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ABSTRACT ysis; Heidelberger and Welch (1981) use a spectral-based re-
gression; Schmeiser (1982), Meketon and Schmeiser (1984)
The use of batch means is a well-known technique for es- and Steiger and Wilson (1999) use batch means; Schruben
timating the variance of mean point estimators computed (1983) and Nakayama (1994) use standardized time series.
from a simulation experiment. This paper discusses imple- For an overview of existing methods of determining the
mentation of a sequential procedure to determine the batch simulation run length and estimating the variance of the
size for constructing confidence intervals for a simulation sample mean, see Law and Kelton (2000 pp. 527-537),
estimator of the steady-state mean of a stochastic process.or Sargent, Kang and Goldsman (1992). However, many
Our quasi-independentQI) procedure increases the batch existing techniques are either too restrictive to be applied
size progressively until a certain number of essentially i.i.d. to general cases or too complicated to be implemented for
samples are obtained. We show that our sequential pro- practical use. Therefore, there is a need for robust proce-
cedure gives valid confidence intervals. The only (mild) dures to determine appropriate simulation run lengths and
assumption is that the correlations of the stochastic pro- to estimate the variance of the sample mean that can be
cess output sequence die off. An experimental performance applied to generic processes, and is easy to implement.

evaluation demonstrates the validity of the QI procedure. In the non overlapping batch-means method, the sim-
ulation output sequenceX{ : i = 1,2, ..., N} is divided

1 INTRODUCTION into R adjacent non overlapping batches, each of size
For simplicity, we assume thaV is a multiple ofm so

When estimating the steady-state meaaf some discrete- that NV = Rm. The sample mearj;, for the j'" batch is

time stochastic output procesX{: i > 1} with simulation, calculated by

we would like an algorithm to determine the simulation run

length N so that the mean estimator (sample m&aw) = 1 mj

15 | X;) is asymptotically unbiased (i.e. the asymptotic = - Z X; forj=12...,R. (1)

approximation is valid), the confidence interval (Cl) is of a i=m(j-1)+1

pre-specified width, and the actual coverage probability of .

the Cl is close to the nominal coverage probability &. Then the grand meai of the individual batch means, given

Because we assume the underlying distribution is stationary, by
i.e., the joint distribution of theX;’s is insensitive to time
shifts, the mean estimator will be unbiased. But a workable
sample size must be determined dynamically to attain the
precision required of a point estimator from a simulation.
The usual method of CI construction from classical
statistics, which assumes independent and identically dis-
tributed (i.i.d.) observations, is not directly applicable since
simulation output data are generally correlated. Several
methods of determining the simulation run length and esti-
mating the variance of the sample mean have been proposed
In particular, Crane and Iglehart (1975) use regenerative pro-
cesses; Fishman (1971) and Schriber and Andrews (1984)
use time series; Priestley (1981) uses classical spectral anal-
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is used as a point estimator for. Here i = X(N), the
sample mean of allv individual X;’s, and we seek to
construct a Cl based on the point estimator obtained by
equation (2).

The use of batch means is a well-known technique
for estimating the variance of point estimators computed
from simulation experiments. The batch-means variance
estimator is simply the sample variance of the estimator
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computed on means of subsets of consecutive subsamples.  In Section 2 we present our methodologies and proposed
The asymptotic validity of batch means depends on both the procedure for mean estimation. In Section 3, we show
assumption of approximate independence of the batch meansour empirical-experiment results. In Section 4, we give
and the assumption of the batch means being approximately concluding remarks.

normally distributed. For the method to be practical, a

good choice of batch size is necessary. We propose a2 METHODOLOGIES

method to estimate the batch size using only observed data.

In contrast to results that model the unknown underlying In this section we introduce the methodologies we used in
dependence structure in terms of a few unknown parameters, our procedures:¢-mixing, systematic sampling, and the
the method is completely nonparametric. We do not consider runs-uptest, and present our quasi-independent procedure.
the effect of any initial-transient period and require that the

observations obtained are already in steady-state. 2.1 ¢-Mixing

We propose guasi-independen{Ql) procedure (see
Section 2) for constructing a Cl for the meanof a sta- To definep-mixing, let {X;; —oo < i < oo} be a stationary
tionary processXi, X», .... The proposed procedure will  sequence of random variables defined on a probability space

sequentially determine the length of a simulation run so (£, A, P). Thus, if/\/l’ioo and M ; are respectively the
that the mean estimate satisfies a pre-specified precision sequencesgenerated by{i < k}and{X;;i > k+,}, and
requirement, and produces asymptotically valid confidence if E; e M* __ andE; e /\/lk+ , then for allk (—oo < k <
intervals. The asymptotic validity of our quasi-independent oc) and; (j > > 1), if there eX|sts a sequenggl), ¢(2), .
procedures occurs as the subsequence appears to be indesuch that

pendent.
The only (mild) assumption is that the stochastic process |P(E2|E1) — P(E2)| < ¢(j), ¢(j) =0,
output sequence satisfies tipemixing conditions. This
assumption is satisfied in virtually all practical settings. where 1> ¢(1) > ¢(2) > ---, and limj ¢ (j) =
Roughly speaking, a stochastic procesgimixing if its 0, then {X;;—c0 < i < oo} is called ¢-mixing

distant future behavior is essentially independent of its That is, in ¢-mixing sequences, the lag-covariance
present and past behavior (Billingsley 1999). A broad class y; = Cow(X;, X;4;) — 0 asi increases. Intuitively
of dependent stochastic processes possesseotnisxing X1, X2, -+, X, is ¢-mixing if X; andX;; become essen-
property. Many simulation output-analysis methods have tially independent ag becomes large. For example, the
used this property to establish their validity, for example waiting-time W; of an M/M/1 delay-in-queue ig-mixing,
Schruben (1983), Heidelberger and Lewis (1984), and Chen becauseW; and W;; become essentially independent as
and Kelton (1999). j becomes large; see Daley (1968). Tdwnixing condi-
The main advantage of our approach is that by using tions implies that the correlations of the stochastic process
a subsequence of quasi-independent samples to determineoutput sequence die off, which is the assumption that the
the batch size, we do not require complicated computation QI algorithm really depends on.
or advanced theory. Moreover, the batch size is determined These weakly dependent processes typically obey a
automatically without any user intervention. Furthermore, Central Limit Theorem (CLT) for dependent process of the
the subsequence of quasi-independent samples can be usefbrm
to represent the underlying distribution, and we can apply B
classical statistical techniques to those samples directly; for VNIX(N) — p]
details see Chen and Kelton (2000a). o
Although our quasi-independent procedures have many
desirable properties, there are also some drawbacks. First,where
our methods suffer from one of the problems that afflicts any
sequential stopping rule: the run length of the simulation o’ = I|m NVar[X(N)] = Z Vi
may be inappropriately short or long. The simulation may i=—00
terminate inappropriately early due to statistical variability,
which may cause difficulties such as the asymptotic ap-
proximation not yet being valid. However, by specifying
an appropriate stopping rule, we can reduce the chance that
the simulation terminates early. To avoid the simulation’s mei
running longer than necessary, though, is somewhat difficult, 20 N _ _ _
which arises from the fact that we double the simulation otm) =yo+2 Z(l tfmvi.
run length every two iterations.

Lo N@©.1) as N — oo,

is the steady-state variance constant (SSVC). If the sequence
is independent, then the SSVC is equal to the process
varianceoxz, i.e., Var(X;). For a finite samplen, let

i=1
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It follows that lim,_o0%(m) = o? and Vaii;] = andv is the service rate); this distribution is discontinuous
o2(m)/m ~ o2/m, provided thatn is sufficiently large. atx =0 and has a jump from0toZ p (p = A/v is
Although asymptotic results are often applicable when the traffic intensity). If the traffic intensity = 0.5, then
the amount of data is “large enough,” the point at which F(0) = 0.5, i.e., about fifty percent of the waiting times
the asymptotic results become valid generally depends on will be zero. Therefore, the probability of a run of length of
unknown factors. An important practical decision must be 1 will be unusually high. This “over mixing” will cause the
made regarding the sample si¥erequired to achieve the subsequence to fail the runs-up test. To correct this problem,
desired precision. Therefore, both asymptotic theory and we will increase the run length with probability & + 1)
workable finite-sample approaches are needed by the prac-when two elements are equal, wheras the current run
titioner. We propose our quasi-independent method; the length. If the distribution is continuous, the probability of
procedure uses a subsequence eamples (taken from the  run lengthr is r/(r + 1)!, under the null hypothesis that the
original output sequence & observations) that appearsto  sequence consists of i.i.d. random variables. Moreover, if
be independent to determine the batch size. We accomplishthere are- + 1 observations, the possibility of thie + 1)
this by systematic samplind.e., select a numbéy choose observation being the largest ig(z + 1). For example, if
that observation and then evel§} observation thereafter. X; = X;41 and the run length up to X; is 2, we will
Herel will be chosen sufficiently large so that samples are generate a uniform (0,1) random variableif u < 1/3,
essentially independent. This is possible because we as-we will let X; < X;11 and increase the run length by one,
sume the underlying output sequence satisfiegth@xing otherwise we will letX; > X;;1 and start a new run-up
conditions. sequence. Our preliminary experimental results show that
We compute the sizé for our systematic sampling  this adjustment works well even for discrete distributions.
based on the runs-up test (see Section (2.2)) and choose

the number of required independent observatiors4000, 2.3 Quasi-Independent Procedure
the minimum recommended sample size for the runs-up test
(Knuth, 1998). The simulation run length is th&h= nl. One of the most important aspects of the design of ex-

Let R be the number of batches (see Section (2.3) for how periments is the determination of the appropriate sample
R is determined in our procedure); then the batch size is size of the basic experiment. Because almost all simulation

m = N/R. Here R will be chosen so that: will be an output processes are autocorrelated and nonstationary, no

integer. fixed-sample-size procedure can be relied upon to produce
a ClI that covers: with the desired probability level, if the

2.2 Test of Independence fixed sample size is too small for the system being simu-

lated. In addition to this problem of coverage, a simulator

Because the required sample sizes are drastically different might want to determine a sample size large enough to
between i.i.d. and correlated sequences, it is beneficial to produce a Cl with a small absolute precisien It will
check whether the input data appear to be independent. Weseldom be possible to know in advance even the order of
use auns-uptest for this purpose, see Knuth (1998). Briefly, the magnitude of the sample size needed to meet these goals
a run up is a monotonically increasing subsequence and we in a given simulation problem, so some sort of procedure
consider the length of arun up. The observationimmediately to increase iteratively this sample size would be needed.
following a run is discarded so that subsequent runs are Consequently, sequential procedures have been developed
independent. Therefore, a straightforward chi-square test (Law and Kelton 2000).
can be used on the proportion of different run length to We propose a simpleuasi-independer(Ql) algorithm
check whether the sequence appears to be independent. Théo determine the simulation run length. The aim of the
runs-up tests looks solely for independence and has beenQIl method is to continue the simulation run until we have
shown to be very powerful (Knuth, 1998). If the output obtained a pre-specified number of essentially independent
data sequence appear to be dependent, then a sequentialandom samples by skipping highly correlated observations.
procedure will be used. The runs-up test is used in our In this paper, we focus on computing the variance of the
procedure to determine the lag lengtso that observations ~ mean directly from several mean estimators, i.e.,/ihis.
that are at leagtunits apart will be essentially independent. The runs-up test is somewhat sensitive to the sample size

However, in some cases, even when the subsequenceused. The sample size of 4000 is the most consistent one
should have been independent, it continues to fail the runs-up among three sample sizes 4000, 6000 and 8000 we tried.
test with lag up to ®. This is because some assumptions of Let / be the minimum lag length so that the subsequence
the runs-up test are violated. For example, the distribution will appear to be independent based on the runs-up test.
function of the waiting-time of an M/M/1 delay-in-queue is  The algorithm will sequentially increase the simulation run
F(x) > 1- %e_("_)‘)x, x > 0 (wherea is the arrival rate length by increasing the lag length
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The simulator will generate = 4000 (the minimum

m’ = 4000 (I = 2¥~1) observations akp iterations. We

recommended sample size for the runs-up test) observationscompute the third batch mean from theseobservations.

initially. We allocate a buffer A with size= 12, 000 (3:) to

We will then carry out a runs-up test with sampleg, 1,

store our quasi-independent sequence. We then carry out ai = 0,1, 2, ...,3999. This process will be done iteratively

runs-up test with these 4000 samplas yo, y3, ..., Y4000
as our initial (0") iteration. If the sequence appears to
be independent, then the simulation run length should be

large enough to obtain an unbiased variance estimator. If

until the subsequence appears to be independent. The sam-
ple size N will be equal to(40002* at the k' (k > 1)
iterations and1.5)(4000 (2*) at theka” iterations.

In the simulation run length determination stage of our

the sequence appears to be dependent, we generate anothetlgorithm, the batch size will bé40002¢—2, k > 2 at the

4000 observations and store their values in buffer A after

k'l iterations, and bé40002* 1, k > 2 at thek’y' iterations.

the ones already there. We then carry out a runs-up test The corresponding number of batchRswill be 4 and 3

with first 4,000 odd samples in buffer A, namely sam-
plesyi, y3, ¥5, ..., ¥2i+1, ..., y7999 i = 0,1,2,...,3999

as our 1(’ iteration. If the subsequence in buffer A appears
to be independent, the algorithm will stop. Otherwise,

we generate another 4000 observations and store their val- O

ues in buffer A after the ones already there. We will
then carry out another runs-up test as o{.gf iteration,

in the following fashion:ys, y4, y7, ..., ¥3i+1, ..., Y11998
i=0,1,2,...,3999. If this subsequence appears to be in-
dependent, the algorithm will stop. At iterations Q,, and

1, the simulation run lengths are 4000, 8000 and 12000
respectively. So far, all observations are stored in buffer A,
therefore, we will be able to chose any batch skeuch
that N = Rm. We choseR = 4 for these 3 iterations.

We alternate the iteration numbers between A and B.
For example, the 4 iteration is followed by the 2 iter-
ation and the 2 iteration is followed by the 2 iteration
and so forth. The reason for this notation is because we
double the batch size every two iterations. If the subse-
guence appears to be dependent alcghéteration, samples
¥2, V4, ¥6, - - - » y12000Will be discarded. The remaining sam-
plesy1, 3, ys, ..., y11990Will be rearranged in the buffer as
samplesy1, y2, y3, ..., yeooo. There will be 3 batches with
batch sizen after thek!! iteration. We will then generate
another 2000 samples and store their values in buffer A,
namelyys001, Y6002 - - - » Y8000, &S ourki(‘ (k > 2) iteration.
However, we only store®21 |lag observations (from all
observations generated) in the buffer at #i& iteration
(k > 2). So the buffer will store samples with each sample
taken 2-1 — 1 observations apart in the” iteration. In
effect, we generatedh = 2000 (I = 2¢~1) observations
at k4 iterations. We can then compute the fourth batch
mean from these: observations. We will then carry out a
runs-up test with samples; 1, i = 0,1,2,...,3999. If

the subsequence appears to be independent, the algorithm
stops. Otherwise, we generate another 4000 samples that

are 21 lag observations and store their values in buffer
A as ygoo1, Y8002 - - - » Y12000 &S ourkg’ iteration. More-
over, at the beginning of thk’Bh (k > 2) iteration, we will
reduce the number of batches from 4 to 2, by taking the

average of adjacent batch means. Therefore, we increased

the batch size fronm to m’ = 2m. In effect, we generated
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respectively. The following shows the incremental sample
sizes and the batch sizes (for iterations aftg) &t each
iteration:

14 1p 2A
4000 4000 4000 40@Q x 2000
0: 1A 13 . 2A 23 3A
8000 8000 800@ x 4000 80004 x 2000
0: 2A 23 . 3A 3B 4A

16000 16000 1600@ x 4000 160008 x 2000

The equation inside the parenthesis shows how the batch
size is determined. For example, the batch size is 8000
(4x 2000) at the ;{1 iteration. We obtain 2000 samples with
each sample is the lag 4 observation, therefore, we generated
8000 observations. Note that the entire observations are
used to compute the batch means. The batch mize
dynamically determined at the beginning of each iteration,
S0 a new batch mean can be computed when additianal
observations are generated. We discard samples in the QI
sequence so that the size of the QI sequence will be no
more thans. Samples in the QI sequence are used by the
runs-up test to determine batch sizes and are not used to
compute the batch means. We assume that the batch size
determined by our algorithm is sufficiently large so that the
batch means#; : 1 < j < R} are i.i.d. normal.

This method of estimating the variancejofs obtained
directly by obtaining multiple mean estimators. Because
f; has a limiting normal distribution, by the CLT a ClI for
w using the i.i.d.i;'s can be approximated using standard
statistical procedures. That is, if there atebatches, the
point estimate igi = %Zle fj, and the ratio

r_h-r

~ S/VR

would have an approximatedistribution with R — 1 d.f.
(degrees of freedom), where

R

3y -’

j=1

2: 1
(R-D
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is the usual unbiased estimator of the variance:.ofThis 9. Go to step 3.
would then lead to the 1Q0 — «)% CI for w, 10. If the simulation run length is less than or equal to

12, 000, divide the sequence inkb= 4 batches and
ﬁ - 1—a/2i, 3) compute the corresponding batch size= N /4.
' VR 11. Compute the point mean estimator according to
equation (2).

whereg_11-q/2 is the upper k- «/2 quantile for ther 12. Compute the confidence interval of the mean es-
distribution withk — 1 d.f. (R > 2). timator according to equation (3).
This Cl is approximately valid when the batch size 13. Lete be the desired absolute half-width arjd | be
m becomes large because the batch mgangio, ..., iir the desired relative half-width. If the half-width
become almost independent (since the underlying process of the Cl is less thare or r|a|, terminate the
satisfies thep-mixing conditions) and almost normally dis- algorithm.
tributed (from an appropriate CLT f@r-mixing sequences). 14. Run one more batch with batch size setR =
R+1. If R =30, double the batch size by taking
The Quasi-Independent Means Algorithm: the average of adjacent batch means and reduce
. . . . : the batch number to 15. Go to step 11.
1. Remark:itmax is the maximum iteration the al-
gorithm will try, 7 is the size of buffer A, which Our QI procedure addresses the problem of determining
are used to store QI samples, ahds the num-  the batch sizen, and the number of batche®, that are
ber of iterations. Each iteratiok contains two required to satisfy the assumptions of independence and
sub-iterationsc, andkp. _ normality. Theoretically, if these assumptions are satisfied,
2. Set the required number of independent samples then the actual coverage of the CI's should be close to
n = 4000, buffer sizer = 12,000 and iteration the pre-specified level. The QI procedure must store the
numberk = 0. GenerateV = n observations. whole quasi-independent sequence, which is needed for the
3. Carry out a runs-up test to determine whether the yns.yp test.
sequence appears to be independent. Our runs-up Let the half-width
test usesn = 4000 samples. If this the initial
iteration, use lag 1 samples in the QI sequence. H—t S
If this is a K 4 iteration, use lag 2 samples in the R_l’l_“/zﬁ'
QI sequence. If this is & g iteration, use lag 3
samples in the QI sequence. The final step in the QI procedure is to determine whether the
4. If the subsequence appears to be independent, goCl meets the user’s requirement for precision, a maximum
to step 10. absolute half-widthe or a maximum relative fraction of
5. If the current iteration i%4 iterations, start &g the magnitude of the final grand medn If the relevant
iteration. If the current iteration is the initial or ~ requirement,
kp iterations, sek =k + 1. If k > itmax, go to H<e @)
step 10; otherwise start/g iteration. -
6. |If this is the 1 or 11" iteration, generate 4000  of
observations, store those values in buffer A after _
the ones already there and go to step 3. H <r|pl (5)
’ gﬂtgf ézr?]ﬁ?eltiir?;lgnbfﬁirzié;??;ngfiﬁ;drz\;:gf for the precision of the confidence interval is satisfied, then
. . ' the QI procedure terminates: return the sample nieand
samplesin the first half of the buffer. Generate 2000 . . - .
samples that are lag2! observations and store the CI. with half_-V\{ldthI—_I. If the precision requirement (4)
. . or (5) is not satisfied wittR batches, then the QI procedure
them in the later portion of the buffer. The fourth S .
batch mean is the average of — 2000x 2¢-1 will increase t_he n_umber of batches by one. This step can
: be repeated iteratively until the pre-specified precision is
observations. achieved
8. Ifthis is akp iteration ¢ > 2), reduce the number )

Schmeiser (1982) studied batch-size effects in the anal-
ysis of simulation output. He recommends the number of
batches, in general, should be between 20 and 30 for any
fixed sample size. In order to keep the number of batches
to a reasonable size, we will set the maximum number of
batches to 30 in our half-width-reduction phase. At the

of batches from 4 to 2 by taking average of adjacent
batch means and double the batch size. Generate
4000 samples that are lag2 observations and
store them in the later portion of the buffer. The
third batch mean is the averagemf= 4000x 2¢—1
observations.
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beginning of the half-width-reduction phase, the number of
batches is 3 or 4 in our algorithm. If the number of batches
has been increased to 30 and the half-width is still larger
than desired, we will reduce the number of batches to 15
and double the batch size. This is accomplished by taking
the average of adjacent batch means.

2.4 Properties of Estimators

Goldsman and Schmeiser (1997) list some properties that

a good estimator should posses. We use these properties

to assess the desirability of our algorithm. The follow-
ings describe the performance of our algorithm under each

property.

» Statistical performance. The batch mean estimator
is asymptotically unbiased. Based on our experi-
ments, the asymptotic approximation is valid when
the batch size is determined by our QI algorithm.
Ease of computation. Our algorithm involves only
a little more thanO(N) operations. The runs-up
test is relatively computationally inexpensive.
Parsimonious storage requirements. Our data stor-
age is 12000 for the quasi-independent sequence
and isR = 30 for batch means. We only need to
process each observation once and do not require
storing the entireV observations.
Ease of understanding. Our algorithm requires only
simple statistics:¢-mixing, systematic sampling,
the runs-up test, and the CLT.
Numerical stability. The limits of machine preci-
sion is the limit of our algorithm precision.
User-specified parameters. We only require two
parameters: the confidence leueand the relative
precisionr. We do not require the user to enter
the number of batches or the batch size.
Amenability for use in algorithms. Our algorithm
can be incorporated with other procedures easily.
3 EMPIRICAL EXPERIMENTS
In this section we present some empirical results obtained
from simulations using the quasi-independent procedure
proposed in this paper. The purpose of the experiments
was not so much to test the methods thoroughly, but rather
to demonstrate the interdependence between the correlation
of simulation output sequences and simulation run lengths,
and the validity of our methods.

A stochastic model that has such a covariance structure
and admits an exact analysis of performance criteria is the
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first-order auto-regressivéAR(1)) process, generated by
the recurrence relation

Xi=pu+oXic1—p)+e fori=1,2,...,
where

o2

0

ifi=j |

E(e;) =0, E(ee;) = { otherwise

O<gp<1,

and Xy is specified to some random variaiggdrawn from
the steady-state distribution. Tlgs are commonly called
error terms

The AR(1) process shares many characteristics observed
in simulation output processes, including first- and second-
order nonstationarity and autocorrelations that decline ex-
ponentially with increasing lag (so AR(1) sequences are
¢-mixing sequences). If we make the additional assump-
tion that thee;’s are normally distributed, since we have
already assumed that they are uncorrelated, they will now
be independent as well, i.e., thes are i.i.d. A(0, 1). It
can be shown that has a\ (0, 17—1¢z) distribution, and the
SSVC of the AR(1) process is/l — ¢)2.

To get a sense of the quality of these algorithms, all
experiments were executed with the initial sample size
set ton = 4000 and steps 13 and 14 in the algorithm were
skipped, which are used to reduce the half-width of the
confidence intervals. The correlation coefficiep) (s set
to 0.50, 0.75 and 0.95, respectively. Each design point is
based on 100 independent replications. The results of our
mean estimations of the AR(1) process are summarized in
Table 1. Thecovercolumn lists the percentage of the Cls
that cover the true mean. Thecolumn lists the true mean
value. Theavg. s.s.column lists the average of the sample
size determined by the runs-up test. T&a. r.p. column
lists the average of the observed relative precision of the
estimator, i.e., the average ¢ft — u)/u. The avg. hw
column lists the average of the confidence interval half-
width of the mean estimators. Note that the coverages are
all close to the nominal 90% confidence level. The average
relative precisions areo for all three AR(1) models, because
the true meanw = 0.

Table 1: Coverages for Cls for the AR(1) Process with
1—o =090

¢ | cover| u | avg. s.s.| avg. r.p.| avg. hw
050| 92% | O 12320 oo | 0.049474
0.75]| 89% | O 29600 oo | 0.056243
0.95| 88% | 0| 171840 oo | 0.127643

Another stochastic model that allows exact analysis of
performance criteria is the waiting-time of the M/M/1 delay
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in queue. Queuing systems are usually positively correlated transition matrix and cost vector associated with the states
and often strongly so. Furthermore, the skewness of the are respectively given by
exponential distribution causes exponential-servers queuing

models to yield output data that might be considered “worst 0 1 0 1
case.” Some feel that if an output-analytic method works 0 (099 001 and h=(5 10) (6)
well for an exponential-servers model, it is likely to work ~ 1\ 001 099 o '

well in practice. We tested three M/M/1 queuing models.

The service ratey) is set to 1.0 per period for all models.  The second test case they presented is the waiting-time of

The arrival rate X) is set to 0.50, 0.75 and 0.95 per period, the M/M/1 delay in queue with = 0.90.

respectively. We made 100 independent simulations of the DTMC
Let {A,} denote the interarrival-time i.i.d. sequence and the waiting-time of the M/M/1 delay in queue and

and {S,} denote the service-time i.i.d. sequence. Then the attempted to construct nominal 90% confidence intervals

waiting-time sequenceW,} is defined by for three cases:
Wys1 = (Wp+ S, — Aps) T for n>1 1. no precision requirement, i.e., we terminated the
N procedure when a Cl was constructed based on the
wherew™ = max(w, 0). In order to eliminate the initial bias, default sample size. .
w1 is set to a random variate drawn from the steady-state 2. 15% relative precision so that= 0.15 in (5); and
distribution. 3. 7.5% relative precision so that= 0.075 in (5).

The results of our mean estimations of the waiting-time
of the M/M/1 delay-in-queue are summarized in Table 2. It
is deceiving that the simulation run length fer= 0.50 (of

This enabled us to get a relative idea of the quality of our
Cls. Tables 3 and 4 display in detail the results of our tests.

the M/M/1 delay in queue) determined by the runs-up test Table 3: Performance of Batch-Means Proce-
is larger the simulation run length fer= 0.75, because for dures for the 2-State DTMC Defined by (8)
o = 0.50 the algorithm was terminated by the exceptional Based on 100 Independent Replications Seek-
rule for discrete distributions (see Section 2.2). For the ing Nominal 90% Confidence Intervals of the
M/M/1 queuing process withh = 0.50, about half of the True Meany = 7.5
incoming customers do not have to wait, i.e., waiting-time Precision Procedure
is 0. Therefore, there will be many customers with the Requirement ASAP Ql
same waiting times. In general, the batch size determined 175% PRECISION
by the algorithm grows with the traffic intensigy. avg. sample size | 22711| 128000
Table 2: Coverages for Cls for the Waiting-time of the coverage 99% 89%
M/M/1 Delay in Queue with - o = 0.90 avg. rel. precision 0.059 | 0.007370
o | cover | avg. s.s| avg. rp.| avg. hw avg. ClI half-wldth 0.438| 0.155900
0.50| 93% | 1.0| 138240| 0.012658| 0.033024 var. Cl half-width | 0.006 | 0.059750

0.75| 86% | 3.0 59520 | 0.032987| 0.259181
0.95| 90% | 19.0 | 3097600| 0.018606| 1.047964

ASAP adjusts the half-width when the batch means are
dependent and normally distributed, but the QI procedure
attempts to obtain batch means that are independent and
Moreover, if the half-width is longer than desired, we in- normally distlributed. Thqrefore, the average sample size of
crease the number of batchRauntil the required precision the DTM.C with no precision was specified by the user to be
is achieved. As the simulation run length increases, we will .128‘ 000 in the QI proceodure, much Iarge_r than th_em
reduce the number of batches and increase the batch size."” the ASAP with a 754) relative precision requirement,

Steiger and Wilson (1999) proposed the ASAP (Au- & the acghleved half-width should be smaller than 0.5775
tomated Simulation Analysis Procedure) for batch-means (7.5 x 7.5%). Even though the coverages of .QI Cls are
procedures. We take the performance measure of the ASAP less than that qf thg ASAP, we would like to point thqt the
from their paper and tested the QI algorithm under the same average half_'v.v'dth is smaller in QI Cls and the achieved
conditions for comparison. We would like to point out the relative precision is better _from the QI procedure_.
these two algorithms are executed with different random The average sample S'Z?.Of the M/M/1 queung ’.“Ode'
numbers. The first test case they presented is a process deWhen no precision was specified by thg user is, &8 in
fined by a real-valued function on a simple 2-state Discrete 'the QI procedure, much larger than79 in the ASAP. That

Time Markov Chain (DTMC) whose one-step probability is, the QI procedure will obtain high precision by default.
623

The actual coverage is close to the specifiedalcon-
fidence level, indicating the effectiveness of the algorithm.
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Table 4: Performance of Batch-Means Proce-
dures for the Waiting-Time of the M/M/1 Delay
in Queue withp = 0.90 Based on 100 In-
dependent Replications Seeking Nominal 90%
Confidence Intervals of the True Mean= 9.0

Precision Procedure
Requirement ASAP Ql
NO PRECISION
avg. sample size 7719| 636160
coverage 83% 92%
avg. rel. precision 1.088| 0.022371
avg. CI half-width 11.8 | 0.621437
var. Cl half-width 523.0 | 0.339490
+15% PRECISION
avg. sample size | 298950| 636160
coverage 88% 87%
avg. rel. precision| 0.089| 0.023748
avg. ClI half-width 0.783| 0.567189
var. Cl half-width 0.082 | 0.290066
+7.5% PRECISION
avg. sample size | 815755 718720
coverage 94% 93%
avg. rel. precision| 0.046| 0.020140
avg. CI half-width 0.413| 0.464453
var. Cl half-width 0.018 | 0.125578

Table 5: Performance of Batch-Means Procedures for the
Waiting-Time of the M/M/1 Delay in Queue with = 0.90
Based on 100 Independent Replications Seeking Nominal
90% Confidence Intervals of the True Mean= 9.0

Precision Precision
Requirement 5.0% 2.5% 1.0%
avg. sample size| 870400| 1978880| 12446720

coverage 87% 87% 87%
avg. rel. precision| 0.019167| 0.012639| 0.004826
avg. Cl half-width | 0.355147| 0.207948| 0.086311
var. Cl half-width | 0.088165| 0.022658| 0.007058

duration hh:mm 0:49 1:54 11:36

from 0.022371 to 0.004826 when the relative precision of
1.0% is specified. Coverages from our experiments are all
close to the specified 90% level; this indicates the efficacy
of the QI procedure. To get an idea of the speed of the QI
implementation, we also list the execution times to get these
100 independent replications. This was done on a 32-bit
SUN Ultrasparc 1/140 workstation under Solaris 2.5.1. The
timings (in hours and minutes) are in Table 5. One should
keep in mind that these timings are strongly dependent on
the machine and its state.

4 CONCLUDING REMARKS

So the half-width reduction phase of the QI procedure was We have presented a confidence interval for the mean

not activated until the relative precision requirement is less
than 15% (roughly), i.e., the achieved half-width should
be less than 1.35 (@ x 15%). We do not think this is

a stationary process. Some Cls require more observations
than others before the asymptotics necessary for Cls become
valid. Our proposed quasi-independent algorithm works

a major practical drawback for the QI procedure, because well in determining the required simulation run length and

large relative half-width (larger than 15%) may provide little
useful information. In the 15% and5% relative precision

the batch size for the asymptotic approximation to be valid.

Although it is heuristic, the QI procedure has a strong

cases, the QI procedure shows a little less coverage thantheoretical basis. The results from our empirical experiments

the ASAP, but very close to the desired level. In the
7.5% relative precision case (i.e. the achieved half-width
should be smaller than 0.675.@9x 7.5%)), the sample

sizes determined by the QI procedure are smaller than from

ASAP. The average CI half-width of these two procedures

are about the same; however, the variance of the CI half-

width is larger in the QI procedure. On the other hand,

the average relative precision is better in the QI procedure

than in the ASAP; the average relative fractiom the QI
procedure is about 50% of that achieved in the ASAP. This
indicates that the point estimatgr of the QI procedure is

better than that from ASAP despite the small sample sizes
are used. This favorable average relative precision also
indicates that those QI Cls that do not cover the true mean
must miss the true mean by only a very small amount, most

probably caused by the half-width being too small.
Performance data of.8% 25%, and 10% relative
precisions for the ASAP are not available. Table 5 lists

show that the QI procedure is excellent in achieving the
intended coverage, not only for slightly correlated processes
but also for highly correlated processes. The QI procedure
does not require any extensive computation; therefore, it
is able to estimate highly correlated processes with good
precision in a reasonable amount of run time. For example,
to obtain one CI of the waiting time of the M/M/1 delay
in queue withp = 0.90 and relative precision of.@%, the
execution takes less than 20 seconds. However, the variance
of the simulation run length from our sequential procedure
is large. This is not only because of randomness of the
output sequence but also because we double the lag length
[ every two iterations. Further research is then to develop
new algorithms so that the simulation run length does not
need to be doubled every two iterations.

Our proposed quasi-independent algorithm requires
storing a sequence of quasi-independent observations that
most likely represent the underlying distribution. This se-

the performance of the QI procedure under these precision quence is used by the runs-up test to check for independence.

requirements.

The average relative precision is reduced Our procedure is completely automatic and has the desir-
624
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able properties that it is a sequential procedure and does
not require the user to hawe priori knowledge of values
that the data might assume. This allows the user to apply
this method without having to make a pilot run to deter-
mine the range of values to be expected or guess and risk
having to re-run the simulation, either of which represents
potentially large costs because many realistic simulations
are time-consuming to run. The main advantage of our
approach is that by using a straightforward runs-up test
to determine the simulation run length and the batch size,
we do not require more advanced statistical theory, thus
making it easy to understand, simple to implement, and
fast to run. The simplicity of this method should make
it attractive to simulation practitioners. Moreover, the QI
simulation run length determination mechanism can also be
used when estimating other parameters of the simulation
output sequence. Chen and Kelton (2000b) use this QI
algorithm to estimate quantiles.
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