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ABSTRACT

We formulate the importance sampling problem as a par
metric minimization problem under the original measure
and use a combination of infinitesimal perturbation analy
sis (IPA) and stochastic approximation (SA) to minimize
the variance of the price estimation. Compared to existin
methods, the IPA estimator derived in this paper has signifi
cantly smaller estimation variance and doesn’t depend on t
form of payoff functions and differentiability of the sample
path, and thus is more universally applicable and comput
tionally efficient. Under suitable conditions, the objective
function is a convex function, the IPA estimator presented i
unbiased, and the corresponding stochastic approximati
algorithm converges to the true optimal value.

1 INTRODUCTION

Monte Carlo simulation is used for pricing a variety of
securities, such as exotic equity options or fixed income s
curities like mortgage-backed securities. As the complexit
of the structure of the financial claims and the dynamic
of the underlying assets increases, Monte Carlo simulatio
often becomes the sole computationally feasible means
security pricing.

The efficiency of Monte Carlo simulations depends on
the variance of the estimation. Suppose we estimate th
security pricep by p̂,wherep̂ is an asymptotically unbiased
estimate ofp, then by the Central Limit Theorem,

√
N(p̂ − p)⇒ N(0, σ 2

p̂
),

whereN is the number of simulations andσ 2
p̂

is the variance
of estimation. This means that by reducingσp̂ by a factor of
10, the number of simulation replications required to obtai
the same level of precision will be reduced by a factor o
100. This is the motivation behind a variety of variance re
duction techniques (VRT) in Monte Carlo simulations such
as control variates, antithetic variate and importance sam
58
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pling. Examples of successful implementations of contro
variates for the pricing of financial derivatives include Hul
and White (1987, 1988), Turnbull and Wakeman (1991
and Fu, Madan, Wang (1997).

Variance reduction based on importance sampling h
not been widely used as other VRTs in pricing financia
derivatives until recently. The idea behind importance sam
pling is to simulate more sample paths on the area th
matters; for instance, for a deep out-of-the-money call o
tion, most of the time the payoff from the simulation is
0, so simulating more sample paths with positive payof
should reduce the variance in the estimation. Mathema
ically speaking, the fundamental idea behind importanc
sampling is that under certain regularity conditions, expe
tation under one probability measure can be expressed
an expectation under another probability measure throu
the Radon-Nikodym theorem. The right choice of the ne
probability measure will effectively reduce the varianc
associated with the estimation.

An early example of importance sampling applied to
derivatives pricing is Reider (1993), where increasing th
drift substantially decreases the variance in simulations f
deep out-of-the-money European call options. Glasse
man, Heidelberger, Shahabuddin (1998) apply importan
sampling in the Heath, Jarrow, Merton (1992) framework
reporting substantial variance reduction by combining stra
ified sampling and change of the drift term. Other recen
work on applying importance sampling in valuation of fi-
nancial claims include Andersen (1995) and Boyle, Broadi
Glasserman (1997).

Most closely related to our work is that of Vazquez
Abad and Dufresne (1998), who apply importance samplin
combined with control variates to dramatically reduce var
ance in pricing Asian options. They use gradient estimatio
and stochastic approximation to find the optimal chang
of the drift term. We also use gradient-based methods
estimate the optimal importance sampling measure, but o
approach differs in one critical aspect. In our setting, th
importance sampling problem is transformed into a min
7
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mization problem under the original probability measure
which eliminates the dependence between the payoff fun
tion and the parameters in the optimization. This leads t
a much simpler IPA gradient estimator with significantly
smaller estimation variance than the original IPA estimato
given in Vazquez-Abad and Dufresne (1998). Perhaps mo
importantly, since the payoff function is not directly related
to the optimization parameters, we do not require differen
tiability of the payoff function as in the original method,
so our method is applicable in much more general settin
If the importance sampling is implemented via a change o
the drift term in Brownian motion, then we show that the
objective function in our minimization problem is a con-
vex function, establishing the conjecture in Vazquez-Aba
and Dufresne (1998). We further prove that our stochast
approximation algorithm a.s. converges to the true globa
optimization value.

2 FORMULATION AND SETTINGS

We assume the financial market is arbitrage free, so the
exists an equivalent probability measureQ (Harrison and
Kreps 1979) under which the price at time 0 of a Europea
financial claimC(T , ω) s.t.EQ[C2(T , ω)] < +∞, where
T is the expiration (maturity) date andω is the sample path
of the underlying stochastic process(es), is given by

C0 = EQ[e−
∫ T

0 r(t,ω)dtC(T , ω)],

whereQ is called the risk-neutral (martingale) measure an
r(t, ω) is the risk-free interest rate process. We will assum
throughout thatr(t, ω) ≥ 0, i.e., the risk-free interest rate
process is non-negative. Defining the present value of th
payoff by

Ĉ(T , ω) = e−
∫ T

0 r(t,ω)dtC(T , ω),

we are interested in estimatingC0 = EQ[Ĉ(T , ω)].
Examplesof payoff functionsC(T , ω).

(ST (ω)−K)+ call,

(K − ST (ω))+ put,

(T −1
∫ T

0
Stdt −K)+ continuous Asian,

(ST −min{St ,0 ≤ t ≤ T })+ lookback,

(max
i
{SiT (ω)} −K)+ basket (max),

(ST −K)+1{St ≤ L, t ∈ [0, T ]} barrier (up and out),

whereSt is the stock price at timet (superscripted for the
max-option on a basket of stocks),K is the strike price,
L is the barrier value for the last example, and1{·} is the
indicator function.
58
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A direct estimate forC0 is obtained by simulating the
risk-neutral distribution of the underlying asset(s) and takin
the sample mean over replications ofĈ(T , ω). However,
by the Radon-Nikodym theorem, if measureQ is absolutely
continuous w.r.t some other measureP , then

C0 = EP
[
Ĉ(T , ω)

dQ

dP

]
,

which gives an alternative estimator for simulation unde
P :

Ĉ(T , ω)
dQ

dP
, (1)

where dQ
dP

is the Jacobian of the measure change, i.e
the Radon-Nikodym derivative. It is a simple mathematica
exercise to show that the above estimator is also an unbias
estimator of the option price. However, the new estimato
may have different estimation variance, hence the potent
for variance reduction.

As a simple example, consider a European call optio
on a single underlying asset, assuming a constant risk-fr
interest rater, i.e.,

C(T , ω) = (ST −K)+,

for which the price is given by

C0 = EQ[e−rT (ST −K)+].

By the Radon-Nikodym theorem, we can also calculateC0
by

C0 = EP [e−rT (ST −K)+ dQ
dP
].

If we choose

p(x) = ce−rT (ST −K)+d(ST ),

where d(ST ) is the risk-neutral density ofST , and c is
the normalization constant, then we obtain a zero varian
estimator by sampling from distributionp(x).However,c =
1/C0, which requires the full knowledge of the option price,
making this zero-variance importance sampling estimato
inapplicable in practice.

Now, we concentrate on some more attainable mode
in practice. We first restrict the new measure to be in
family of probability measure{P(θ, ω) : θ ∈ 2}, whereθ
is the parameter and for anyθ ∈ 2,measureQ is absolutely
continuous w.r.t.P(θ).We consider the problem of finding
the value ofθ which gives the best performance in simulation
i.e., the smallest estimation errors in simulation.
8
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The variance of the new estimator (1) is

EP

[(
Ĉ(T , ω)

dQ

dP

)2
]
− C2

0

= EP
[(
Ĉ(T , ω)

)2
(
dQ

dP

)2
]
− C2

0.

This leads to the following minimization problem in the
domain of stochastic optimization:

min
θ∈2 V (θ),

where

V (θ) = EP
[(
Ĉ(T , ω)

)2
(
dQ

dP

)2
]
. (2)

Remark: Vazquez-Abad and Dufresne (1998) derive
the IPA estimator associated with their stochastic optimiza
tion problem by directly differentiating the term inside the ex-
pectation of (2), which requires derivatives for bothC(T , ω)
and dQ

dP
, sinceω, and henceC(T , ω), clearly depends on

θ , in addition to dQ
dP
. This is because sampling is carried

out underP rather thanQ. However, this is avoided if the
minimization is carried out under the original measureQ,
and this is the fundamental difference between our metho
and their method.

Simple calculation shows that

V (θ) =
∫
�

(
Ĉ(T , ω)

)2 (dQ)2

(dP )2
dP

=
∫
�

(
Ĉ(T , ω)

)2 (dQ)2

dP

=
∫
�

(
Ĉ(T , ω)

)2 dQ

dP
dQ

= EQ
[(
Ĉ(T , ω)

)2 dQ

dP

]
.

So we only need to find theθ that minimizes

V (θ) = EQ
[
Ĉ2(T , ω)f (θ, ω)

]
, (3)

where

f (θ, ω) = dQ

dP (θ)
. (4)

The important thing to note is that changing back to th
original measureQ eliminates the dependence ofC(T , ω)
on θ .
58
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3 STOCHASTIC APPROXIMATION AND IPA

Our approach to minimizingV (θ) is the same as Vazquez-
Abad and Dufresne (1998), in that we use gradient-base
stochastic approximation to estimate

θ∗ = arg min
θ∈2 V (θ),

via the following iterative scheme:

θn+1 = 52(θn − anĝn), (5)

whereθn = ((θn)1, ..., (θn)k) represents thenth iterations,
ĝn represents an estimate of the gradient∇V (θ) at θn, {an}
is a positive sequence of numbers converging to 0, and
52 denotes a projection on2. The difference in our ap-
proach is the form ofV (θ) used in deriving the infinitesimal
perturbation analysis (IPA) estimator: (3) v.s. (2).

We first make the following assumption.
Assumption 1: f (θ, ω) is Q-a.s. piecewise differen-

tiable on2.
Differentiating inside the expectation of (3) yields the

IPA estimator

Ĉ2(T , ω)
∂f (θ, ω)

∂θ
. (6)

Under suitable conditions, this IPA estimator is unbiased.
Theorem 1 (General Unbiasedness) If Assumption

1 holds, ∣∣∣∣ ∂∂θ f (θ, ω)
∣∣∣∣ < M(ω) Q-a.s.;

and there exists aδ > 0 such that

EQ [C(T , ω)]2+2δ < +∞, EQ [M(ω)]1+1/δ < +∞; (7)

or

EQ
[
C(T , ω)2M(ω)

]
< +∞; (8)

then (6) is an unbiased estimator of∂
∂θ
V (θ).

Proof. Omitted here due to space considerations. The
detailed proofs of this theorem and most of the following
results are contained in Su and Fu (2000).

Corollary 1 (Convexity) If f (θ, ω) and C(T , ω)
satisfy the conditions in Theorem 1 and in addition,

∂2

∂θ2f (θ, ω) > 0 Q-a.s.,

‖ ∂
∂θ
f (θ +1θ,ω)− ∂

∂θ
f (θ, ω)‖ < M(θ, ω)‖1θ‖
9
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uniformly when 1θ → 0,

EQ[M(θ, ω)] < +∞,
thenV (θ) is a convex function ofθ.

4 CHANGE OF DRIFT IN BROWNIAN
MOTION

4.1 Mathematical Framework

Suppose the underlying asset price under the risk-neut
measureQ is an Itô process defined by the following stochas
tic differential equation:

dSt = µ(St , t)dt + σ(St , t)dW̃t , (9)

where W̃t is a standard Brownian motion underQ. We
define the family ofP(θ) as all the equivalent probability
measures w.r.t.Q introduced by changing the drift term
of W̃t by θ . Then by Girsanov’s theorem, we know unde
P(θ),

dSt = (µ(St , t)+ θσ (St , t)) dt + σ(St , t)dWt , (10)

whereWt is a Brownian motion underP , and

Wt = W̃t − θt.

The change of measure process is given by

dQ

dP
= exp

(
−θWT − 1

2
θ2T

)
= exp

(
−θW̃T + 1

2
θ2T

)
,

so

∂f (θ, ω)

∂θ
=
(
−W̃T + θT

)
e

(
−θW̃T+ 1

2θ
2T
)
. (11)

Example: If {St } follows a geometric Brownian motion,
then

dSt = µStdt + σStdW̃t ,

whereµ is the drift (mean rate of return) andσ is the
volatility (standard deviation rate of return). If we define

λ = µ+ θσ,
59
al
-

thenλ is the mean rate of return ofSt underP. Thus, we
can also use the rate of returnλ as the parameter, since it
is equivalent toθ . The IPA estimator given by (6) in terms
of λ is

Ĉ2(T , ω)

(
−W̃T

σ
+ λ− µ

σ 2 T

)
e

(
− λ−µ

σ
W̃T+ 1

2
(λ−µ)2
σ2 T

)
. (12)

In our computational experiments, we useλ instead ofθ to
compare with Vazquez-Abad and Dufresne (1998), whos
results are expressed in terms ofλ.

4.2 Convergence Properties of IPA Estimator

In this section, we present some nice properties for impo
tance sampling applied to a change of drift in Brownian
motion.

Theorem 2 (Unbiasedness under Q) For an asset
price process described by the Itô process (9), if

EQ [C(T , ω)]2+2δ < +∞, δ > 0,

then

Ĉ2(T , ω)
(
−W̃T + θT

)
e

(
−θW̃T+ 1

2θ
2T
)

is an unbiased estimator of∂
∂θ
V (θ) under Q.

Corollary 2 (Convexity) If the asset price process is
given by the Itô process (9), thenV (θ) is a convex function.

For deep out of money options,C(T , ω) will be 0 most
of the time under measureQ, and this could lead to large
variance when estimating the gradient. However, we ca
perform a measure change to obtain a new IPA estimat
underP, which is given by

Ĉ2(T , ω) (−WT )exp
(
−2θWT − θ2T

)
. (13)

Corollary 3 (Unbiasedness of estimator underP )
Under the same conditions as in Theorem 2, the new es
mator given by (13) is unbiased for∂

∂θ
V (θ).

In the computational experiments, we use the new IPA
estimator given by (13) and call it IPA-Q, because it was
derived underQ. In terms ofλ, it becomes

Ĉ2(T , ω)

(
−WT

σ

)
e−

2(λ−µ)
σ

WT−( λ−µσ )2T . (14)

Next, we state a convergence theorem for (5).
0
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Theorem 3 (Fu 1990) If∀θ ∈ 2, ∂
∂θ
V (·) is con-

tinuous in θ , V (·) is convex and therefore has a unique
minimumθ∗ ∈ 2, where2 is a compact set, and

θn+1 = θn − angn(θn),
sup
θ∈2

E[g2
n(θ)] < K <∞,

E[gn(θn)|Fn] = ∂

∂θ
V (θn)+ βn,

where
∞∑
j=n
|ajβj | <∞,

∞∑
n=1

an = ∞,
∞∑
n=1

a2
n <∞,

thenθn −→ θ∗ a.s.
It is easy to verify that the IPA estimator given in (13)

satisfies the conditions above and thus strongly converg
to the true optimum. The algorithm of applying importanc
sampling via optimal change of drift in Itô process (9) is
as follows.

• Stage I: Optimization stage – Findθ∗.
Initialization: Setθ = θ0.
Loop: Forn = 1 to N1

– For i = 1 to N2

* Generate sample path according to
(10);

* RecordSt andWt ;
* Calculate IPA-Qi based on (13);

– gn(θn) = 1
N2

∑N2
i=1 IPA-Qi;

– θn+1 = θn − angn(θn);
– If |angn(θn)| < ε, exit loop.

Setθ∗ = θn+1.
• Stage II: Pricing stage – Simulate atθ = θ∗.

For i = 1 to N3

– Generate sample path according to (10);

– RecordSt andWt ;

– CalculateĈi = Ĉ(T , ω)dQdP .

Final priceC0 = 1
N3

∑N3
i=1 Ĉi .

The algorithm is characterized by the paramete
N1, N2, N3, ε, and{an}:

N1 = maximum # of iterations,
N2 = # replications per iterations,
N3 = # replications used in pricing stage,
ε = stopping rule precision, and
an = step size multiplier ofnth iteration.
59
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Remark: An alternative method used in Vazquez-Abad
and Dufresne (1998) is to use the sample paths in th
optimization stage for estimation, as well.

5 COMPUTATIONAL EXPERIMENTS

5.1 Comparisons Between Two Estimators

We considerAsian options as inVazquez-Abad and Dufresn
(1998), where the underlying stock follows geometric Brow-
nian motion

dSt

St
= rdt + σdW̃t , (15)

wherer is the risk-free interest rate andσ is the volatility.
The payoff function of the option at maturityT is given by

C(T ) = (A(T )−K)+, (16)

where the average price is defined over the equally space
discrete time pointsN0 + 1, ..., N , i.e.,

A(T ) = 1

N −N0

N∑
i=N0+1

S i
N
T
. (17)

We first compare our IPA estimator (IPA-Q) with the initial
IPA estimator given in Vazquez-Abad and Dufresne (1998
(denoted henceforth by IPA-VD):

2e−2rT (A(T )−K)+f 2(λ)×(A(T )−K)(WT
σ
− (λ−r)T

σ2

)
+ 1

N−N0

N∑
i=N0+1

iT
N
S iT
N

 ,
where

f (λ) = exp

(
−λ− r

σ
WT − (λ− r)

2

2σ 2 T

)
.

The IPA-Q estimator in this case is given by

e−2rT [A(T )−K)+]2 f 2(λ)

(
−WT

σ

)
.

The initial stock price isS0 = 50, K=50, σ 2=0.2, r=0.05,
T =1.0 year,N0 = 0, andA(T ) is a daily average, so that
N = T .

Table 1 provides 95% confidence intervals based o
50,000 replications, and the final variance ratios are liste
in the last column.

Remark: We see that the variance of IPA estimator
given in our method is significantly smaller than the variance
of estimator given in Vazquez-Abad and Dufresne (1998)
1
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Table 1: Asian Call Options:S0 = 50, K=50,
σ 2=0.2, r=0.05,T =1.0 Yr

Derivative Estimation via IPA
IPA-VD IPA-Q

λ ∂V
∂λ

C.I. ∂V
∂λ

C.I. VR
0.2 -175.5 15.7 -178.8 4.28 13
0.3 -93.4 9.2 -96.1 2.06 20
0.4 -38.7 7.3 -40.6 1.44 26
0.5 3.89 8.3 3.83 1.89 19
0.6 45.44 12.0 48.39 3.46 12
0.7 94.88 22.2 104.97 7.41 9.0
0.8 168.82 41.6 190.81 16.86 6.1

Table 2: Asian Call Options:S0 = 50, σ 2=0.2, r=0.05,T =1.0 Yr,
ε=0.001,N1=20,N2=50

Convergence Property of IPA
IS via IPA-Q IS via Optimalλ∗

Price C.I. λ N∗1 Price C.I. λ∗
K=30 20.407 0.134 0.26 15 20.407 0.135 0.25
K=45 8.320 0.114 0.43 20 8.318 0.115 0.40
K=50 5.675 0.096 0.53 19 5.672 0.096 0.50
K=55 3.713 0.076 0.55 20 3.718 0.076 0.60
K=75 0.575 0.022 0.79 18 0.574 0.022 0.80
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The reason is that when calculating IPA estimator, we on
need consider the derivative ofdQ

dP
w.r.t. λ, while Vazquez-

Abad and Dufresne (1998) had to consider both the derivati
of dQ

dP
and the derivative of the payoff function w.r.t.λ.

5.2 Convergence Property

We test the convergence property of our algorithm in th
experiment. Again, the parameter used here isλ, and the
initial starting value ofλ0 is chosen such thatS0 = e−λ0T K,

because then the expected terminal stock price would be
the strike price. We useN1 = 20 iterations andN2 = 50
sample paths in the optimization stage and the stoppi
criteria ε = 0.001, so the total number of simulations
used in the optimization stage is less than 1000. We to

an = a0n
−0.75, wherea0 =

∣∣∣ 1
g0(λ0)

∣∣∣ . Also, we restrict that

in each step|1λ| ≤0.2. We useN3 =10,000 simulations
in the final estimation stage, where we estimate the opti
price. In this experiment, the stock prices follow the sam
geometric Brownian motion as in the last example,S0 = 50,
σ 2 = 0.2, r=0.05, andT =1.0 year with strike pricesK=30,
45, 50, 55, 75. The optimal values ofλ∗ reported are
taken from Vazquez-Abad and Dufresne (1998), which a
obtained by an extensive brute-force search.

From Table 2, we see that our algorithm converges ve
fast, coming very close to the optimal value using less tha
1000 simulations, whereN∗1 is the actual # of iterations
used in optimization stage.
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5.3 Comparison Between Importance
Sampling and Naive Simulations

5.3.1 Asian Options on Partial Average

In this testbed, the stock price again follows geometri
Brownian motion as given by (15), with payoff function
defined by (16). However,N0 6= 0. In other words, the
average begins at a dateN0 other than at time 0. The other
parameter values areS0=100, σ=0.2, 0.3,r=0.05, 0.09, and
T =1.0 year;A(T ) is the average daily stock price with the
averaging beginning 60 days before the option’s maturit
date. To test the effect of moneyness on the varianc
reduction, we consider a range of strike prices:K=100,
110, 120, 130, 140, 150, 160, 170. The algorithm paramet
values used areN1=50,N2=100,N3=50,000,ε = 0.0005.
The other settings are the same as before, and the res
are shown in Tables 3 and 4.

As we expect, the computational gains of implementin
importance sampling increase dramatically with increasin
strike price (more out of the money). For the case o
r=0.05,σ=0.2, the variance reduction starts from 7 for the
at-the-money call option atK=100 and increases to 173
for the deep out-of-the-money call option atK=170. We
also observe an interesting phenomena that as the opt
price increases with increasing interest rate or volatility
the effectiveness of importance sampling decreases. O
conjecture is that higher values of these parameters increa
92
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Table 3: Asian Call Options on Partial Average:S0 = 100,
T =1.0 Yr, ε=0.0005,N1=50,N2=100,N3=50000

r=0.05,σ = 0.2
IS via IPA-Q Naive

Price C.I. λ Price C.I. VR
K=100 9.747 0.047 0.251 9.840 0.121 6.7
K=110 5.397 0.033 0.308 5.461 0.094 8.2
K=120 2.730 0.020 0.368 2.749 0.067 11
K=130 1.284 0.011 0.430 1.317 0.046 17
K=140 0.575 0.006 0.473 0.544 0.029 25
K=150 0.241 0.003 0.487 0.225 0.019 44
K=160 0.098 0.001 0.501 0.102 0.013 85
K=170 0.038 0.001 0.533 0.040 0.008 173

r=0.09,σ = 0.2
K=100 11.732 0.052 0.268 11.839 0.129 6.1
K=110 6.850 0.038 0.335 6.897 0.103 7.3
K=120 3.678 0.025 0.388 3.740 0.078 10
K=130 1.854 0.015 0.441 1.795 0.058 13
K=140 0.867 0.008 0.489 0.846 0.036 19
K=150 0.384 0.004 0.524 0.388 0.025 38
K=160 0.163 0.002 0.548 0.170 0.016 67
K=170 0.067 0.001 0.540 0.068 0.010 106

Table 4: Asian Call Options on Partial Average:S0 = 100,
T =1.0 Yr, ε=0.0005,N1=50,N2=100,N3=50000

r=0.05,σ = 0.3
IS via IPA-Q Naive

Price C.I. λ Price C.I. VR
K=100 13.295 0.068 0.368 13.421 0.185 7.3
K=110 9.103 0.054 0.443 9.119 0.155 8.4
K=120 6.059 0.041 0.507 6.171 0.131 10
K=130 3.985 0.030 0.557 3.885 0.104 12
K=140 2.556 0.022 0.595 2.475 0.084 15
K=150 1.603 0.015 0.629 1.635 0.070 22
K=160 1.006 0.010 0.693 1.012 0.055 30
K=170 0.623 0.007 0.736 0.587 0.041 36

r=0.09,σ = 0.3
K=100 15.063 0.074 0.377 15.197 0.193 6.8
K=110 10.571 0.059 0.448 10.597 0.166 7.9
K=120 7.214 0.046 0.525 7.334 0.142 9.5
K=130 4.856 0.035 0.561 4.732 0.115 11
K=140 3.184 0.027 0.603 3.132 0.094 13
K=150 2.046 0.018 0.676 2.105 0.079 19
K=160 1.314 0.013 0.710 1.314 0.063 25
K=170 0.836 0.009 0.764 0.802 0.049 31
593



Su and Fu

l
.
s
ti
n
s
r
-

c

g

t
p

r
s
f
s

h
le

d

d
n
n

-
e

r
ry

e

g

s

P.
-

e

.

r

d

i-
te

-
n

the likelihood of options finishing in the money, reducing
the power of importance sampling.

5.3.2 Asian-Digital Options

The underlying stock again follows geometric Brownian
motion as in (15) with the daily averageA(T ) given by
(17), but the payoff function is given by

C(T ) = 10∗ 1{A(T ) > K}.

Clearly, Vazquez-Abad and Dufresne (1998) is not applicab
in this case, since the digital function is not differentiable
The parameter settings in the two-stage algorithm and as
prices are the same as in the case of Asian option on par
average. The results are shown in Tables 5 and 6, a
we observe similar behavior as for the other Asian option
although the ratio of variance reduction is somewhat lowe
probably due to the smaller range (0 or 1) for the Asian
digital option payoff.

6 CONCLUSION

It is well known that changing the drift in Brownian motion
via importance sampling can be used to effectively redu
the estimation error in security pricing. The stochastic op
timization approach we present here is capable of findin
the optimal change of drift efficiently. In all cases, the
computational overhead added is less than 10% of the to
computational time, whereas for deep out-of-the-money o
tions, the computational gains range from 10 to 170 time
in our simulation experiments, and in all cases, we repo
significant variance reductions from the simulation result
We also notice that for the equity options, the efficiency o
changing the drift term in Brownian motion decreases a
the interest rate increases or the volatility increases. T
IPA estimator developed here is more widely applicab
and has substantially smaller variance than the estimator
Vazquez-Abad and Dufresne (1998), and is also not limite
to just changes of drift in Brownian motion. In Su and Fu
(2000), a number of other examples are considered, inclu
ing interest rate derivatives based on the Cox, Ingersoll, a
Ross (1985) interest rate model (see also Black, Derma
and Toy 1990).
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Table 5: Asian Digital Call Options on Partial Average
S0 = 100, T =1.0Yr,ε=0.0005,N1=50,N2=100,N3=50000

r=0.05,σ = 0.2
IS via IPA-Q Naive

Price C.I. λ Price C.I. VR
K=100 5.300 0.033 0.149 5.358 0.041 1.6
K=110 3.403 0.028 0.211 3.431 0.040 2.0
K=120 1.947 0.020 0.278 1.988 0.034 3.0
K=130 1.017 0.012 0.344 0.994 0.026 4.4
K=140 0.481 0.007 0.402 0.479 0.018 7.4
K=150 0.213 0.003 0.453 0.211 0.012 13
K=160 0.090 0.002 0.484 0.093 0.008 26
K=170 0.036 0.001 0.531 0.036 0.005 53

r=0.09,σ = 0.2
K=100 5.772 0.032 0.164 5.814 0.039 1.4
K=110 3.953 0.030 0.214 3.986 0.040 1.8
K=120 2.420 0.023 0.274 2.465 0.036 2.5
K=130 1.345 0.015 0.356 1.317 0.028 3.5
K=140 0.678 0.009 0.399 0.680 0.021 5.7
K=150 0.318 0.008 0.470 0.322 0.015 9.9
K=160 0.143 0.002 0.499 0.143 0.010 17
K=170 0.061 0.001 0.530 0.055 0.006 27

Table 6: Asian Digital Call Options on Partial Average
S0 = 100, T =1.0Yr,ε=0.0005,N1=50,N2=100,N3=50000

r=0.05,σ = 0.3
IS via IPA-Q Naive

Price C.I. λ Price C.I. VR
K=100 4.829 0.033 0.216 4.866 0.042 1.7
K=110 3.549 0.029 0.281 3.578 0.040 2.0
K=120 2.518 0.024 0.318 2.554 0.037 2.5
K=130 1.730 0.018 0.375 1.715 0.032 3.1
K=140 1.148 0.014 0.496 1.142 0.027 4.0
K=150 0.741 0.009 0.508 0.764 0.023 5.8
K=160 0.476 0.007 0.559 0.471 0.018 7.3
K=170 0.299 0.005 0.611 0.296 0.015 10

r=0.09,σ = 0.3
K=100 5.094 0.032 0.237 5.145 0.040 1.5
K=110 3.868 0.029 0.283 3.897 0.040 1.8
K=120 2.806 0.025 0.352 2.847 0.037 2.3
K=130 2.001 0.020 0.417 1.975 0.033 2.8
K=140 1.354 0.015 0.480 1.354 0.029 3.6
K=150 0.903 0.011 0.516 0.921 0.024 4.8
K=160 0.590 0.008 0.583 0.587 0.020 6.3
K=170 0.381 0.006 0.608 0.378 0.016 8.4
595



Su and Fu

e
a

ty
-
-
ic
a-
d

MICHAEL C. FU is a Professor in the Robert H. Smith
School of Business, with a joint appointment in the Institute
for Systems Research, at the University of Maryland. H
received degrees in mathematics and EE/CS from MIT, and
Ph.D. in applied mathematics from Harvard University. His
research interests include simulation and applied probabili
modeling, particularly with applications towards manufac
turing systems, inventory control, and financial engineer
ing. He teaches courses in applied probability, stochast
processes, simulation, computational finance, and oper
tions management, and in 1995 was awarded the Marylan
Business School’s Allen J. Krowe Award for Teaching Ex-
cellence. He is a member ofINFORMS and IEEE , and
a Senior Member ofIIE . He is currently the Simulation
Area Editor ofOperations Research, and serves on the ed-
itorial boards ofManagement Science, INFORMS Journal
on Computing, IIE Transactions, andProduction and Oper-
ations Management. He is co-author (with J.Q. Hu) of the
book, Conditional Monte Carlo: Gradient Estimation and
Optimization Applications, which received the INFORMS
College on Simulation Outstanding Publication Award in
1998.
596


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print

