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ABSTRACT

The calculation of value-at-risk (VAR) for large portfolios
of complex instruments is among the most demanding a
widespread computational challenges facing the financial i
dustry. Current methods for calculating VAR include com
paratively fast numerical approximations—especially th
linear and quadratic (delta-gamma) approximations—an
more robust but more computationally demanding Mon
Carlo simulation. The linear and delta-gamma method
typically rely on an assumption that the underlying ma
ket risk factors have a Gaussian distribution over the VA
horizon. But there is ample empirical evidence that mark
data is more accurately described by heavy-tailed dist
butions. Capturing heavy tails in VAR calculations has t
date required highly time-consuming Monte Carlo simula
tion. We describe two methods for computationally efficien
calculation of VAR in the presence of heavy-tailed risk fac
tors, specifically when risk factors have a multivariatet
distribution. The first method uses transform inversion t
develop a fast numerical algorithm for computing the dis
tribution of the heavy-tailed delta-gamma approximation
For greater accuracy, the second method uses the numer
approximation to guide in the design of an effective Mont
Carlo variance reduction technique; the algorithm combin
importance sampling and stratified sampling. This metho
can produce enormous speed-ups compared with stand
Monte Carlo.

1 INTRODUCTION

The calculation of value-at-risk (VAR) for large portfolios
of complex instruments is among the most demanding a
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widespread computational challenges facing the financi
industry. The VAR is defined to be an extreme quantil
(typically the 99’th percentile) of the distribution of portfolio
losses over a time horizon of fixed duration (typically one da
or two weeks). Current methods for calculatingVAR include
comparatively fast numerical approximations—especiall
the linear and delta-gamma (quadratic) approximations—
and more robust but more computationally demanding Mon
Carlo simulation. The linear and delta-gamma methods ty
ically rely on an assumption that the underlying market ris
factors have a normal (Gaussian) distribution over the VAR
horizon. But there is ample empirical evidence that marke
data is more accurately described byheavy-taileddistribu-
tions under which occasional very large market moves a
more likely than a normal distribution would predict. Cap-
turing heavy tails in VAR calculation has to date required
highly time-consuming Monte Carlo simulation.

This paper gives an overview of methods for compu
tationally efficient calculation of VAR in the presence of
heavy-tailed risk factors. These methods are described mo
fully in Glasserman, Heidelberger and Shahabuddin (2000
(henceforth GHS). Theorems related to these methods a
stated here; their proofs are given in GHS (2000b). Th
methods model market risk factors through amultivariatet
distribution, which has both heavy tails and empirical sup
port. Our key mathematical result is a transform analysis o
a quadratic form in multivariatet random variables. Using
this result, we develop two computational methods. Th
first uses Fourier transform inversion to develop a heavy
tailed delta-gamma approximation; this method is extreme
fast, but like any delta-gamma method is only as accura
as the quadratic approximation. For greater accuracy, w
therefore develop an efficient Monte Carlo method; thi
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method uses our heavy-tailed delta-gamma approximat
as a basis for variance reduction. Specifically, we use t
numerical approximation to design a combination of impo
tance sampling and stratified sampling of market scenar
that can produce enormous speed-ups compared with s
dard Monte Carlo. Under certain conditions, this Mont
Carlo algorithm possesses the highly desirable “bound
relative error” property (in the sense Shahabuddin (1994
for estimating the relevant rare event properties. It also e
ily adapts to the estimation of a related useful quantity calle
the conditional excess (sometimes also called the conditio
VAR; see, e.g., Bassi, Embrechts and Kafetzaki(1998) f
a discussion).

2 HEAVY TAILS AND MARKET DATA

The multivariate normal distribution is the most widely
model of changes in market prices and rates, in large p
because of its many convenient mathematical properti
Even in GARCH and related models the innovations a
commonly assumed normal, and the increments of any d
fusion process are approximately normal over a sufficien
short time horizon. In contrast, virtually all empirical stud
ies report systematic deviations from normality in marke
data. (An early reference is Blattberg and Gonedes (197
recent studies find the same patterns.) One of the most p
vasive features observed across equity, foreign exchan
and interest rate markets isexcess kurtosis. This means
that, compared to a normal distribution with the same me
and standard deviation, the true distribution assigns grea
probability to extreme market moves. Clearly, extrem
moves are of paramount importance in risk manageme
and should be modeled accurately in the calculation of VA

To contrast the normal andt distributions, it is useful to
consider first the univariate case. IfZ is a standard normal
random variable (mean 0, standard deviation 1), its tail
described by

P(Z > x) ∼ 1

x
√

2π
e−x2/2, x →∞,

in the sense that the ratio of the two sides approache
as x increases. In contrast, ifX has at distribution with
degrees-of-freedom parameterν, then

P(X > x) ∼ constant× x−ν . (1)

Thus, the two distributions have fundamentally different ta
behavior. The power-law decay of thet distribution’s tail is
far slower than the decay in the normal tail, confirming th
large moves will have much greater frequency in at-based
model. Equation (1) further shows that the parameterν

controls the heaviness of thet distribution’s tail, with smaller
values producing heavier tails. Empirical evidence sugge
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that ν in the range of 4–6 is appropriate for market returns
over short time horizons. Asν → ∞, the t distribution
converges to the normal distribution, so the normal may b
viewed as a special, limiting case of thet family.

Modeling the joint distribution of multiple risk factors
requires multivariate versions of these distributions. Fo
simplicity we assume a mean of 0; both the normal andt

distributions can be translated to produce a nonzero mea
In this case, a multivariate normal density is completely
determined by its covariance matrix6 or, equivalently, by
the standard deviations of its components and the correlatio
between them. The fact that a multivariate normal densit
is summarized by its standard deviations and correlations
very convenient in modeling market data; this rather specia
feature is shared by the multivariatet (see, e.g., Anderson
(1984)), which has density

f (x) = 0(1
2(n+ ν))

(νπ)n/20(1
2ν)|6|1/2

(
1+ 1

ν
x′6−1x

)−1
2(n+ν)

(2)

for x ∈ <n. If (X1, . . . , Xn)has this density withν > 2, then
its covariance matrix isν6/(ν−2); the factorν/(ν−2)may
be viewed as reflecting the heavier tails of thet marginals. A
further important distinction between thet distribution and
the normal is that uncorrelated normal random variable
are mutually independent, whereas the components of
multivariate t are in general dependent even if they are
uncorrelated. In modeling market data, this makes it possib
to capture a situation in which two risk factors exhibit little
dependence in ordinary market conditions but tend to mov
together in extreme conditions.

In GHS (2000b) we also work with an extension of (2)
that allows different marginals to have different degrees o
freedom. This is useful in modeling the joint distribution
of returns with varying degrees of heaviness in their tails

3 QUADRATIC APPROXIMATION:
HEAVY-TAILED DELTA-GAMMA

Calculating VAR entails finding the distribution of losses
over the VAR horizon (e.g., one day or two weeks). Le
the random variableL denote the loss on a portfolio over
a fixed horizon; finding VAR means finding a pointxp for
which P(L > xp) = p with, e.g.,p = 1%.

The delta-gamma method (e.g., Britten-Jones an
Schaefer (1999), Rouvinez (1997), and Wilson (1999)) i
based on making a quadratic approximation toL of the
form

L ≈ c + b′X +X′AX (3)

≡ c +Q. (4)
5
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Here,X is a vector of changes in underlying market price
over the VAR horizon,c is a constant,b is a vector, andA is
a matrix. In the usual delta-gamma method,X is assumed
normal (Duffie and Pan (1999) use a Poisson mixture
normals) andb and A are obtained from the first- and
second-order sensitivities of the instruments in the portfol
with respect to the underlying market prices. In other word
the “deltas” and “gammas” of individual instruments ar
combined to get the overall sensitivities of the portfolio an
(3) is a Taylor approximation to the loss. We will take th
slightly more general view that some approximation of th
form (3) is available.

Our first goal is to approximate the distribution of the
portfolio lossL by the distribution of the quadraticc+Q
in (4) whenX has a multivariatet distribution. Through an
orthogonal transformation of the coordinate axes, we m
without loss of generality assume that bothA in (3) and6
in (2) have been diagonalized. In this case, we have

Q =
∑
i

biXi +
∑
i

λiX
2
i ,

where theXi areuncorrelatedrisk factors; changes in the
actual risk factors are then linear combinations of changes
these risk factors. In the normal case, the analysis proce
as in Rouvinez (1997) by finding the characteristic functio
of Q. Because uncorrelated normals are independent,
characteristic function ofQ factors into a product of one-
dimensional characteristic functions and is thus easy
find. This method does not extend to the multivariatet
because theXi will not in general be independent, even
if they are uncorrelated. Also, due to the heavy tail, th
characteristic function of eachXi has a complicated form.
Hence the charateristic function ofQ is intractable and a
different approach is needed. To this end, note thatXi
can be generated asXi = Zi/

√
Y/ν where theZi ’s are

independent normals with mean 0 and variance6ii andY
is a chi-square random variable withν degrees of freedom,
independent ofZ. Next, for any x define the random
variable

Qx = (Y/ν)(Q− x)
and letFx(y) = P(Qx ≤ y). One of our key mathematical
results is the following:

Theorem 1. P(Q ≤ x) = Fx(0) andFx is the distri-
bution with characteristic function̂Fx(ω) = φx(ω

√−1),

φx(θ) = 1

(1+ α(θ))ν/2
∏
i

1√
1− 2θλi

(5)

where

α(θ) = 2θx

ν
− 1

ν

∑
i

θ2b2
i

1− 2θλi
. (6)
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Thus, we have an indirect way of computing the dis
tribution of the quadratic approximation. This result lead
to the following method to approximateP(L ≤ x) using
P(c +Q ≤ x):

1. setxc = x − c with c the constant in (3);
2. numerically invert the Fourier transform̂Fxc ;
3. evaluateFxc(0) = P(c +Q ≤ x) ≈ P(L ≤ x).

The procedure can be repeated for multiple values ofx in
order to approximate the complete distribution ofL and find
VAR. This method thus combines much of the computation
convenience of the traditional normal-based delta-gamm
method with greater empirical validity of the multivariate
t distribution.

Figure 1 illustrates the potential danger of using
normal-based delta-gamma approximation in a world wi
heavy-tailed risk factors. The portfolio is the one labele
“0.1yr ATM” in GHS (2000a) and contains 150 options
The approximation in the left panel is based on assumi
normally distributed risk factors with volatilities scaled up
by ν/(ν − 2); notice that it greatly underestimates losse
in scenarios where the true loss is large. Thet-based ap-
proximation gives a much better fit. Compared with th
exact portfolio (horizontal axis), the normal-based delta
gamma approximation (vertical axis, left panel) severe
underestimates the magnitudes of large losses. Thet-based
approximation (right) shows a much better fit. This rela
tionship is also useful in accelerating Monte Carlo, as w
discuss next.

4 FAST MONTE CARLO ESTIMATION OF VAR

The transform inversion method presented above is ve
fast, but it is only as accurate as the underlying quadra
approximation. The first four columns of Table 1 illus
trate the effectiveness of the method in approximating lo
probabilities near 1% for a set of option portfolios. Th
number of risk factors ranges from 10 to 100; the num
ber of options per portfolio ranges from 150 to 2000. A
cases useν = 5. Variance ratios are estimated from 40,00
replications; the stratified estimator uses 40 strata and 10
samples per stratum. Variance ratios are estimates of
computational speed-up relative to standard Monte Car
The parameters of these test portfolios are detailed in GH
(2000a). The third column gives theP(L > x) estimated
using simulation to within 2% accuracy (more precisely th
99% confidence interval half-width is always within 2%
of the simulation estimate of the probability). The fourth
column gives the quadratic approximations. Note that th
quadratic approximation, though fairly good in some case
is as much as 80% to 90% off in other ones. Also, witho
the (near) exact estimates ofP(L > x) there is no way of
judging their accuracy for each case, which may be a pro
6
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Figure 1: Comparison of Delta-gamma Approximations and Actual Portfolio Losses when Risk Factors are Multiva
t with ν = 5, Based on 10,000 Scenarios
lta-
ios
Table 1: Comparison of Variance Reduction Methods Based on De
gammaApproximations for Heavy-tailed Risk Factors, using Test Portfol
from GHS (2000a)

Variance Ratios
Portfolio x P (L > x) P (c +Q > x) IS IS-Strat

0.5yr ATM 311 1.02% 1.17% 53 333
0.1yr ATM 469 0.97% 1.56% 46 134

Delta hedged 617 1.07% 1.69% 42 112
0.25yr OTM 355 1.02% 1.17% 53 242
0.25yr ITM 355 1.02% 1.17% 53 242

Largeλ1 1474 1.10% 1.58% 21 70
Linear λ 3464 1.11% 1.75% 37 100

100,ρ = 0.0 4993 1.06% 1.88% 58 346
100,ρ = 0.2 5195 1.12% 1.99% 36 158

Index 2019 1.04% 1.22% 26 93
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lem in practice. More accurate estimation of VAR (togethe
with estimates of the error) requires precise revaluation
a portfolio in each market scenario and this can general
only be achieved through Monte Carlo simulation. Becaus
portfolio valuation can be very time consuming, the numbe
of scenarios generated must be kept fairly small.

In GHS (1999c,2000a) we developed a method fo
strategically sampling scenarios in order to obtain precis
estimates of loss probabilities using far fewer scenarios th
would be required using standard Monte Carlo sampling
The method in GHS (1999c,2000a) assumes that the mar
risk factors are normally distributed and uses the delta
gamma approximation to guide the sampling of scenario
Here, we address the problem of efficient Monte Carlo whe
the risk factors are modeled by a multivariatet distribution.
We use thet based delta-gamma approximation analyze
above as a basis for a combination ofimportance sampling
andstratified sampling.
607
f

n
.
et
-
.

The heavy-tailed property of thet distribution has fun-
damental implications for the design of variance reductio
techniques in a simulation. In GHS (1999a, 1999b, 1999
2000a), we have demonstrated that importance sampli
based on an idea known asexponential twistingcan be
extremely effective in simulations driven by normal ran
dom variables. This approach is not, however, applicable
heavy-tailed distributions because it requires the existen
of a moment generating function, which is incompatibl
with the power-law behavior illustrated in (1).

We circumvent this difficulty by applying the earlier
mentioned representation result: ifX has the multivariate
t distribution in (2), thenX has the same distribution as
Z/
√
Y/ν, whereZ is multivariate normal with covariance

matrix 6 and Y is a chi-square random variable withν
degrees of freedom, independent ofZ. The advantage of
this representation is thatZ andY each permit exponential
twisting, thoughX does not. Our key result for Monte



Glasserman, Heidelberger, and Shahabuddin

f

i
y

-

e

l

d.

).

r

g

f
ve
on
al
-
he
-
e

o

e
l

d

f

Carlo simulation is the followingexact relation between
the portfolio lossL and the quadratic approximationQ.

Theorem 2. For anyx and y, and anyθ for which
φxc (θ) <∞, the portfolio loss distribution satisfies

P(L > x) = Eθ
[
e−θQxc φxc (θ)I (L > x)

]
(7)

whereI (·) denotes the indicator function,xc = x−c, φx is as
in (5), andEθ denotes expectation under whichZi are condi-
tionally normal givenY with meanθ6iibi

√
Y/ν/(1−2θλi)

and variance6ii/(1− 2θλi), Y has a gamma distribution
with shape parameterν/2 and scale parameter 2/(1+2α(θ)),
and the risk factors are given byXi = Zi/√Y/ν.

Ordinary Monte Carlo would estimate the left side o
(7) by randomly sampling scenarios from the multivariatet

distribution and calculating the fraction of these scenario
in which L > x. Using our importance sampling method,
we instead estimate the right side of (7) by changing th
distribution of theZ and Y in the representation of the
risk factors asX = Z/√Y/ν and evaluating the expression
inside the expectation in each scenario. This change of d
tribution samples large portfolio losses far more frequentl
than does ordinary Monte Carlo, and this leads to mor
precise estimates of VAR. We choose the scalarθ = θx by
solving the equationdφxc (θ)/dθ = 0; this choice puts the
average loss nearx.

Let m2(θ, x) denote the second moment of the impor
tance sampling estimate defined on the right hand side
(7). The next theorem states that if the delta-gamma appro
imation is exact (and ifλi > 0 for all i), then the method
satisfies the bounded relative error property. As describe
in Shahabuddin (1994), this means that only a fixed numb
of samples are required to estimateP(L > x) to within a
specified relative error, no matter how largex is (equiva-
lently, no matter how smallP(L > x) is). With standard
simulation, the required sample size to obtain a specifie
relative error grows without bound asP(L > x)→ 0.

Theorem 3. If L = c +Q andλi > 0 for all i, then
for all sufficiently largex there exist positive constantsc1,
c2 andc3, such that

c1x
−ν/2 ≤ P(L > x) ≤ c2x

−ν/2, (8)

m2(θx, x) ≤ c3x
−ν . (9)

Thus with standard simulation, the second momen
which is simplyP(L > x), is of orderx−ν/2 whereas the
importance sampling estimator has second moment of ord
x−ν , which is the best possible exponent for any unbiase
estimator.
ls
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If L = c +Q andλi > 0 for somei, then the upper
bounds onP(L > x) andm2(θx, x) in (8) and (9) remain
true; in this case, there is a constantc4 such that

m2(θx, x) ≤ c4P(L > x)x−ν/2 (10)

for large x. Thus the second moment of the importance
sampling estimate is greatly reduced in this more genera
situation as well, although it may not have bounded relative
error since the lower bound in (8) has not been establishe

To obtain still more variance reduction, westratify the
random variableQxc appearing in the exponent in (7). For
example, to generateN scenarios, we constructN intervals,
each having probability 1/N for Qxc and sample one value
from each interval. Construction of the bins relies on the
transform inversion developed in Section 3 above. This
eliminates much of the variance due to the exponent in (7
Moreover, sincec+Q is the quadratic approximation toL,
stratification can also reduce the variance in the portfolio
loss itself.

The last two columns of Table 1 illustrate the effective-
ness of the method in estimating the loss probabilities fo
the portfolios in that table. In particular, they report the ratio
of the variance using standard Monte Carlo relative to usin
our importance sampling method (IS) and our combination
of importance sampling and stratification (IS-Strat). These
variance ratios show how many times larger the number o
scenarios using standard Monte Carlo has to be to achie
the same precision as the corresponding variance reducti
technique. They are thus estimates of the computation
speed-up resulting from our methods, with larger ratios in
dicating greater speed-ups. These examples indicate t
potential for enormous speed-ups from our methods. Ad
ditional experimental results, that include cases where th
marginals of the multivariatet have different degrees of
freedom, are reported in GHS (2000b).

If L is the loss then the conditional excess is defined t
beE(L|L > y) wherey is some fixed constant (maybe the
VAR). Both the IS and IS-Strat can easily be adapted to th
estimation of this quantity. GHS (2000b) gives theoretica
efficiency results and presents experiments.
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