 
From Table 2 we can see that, in general the 

estimation errors in fitting the underlying rate function are 
slightly higher for wavelet estimation method than the 
corresponding results reported for maximum likelihood 
estimation and approximately equal to the performance 
measures obtained using least square estimation.  

In Table 2, we observe that δ  ranges from 10.28 to 
14.37 while δV  ranges from 0.14 to 0.15 over the 3 cases 
and the normalized absolute error δQ  ranges from 0.18 to 
0.21 over the 3 cases. The absolute values of these 
performance measures are within acceptable limits for 
most kinds of arrival processes encountered in practice and 
are not significantly greater than those values found in 
benchmark studies. In addition to relative consistency of 
performance measures across the 3 cases, when we 
compare case 1 which has one periodic component and no 
long term trend with cases 2 and 3, we observe that the 
addition of long term trend in case 2 or the addition of 
second periodic component in case 3 did not adversely 
affect the performance measures.  
 

569
0

30

60

90

120

150

0 1 2 3 4 5 6 7

Time t

 
Figure 5:  90% Tolerance Interval for the Arrival Rate, t = 
(0,7], in Case 1 
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Figure 6:  90% Tolerance Intervals for the Arrival Rate, t = 
(0,7], in Case 2 
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Figure 7:  90% Tolerance Interval for the Arrival Rate, t = 
(0,7], in Case 3 
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Figure 8:  90% Tolerance Intervals for the Mean-Value 
Function, t = (0,7], in Case 1 
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Figure 9:  90% Tolerance Intervals for the Mean-Value 
Function, t = (0,7], in Case 2 
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Figure 10:  90% Tolerance Intervals for the Mean-Value 
Function, t = (0,7], in Case 3 
 

The performance measures in Table 3 describe the 
errors in fitting the mean value function to the empirical 
mean value. These performance measures show that the 
error in fitting the mean-value function to empirical mean-
value function is lower than the performance measure 
reported by Kuhl, Damerdji, and Wilson (1998) that 
utilized the least square estimation procedures. Kuhl, 
Wilson, and Johnson (1997) did not report these 
performance measures for their maximum likelihood 
estimation procedure.   

The plots of the 90% tolerance bands about the mean-
value function also indicate that the wavelet estimation 
procedure provides good estimates of the underlying 
NHPP. From Figures 6, 8, and 10, we can see that the 
width of the tolerance band in case of the mean value 
function increases with time. This is because the error is 
cumulative over time.  

 
5 CONCLUSION  
 
There are several important objectives we have achieved 
during this research. We have developed a method for 
estimating the rate function of a nonhomogeneous Poisson 
process using wavelets. Utilizing a positive wavelet 
estimator, we are able to obtain a non-negative estimate of 
the NHPP rate function. 

The wavelet estimator has some advantages over 
current parametric estimators in that we do not require 
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prior knowledge about the form of the rate function. In 
addition wavelets provide us with a much more flexible 
model in that we can represent long term trend as well as 
asymmetric cyclic behavior and other irregular properties. 
Although the wavelet estimation procedure requires the 
storage of the observed data points, the only additional 
storage is the coefficients of the wavelet basis function.  

The empirical experimental performance evaluation 
has shown that the wavelet estimation procedure has the 
ability to consistently provide adequate estimates of the 
rate function of an NHPP. In addition, the experiment has 
shown that the wavelet estimation procedure was 
exceptionally good at doing what non-parametric 
estimators are desired to do which is to fit the observed 
arrival process.  

 
6 RECOMMENDATIONS  

FOR FUTURE WORK 
 
This research focused on the development of the method-
ology for calculating a wavelet estimator for the rate 
function of an NHPP. Now that this methodology has been 
established, there are some areas that one may want to 
investigate further. First, convergence theorems need to be 
established to show the asymptotic convergence of the 
wavelet estimator to the theoretical rate function. Second, 
we need to investigate the choice of the basis function used 
in conducting the wavelet fitting procedure to determine 
the advantages and disadvantages in terms of computa-
tional effort and convergence properties. Finally, a large-
scale experiment should be conducted on a set of real 
world data to establish the credibility and usefulness of the 
wavelet estimation procedure in practice.  
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