
Proceedings of the 2000 Winter Simulation Conference
J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, eds.

A STOPPING PROCEDURE BASED ON PHI-MIXING CONDITIONS

E. Jack Chen
W. David Kelton

Department of Quantitative Analysis and Operations Management
University of Cincinnati

Cincinnati, OH 45221, U.S.A.

es
ted
le-
tc

on
es
h
.d.
ro

d)
ro
nc
e.

n

ic
a
of

ary

ble
the
.

al
is

ce
ra
ti-
se
ro
84
na

re-
84)
en

ies.
e
e

7),
ny
ed
for
e-

nd
be

-

by

e
d

ce
or
ABSTRACT

The use of batch means is a well-known technique for
timating the variance of mean point estimators compu
from a simulation experiment. This paper discusses imp
mentation of a sequential procedure to determine the ba
size for constructing confidence intervals for a simulati
estimator of the steady-state mean of a stochastic proc
Our quasi-independent(QI) procedure increases the batc
size progressively until a certain number of essentially i.i
samples are obtained. We show that our sequential p
cedure gives valid confidence intervals. The only (mil
assumption is that the correlations of the stochastic p
cess output sequence die off. An experimental performa
evaluation demonstrates the validity of the QI procedur

1 INTRODUCTION

When estimating the steady-state meanµ of some discrete-
time stochastic output process {Xi : i ≥ 1} with simulation,
we would like an algorithm to determine the simulation ru
lengthN so that the mean estimator (sample meanX̄(N) =
1
N

∑N
i=1Xi) is asymptotically unbiased (i.e. the asymptot

approximation is valid), the confidence interval (CI) is of
pre-specified width, and the actual coverage probability
the CI is close to the nominal coverage probability 1− α.
Because we assume the underlying distribution is station
i.e., the joint distribution of theXi ’s is insensitive to time
shifts, the mean estimator will be unbiased. But a worka
sample size must be determined dynamically to attain
precision required of a point estimator from a simulation

The usual method of CI construction from classic
statistics, which assumes independent and identically d
tributed (i.i.d.) observations, is not directly applicable sin
simulation output data are generally correlated. Seve
methods of determining the simulation run length and es
mating the variance of the sample mean have been propo
In particular, Crane and Iglehart (1975) use regenerative p
cesses; Fishman (1971) and Schriber and Andrews (19
use time series; Priestley (1981) uses classical spectral a
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ysis; Heidelberger and Welch (1981) use a spectral-based
gression; Schmeiser (1982), Meketon and Schmeiser (19
and Steiger and Wilson (1999) use batch means; Schrub
(1983) and Nakayama (1994) use standardized time ser
For an overview of existing methods of determining th
simulation run length and estimating the variance of th
sample mean, see Law and Kelton (2000 pp. 527-53
or Sargent, Kang and Goldsman (1992). However, ma
existing techniques are either too restrictive to be appli
to general cases or too complicated to be implemented
practical use. Therefore, there is a need for robust proc
dures to determine appropriate simulation run lengths a
to estimate the variance of the sample mean that can
applied to generic processes, and is easy to implement.

In the non overlapping batch-means method, the sim
ulation output sequence {Xi : i = 1,2, . . . , N} is divided
into R adjacent non overlapping batches, each of sizem.
For simplicity, we assume thatN is a multiple ofm so
thatN = Rm. The sample mean,̂µj , for the j th batch is
calculated by

µ̂j = 1

m

mj∑
i=m(j−1)+1

Xi for j = 1,2, . . . , R. (1)

Then the grand mean̂̄µ of the individual batch means, given
by

¯̂µ = 1

R

R∑
j=1

µ̂j , (2)

is used as a point estimator forµ. Here ¯̂µ = X̄(N), the
sample mean of allN individual Xi ’s, and we seek to
construct a CI based on the point estimator obtained
equation (2).

The use of batch means is a well-known techniqu
for estimating the variance of point estimators compute
from simulation experiments. The batch-means varian
estimator is simply the sample variance of the estimat



Chen and Kelton

le
h
an
e
a

t
g
r
e
e

o
io
ce
nt
n

ss

.

ts
ss

ve
le
e

g
i

on
e

e,
us
ly
fo

n
irs
ny
n
y

y,
p

th
’s
lt
n

d

n

e.

ce

s
e

a

ce
ss
computed on means of subsets of consecutive subsamp
The asymptotic validity of batch means depends on both t
assumption of approximate independence of the batch me
and the assumption of the batch means being approximat
normally distributed. For the method to be practical,
good choice of batch size is necessary. We propose
method to estimate the batch size using only observed da
In contrast to results that model the unknown underlyin
dependence structure in terms of a few unknown paramete
the method is completely nonparametric. We do not consid
the effect of any initial-transient period and require that th
observations obtained are already in steady-state.

We propose aquasi-independent(QI) procedure (see
Section 2) for constructing a CI for the meanµ of a sta-
tionary process,X1, X2, . . .. The proposed procedure will
sequentially determine the length of a simulation run s
that the mean estimate satisfies a pre-specified precis
requirement, and produces asymptotically valid confiden
intervals. The asymptotic validity of our quasi-independe
procedures occurs as the subsequence appears to be i
pendent.

The only (mild) assumption is that the stochastic proce
output sequence satisfies theφ-mixing conditions. This
assumption is satisfied in virtually all practical settings
Roughly speaking, a stochastic process isφ-mixing if its
distant future behavior is essentially independent of i
present and past behavior (Billingsley 1999). A broad cla
of dependent stochastic processes possess thisφ-mixing
property. Many simulation output-analysis methods ha
used this property to establish their validity, for examp
Schruben (1983), Heidelberger and Lewis (1984), and Ch
and Kelton (1999).

The main advantage of our approach is that by usin
a subsequence of quasi-independent samples to determ
the batch size, we do not require complicated computati
or advanced theory. Moreover, the batch size is determin
automatically without any user intervention. Furthermor
the subsequence of quasi-independent samples can be
to represent the underlying distribution, and we can app
classical statistical techniques to those samples directly;
details see Chen and Kelton (2000a).

Although our quasi-independent procedures have ma
desirable properties, there are also some drawbacks. F
our methods suffer from one of the problems that afflicts a
sequential stopping rule: the run length of the simulatio
may be inappropriately short or long. The simulation ma
terminate inappropriately early due to statistical variabilit
which may cause difficulties such as the asymptotic a
proximation not yet being valid. However, by specifying
an appropriate stopping rule, we can reduce the chance
the simulation terminates early. To avoid the simulation
running longer than necessary, though, is somewhat difficu
which arises from the fact that we double the simulatio
run length every two iterations.
618
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In Section 2 we present our methodologies and propose
procedure for mean estimation. In Section 3, we show
our empirical-experiment results. In Section 4, we give
concluding remarks.

2 METHODOLOGIES

In this section we introduce the methodologies we used i
our procedures:φ-mixing, systematic sampling, and the
runs-uptest, and present our quasi-independent procedur

2.1 φ-Mixing

To defineφ-mixing, let {Xi;−∞ < i <∞} be a stationary
sequence of random variables defined on a probability spa
(�, A, P). Thus, ifMk−∞ andM∞k+j are respectively the
sequences generated by {Xi; i ≤ k} and {Xi; i ≥ k+j }, and
if E1 ∈Mk−∞ andE2 ∈M∞k+j , then for allk (−∞ < k <

∞) andj (j ≥ 1), if there exists a sequenceφ(1), φ(2), . . .
such that

|P(E2|E1)− P(E2)| ≤ φ(j), φ(j) ≥ 0,

where 1 ≥ φ(1) ≥ φ(2) ≥ · · ·, and limj→∞ φ(j) =
0, then {Xi;−∞ < i < ∞} is called φ-mixing.
That is, in φ-mixing sequences, the lag-i covariance
γi = Cov(Xk,Xk+i ) → 0 as i increases. Intuitively
X1, X2, · · · , Xn is φ-mixing if Xi andXi+j become essen-
tially independent asj becomes large. For example, the
waiting-timeWi of an M/M/1 delay-in-queue isφ-mixing,
becauseWi andWi+j become essentially independent as
j becomes large; see Daley (1968). Theφ-mixing condi-
tions implies that the correlations of the stochastic proces
output sequence die off, which is the assumption that th
QI algorithm really depends on.

These weakly dependent processes typically obey
Central Limit Theorem (CLT) for dependent process of the
form

√
N [X̄(N)− µ]

σ

D−→ N (0,1) as N →∞,

where

σ 2 ≡ lim
N→∞NVar[X̄(N)] =

∞∑
i=−∞

γi

is the steady-state variance constant (SSVC). If the sequen
is independent, then the SSVC is equal to the proce
varianceσ 2

x , i.e., Var(Xi). For a finite samplem, let

σ 2(m) = γ0 + 2
m−1∑
i=1

(1− i/m)γi .
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It follows that limm→∞ σ 2(m) = σ 2 and Var[µ̂j ] =
σ 2(m)/m ≈ σ 2/m, provided thatm is sufficiently large.

Although asymptotic results are often applicable whe
the amount of data is “large enough,” the point at whic
the asymptotic results become valid generally depends
unknown factors. An important practical decision must b
made regarding the sample sizeN required to achieve the
desired precision. Therefore, both asymptotic theory an
workable finite-sample approaches are needed by the pr
titioner. We propose our quasi-independent method; t
procedure uses a subsequence ofn samples (taken from the
original output sequence ofN observations) that appears to
be independent to determine the batch size. We accompl
this by systematic sampling, i.e., select a numberl, choose
that observation and then everylth observation thereafter.
Here l will be chosen sufficiently large so that samples ar
essentially independent. This is possible because we
sume the underlying output sequence satisfies theφ-mixing
conditions.

We compute the sizel for our systematic sampling
based on the runs-up test (see Section (2.2)) and cho
the number of required independent observationsn = 4000,
the minimum recommended sample size for the runs-up te
(Knuth, 1998). The simulation run length is thenN = nl.
Let R be the number of batches (see Section (2.3) for ho
R is determined in our procedure); then the batch size
m = N/R. HereR will be chosen so thatm will be an
integer.

2.2 Test of Independence

Because the required sample sizes are drastically differe
between i.i.d. and correlated sequences, it is beneficial
check whether the input data appear to be independent.
use aruns-uptest for this purpose, see Knuth (1998). Briefly
a run up is a monotonically increasing subsequence and
consider the length of a run up. The observation immediate
following a run is discarded so that subsequent runs a
independent. Therefore, a straightforward chi-square te
can be used on the proportion of different run length t
check whether the sequence appears to be independent.
runs-up tests looks solely for independence and has be
shown to be very powerful (Knuth, 1998). If the outpu
data sequence appear to be dependent, then a seque
procedure will be used. The runs-up test is used in o
procedure to determine the lag lengthl so that observations
that are at leastl units apart will be essentially independent

However, in some cases, even when the subseque
should have been independent, it continues to fail the runs-
test with lag up to 214. This is because some assumptions o
the runs-up test are violated. For example, the distributio
function of the waiting-time of an M/M/1 delay-in-queue is
F(x)→ 1− λ

ν
e−(ν−λ)x , x ≥ 0 (whereλ is the arrival rate
61
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andν is the service rate); this distribution is discontinuou
at x = 0 and has a jump from 0 to 1− ρ (ρ = λ/ν is
the traffic intensity). If the traffic intensityρ = 0.5, then
F(0) = 0.5, i.e., about fifty percent of the waiting times
will be zero. Therefore, the probability of a run of length o
1 will be unusually high. This “over mixing” will cause the
subsequence to fail the runs-up test. To correct this proble
we will increase the run length with probability 1/(r + 1)
when two elements are equal, wherer is the current run
length. If the distribution is continuous, the probability o
run lengthr is r/(r+1)!, under the null hypothesis that the
sequence consists of i.i.d. random variables. Moreover,
there arer +1 observations, the possibility of the(r +1)th

observation being the largest is 1/(r + 1). For example, if
Xi = Xi+1 and the run lengthr up to Xi is 2, we will
generate a uniform (0,1) random variableu; if u < 1/3,
we will let Xi ≤ Xi+1 and increase the run length by one
otherwise we will letXi ≥ Xi+1 and start a new run-up
sequence. Our preliminary experimental results show th
this adjustment works well even for discrete distributions

2.3 Quasi-Independent Procedure

One of the most important aspects of the design of e
periments is the determination of the appropriate samp
size of the basic experiment. Because almost all simulati
output processes are autocorrelated and nonstationary,
fixed-sample-size procedure can be relied upon to produ
a CI that coversµ with the desired probability level, if the
fixed sample size is too small for the system being simu
lated. In addition to this problem of coverage, a simulato
might want to determine a sample size large enough
produce a CI with a small absolute precisionε. It will
seldom be possible to know in advance even the order
the magnitude of the sample size needed to meet these go
in a given simulation problem, so some sort of procedu
to increase iteratively this sample size would be neede
Consequently, sequential procedures have been develo
(Law and Kelton 2000).

We propose a simplequasi-independent(QI) algorithm
to determine the simulation run length. The aim of th
QI method is to continue the simulation run until we hav
obtained a pre-specified number of essentially independe
random samples by skipping highly correlated observation
In this paper, we focus on computing the variance of th
mean directly from several mean estimators, i.e., theµ̂j ’s.
The runs-up test is somewhat sensitive to the sample s
used. The sample size of 4000 is the most consistent o
among three sample sizes 4000, 6000 and 8000 we tri
Let l be the minimum lag length so that the subsequen
will appear to be independent based on the runs-up te
The algorithm will sequentially increase the simulation ru
length by increasing the lag lengthl.
9
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The simulator will generaten = 4000 (the minimum
recommended sample size for the runs-up test) observati
initially. We allocate a buffer A with sizet = 12,000 (3n) to
store our quasi-independent sequence. We then carry o
runs-up test with these 4000 samplesy1, y2, y3, . . . , y4000,
as our initial (0th) iteration. If the sequence appears t
be independent, then the simulation run length should
large enough to obtain an unbiased variance estimator.
the sequence appears to be dependent, we generate an
4000 observations and store their values in buffer A aft
the ones already there. We then carry out a runs-up t
with first 4,000 odd samples in buffer A, namely sam
ples y1, y3, y5, . . . , y2i+1, . . . , y7999, i = 0,1,2, . . . ,3999
as our 1thA iteration. If the subsequence in buffer A appea
to be independent, the algorithm will stop. Otherwise
we generate another 4000 observations and store their
ues in buffer A after the ones already there. We wi
then carry out another runs-up test as our 1th

B iteration,
in the following fashion:y1, y4, y7, . . . , y3i+1, . . . , y11998,
i = 0,1,2, . . . ,3999. If this subsequence appears to be i
dependent, the algorithm will stop. At iterations 0, 1A, and
1B , the simulation run lengths are 4000, 8000 and 120
respectively. So far, all observations are stored in buffer
therefore, we will be able to chose any batch sizeR such
thatN = Rm. We choseR = 4 for these 3 iterations.

We alternate the iteration numbers between A and
For example, the 1thB iteration is followed by the 2thA iter-
ation and the 2thA iteration is followed by the 2thB iteration
and so forth. The reason for this notation is because
double the batch size every two iterations. If the subs
quence appears to be dependent at thekthB iteration, samples
y2, y4, y6, . . . , y12000will be discarded. The remaining sam
plesy1, y3, y5, . . . , y11999will be rearranged in the buffer as
samplesy1, y2, y3, . . . , y6000. There will be 3 batches with
batch sizem after thekthB iteration. We will then generate
another 2000 samples and store their values in buffer
namelyy6001, y6002, . . . , y8000, as ourkthA (k ≥ 2) iteration.
However, we only store 2k−1 lag observations (from all
observations generated) in the buffer at thekth iteration
(k ≥ 2). So the buffer will store samples with each samp
taken 2k−1 − 1 observations apart in thekth iteration. In
effect, we generatedm = 2000l (l = 2k−1) observations
at kA iterations. We can then compute the fourth batc
mean from thesem observations. We will then carry out a
runs-up test with samplesy2i+1, i = 0,1,2, . . . ,3999. If
the subsequence appears to be independent, the algor
stops. Otherwise, we generate another 4000 samples
are 2k−1 lag observations and store their values in buffe
A as y8001, y8002, . . . , y12000 as ourkthB iteration. More-
over, at the beginning of thekthB (k ≥ 2) iteration, we will
reduce the number of batches from 4 to 2, by taking th
average of adjacent batch means. Therefore, we increa
the batch size fromm to m′ = 2m. In effect, we generated
62
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m′ = 4000l (l = 2k−1) observations atkB iterations. We
compute the third batch mean from thesem′ observations.
We will then carry out a runs-up test with samplesy3i+1,
i = 0,1,2, . . . ,3999. This process will be done iteratively
until the subsequence appears to be independent. The sa
ple sizeN will be equal to(4000)2k at the kthA (k ≥ 1)
iterations and(1.5)(4000)(2k) at thekthB iterations.

In the simulation run length determination stage of ou
algorithm, the batch size will be(4000)2k−2, k ≥ 2 at the
kthA iterations, and be(4000)2k−1, k ≥ 2 at thekthB iterations.
The corresponding number of batchesR will be 4 and 3
respectively. The following shows the incremental sampl
sizes and the batch sizes (for iterations after 2A) at each
iteration:

0 1A 1B 2A
4000 4000 4000 4000(2× 2000)
0 : 1A 1B : 2A 2B 3A
8000 8000 8000(2× 4000) 8000(4× 2000)
0 : 2A 2B : 3A 3B 4A
16000 16000 16000(4× 4000) 16000(8× 2000)
. . .

The equation inside the parenthesis shows how the bat
size is determined. For example, the batch size is 800
(4×2000) at the 3thA iteration. We obtain 2000 samples with
each sample is the lag 4 observation, therefore, we genera
8000 observations. Note that the entire observations a
used to compute the batch means. The batch sizem is
dynamically determined at the beginning of each iteration
so a new batch mean can be computed when additionalm

observations are generated. We discard samples in the
sequence so that the size of the QI sequence will be n
more thant . Samples in the QI sequence are used by th
runs-up test to determine batch sizes and are not used
compute the batch means. We assume that the batch s
determined by our algorithm is sufficiently large so that th
batch means {̂µj : 1≤ j ≤ R} are i.i.d. normal.

This method of estimating the variance ofµ̂ is obtained
directly by obtaining multiple mean estimators. Becaus
µ̂j has a limiting normal distribution, by the CLT a CI for
µ using the i.i.d.µ̂j ’s can be approximated using standard
statistical procedures. That is, if there areR batches, the
point estimate is̄µ̂ = 1

R

∑R
j=1 µ̂j , and the ratio

T =
¯̂µ− µ
S/
√
R

would have an approximatet distribution withR − 1 d.f.
(degrees of freedom), where

S2 = 1

(R − 1)

R∑
j=1

(µ̂j − ¯̂µ)2
0
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is the usual unbiased estimator of the variance ofµ. This
would then lead to the 100(1− α)% CI for µ,

¯̂µ± tR−1,1−α/2
S√
R
, (3)

where tR−1,1−α/2 is the upper 1− α/2 quantile for thet
distribution withR − 1 d.f. (R ≥ 2).

This CI is approximately valid when the batch siz
m becomes large because the batch meansµ̂1, µ̂2, . . . , µ̂R
become almost independent (since the underlying proc
satisfies theφ-mixing conditions) and almost normally dis-
tributed (from an appropriate CLT forφ-mixing sequences).

The Quasi-Independent Means Algorithm:

1. Remark:itmax is the maximum iteration the al-
gorithm will try, t is the size of buffer A, which
are used to store QI samples, andk is the num-
ber of iterations. Each iterationk contains two
sub-iterationskA andkB .

2. Set the required number of independent samp
n = 4000, buffer sizet = 12,000 and iteration
numberk = 0. GenerateN = n observations.

3. Carry out a runs-up test to determine whether th
sequence appears to be independent. Our runs
test usesn = 4000 samples. If this the initial
iteration, use lag 1 samples in the QI sequenc
If this is aKA iteration, use lag 2 samples in the
QI sequence. If this is aKB iteration, use lag 3
samples in the QI sequence.

4. If the subsequence appears to be independent,
to step 10.

5. If the current iteration iskA iterations, start akB
iteration. If the current iteration is the initial or
kB iterations, setk = k + 1. If k > itmax, go to
step 10; otherwise start akA iteration.

6. If this is the 1thA or 1thB iteration, generate 4000
observations, store those values in buffer A afte
the ones already there and go to step 3.

7. If this is akA iteration (k ≥ 2), then discard every
other sample in the buffer, rearrange the rest ofn

samples in the first half of the buffer. Generate 200
samples that are lag 2k−1 observations and store
them in the later portion of the buffer. The fourth
batch mean is the average ofm = 2000× 2k−1

observations.
8. If this is akB iteration (k ≥ 2), reduce the number

of batches from 4 to 2 by taking average of adjace
batch means and double the batch size. Gener
4000 samples that are lag 2k−1 observations and
store them in the later portion of the buffer. The
third batch mean is the average ofm = 4000×2k−1

observations.
6
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9. Go to step 3.
10. If the simulation run length is less than or equal to

12,000, divide the sequence intoR = 4 batches and
compute the corresponding batch sizem = N/4.

11. Compute the point mean estimator according to
equation (2).

12. Compute the confidence interval of the mean es
timator according to equation (3).

13. Letε be the desired absolute half-width andr| ¯̂µ| be
the desired relative half-width. If the half-width
of the CI is less thanε or r| ¯̂µ|, terminate the
algorithm.

14. Run one more batch with batch sizem, setR =
R+ 1. If R = 30, double the batch size by taking
the average of adjacent batch means and reduc
the batch numberR to 15. Go to step 11.

Our QI procedure addresses the problem of determinin
the batch sizem, and the number of batchesR, that are
required to satisfy the assumptions of independence an
normality. Theoretically, if these assumptions are satisfied
then the actual coverage of the CI’s should be close t
the pre-specified level. The QI procedure must store th
whole quasi-independent sequence, which is needed for t
runs-up test.

Let the half-width

H = tR−1,1−α/2
S√
R
.

The final step in the QI procedure is to determine whether th
CI meets the user’s requirement for precision, a maximum
absolute half-widthε or a maximum relative fractionr of
the magnitude of the final grand mean¯̂µ. If the relevant
requirement,

H ≤ ε (4)

or

H ≤ r| ¯̂µ| (5)

for the precision of the confidence interval is satisfied, then
the QI procedure terminates: return the sample mean¯̂µ and
the CI with half-widthH . If the precision requirement (4)
or (5) is not satisfied withR batches, then the QI procedure
will increase the number of batches by one. This step ca
be repeated iteratively until the pre-specified precision i
achieved.

Schmeiser (1982) studied batch-size effects in the ana
ysis of simulation output. He recommends the number o
batches, in general, should be between 20 and 30 for an
fixed sample size. In order to keep the number of batche
to a reasonable size, we will set the maximum number o
batches to 30 in our half-width-reduction phase. At the
21
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beginning of the half-width-reduction phase, the number o
batches is 3 or 4 in our algorithm. If the number of batche
has been increased to 30 and the half-width is still large
than desired, we will reduce the number of batches to 1
and double the batch size. This is accomplished by takin
the average of adjacent batch means.

2.4 Properties of Estimators

Goldsman and Schmeiser (1997) list some properties th
a good estimator should posses. We use these proper
to assess the desirability of our algorithm. The follow
ings describe the performance of our algorithm under ea
property.

• Statistical performance. The batch mean estimato
is asymptotically unbiased. Based on our exper
ments, the asymptotic approximation is valid when
the batch size is determined by our QI algorithm

• Ease of computation. Our algorithm involves only
a little more thanO(N) operations. The runs-up
test is relatively computationally inexpensive.

• Parsimonious storage requirements. Our data sto
age is 12,000 for the quasi-independent sequenc
and isR = 30 for batch means. We only need to
process each observation once and do not requ
storing the entireN observations.

• Ease of understanding. Our algorithm requires onl
simple statistics:φ-mixing, systematic sampling,
the runs-up test, and the CLT.

• Numerical stability. The limits of machine preci-
sion is the limit of our algorithm precision.

• User-specified parameters. We only require tw
parameters: the confidence levelα and the relative
precisionr. We do not require the user to enter
the number of batches or the batch size.

• Amenability for use in algorithms. Our algorithm
can be incorporated with other procedures easily

3 EMPIRICAL EXPERIMENTS

In this section we present some empirical results obtaine
from simulations using the quasi-independent procedu
proposed in this paper. The purpose of the experimen
was not so much to test the methods thoroughly, but rath
to demonstrate the interdependence between the correlat
of simulation output sequences and simulation run length
and the validity of our methods.

A stochastic model that has such a covariance structu
and admits an exact analysis of performance criteria is th
of
y
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first-order auto-regressive(AR(1)) process, generated by
the recurrence relation

Xi = µ+ ϕ(Xi−1− µ)+ εi for i = 1,2, . . . ,

where

E(εi) = 0, E(εiεj ) =
{
σ 2 if i = j ,

0 otherwise

0< ϕ < 1,

andX0 is specified to some random variatex0 drawn from
the steady-state distribution. Theεi ’s are commonly called
error terms.

TheAR(1) process shares many characteristics obser
in simulation output processes, including first- and secon
order nonstationarity and autocorrelations that decline e
ponentially with increasing lag (so AR(1) sequences a
φ-mixing sequences). If we make the additional assum
tion that theεi ’s are normally distributed, since we have
already assumed that they are uncorrelated, they will n
be independent as well, i.e., theεi ’s are i.i.d. N (0,1). It
can be shown thatX has aN (0, 1

1−ϕ2 ) distribution, and the

SSVC of the AR(1) process is 1/(1− ϕ)2.
To get a sense of the quality of these algorithms, a

experiments were executed with the initial sample sizeN

set ton = 4000 and steps 13 and 14 in the algorithm we
skipped, which are used to reduce the half-width of th
confidence intervals. The correlation coefficient (ϕ) is set
to 0.50, 0.75 and 0.95, respectively. Each design point
based on 100 independent replications. The results of
mean estimations of the AR(1) process are summarized
Table 1. Thecovercolumn lists the percentage of the CI
that cover the true mean. Theµ column lists the true mean
value. Theavg. s.s.column lists the average of the sampl
size determined by the runs-up test. Theavg. r.p. column
lists the average of the observed relative precision of t
estimator, i.e., the average of( ¯̂µ − µ)/µ. The avg. hw
column lists the average of the confidence interval ha
width of the mean estimators. Note that the coverages
all close to the nominal 90% confidence level. The avera
relative precisions are∞ for all threeAR(1) models, because
the true meanµ = 0.

Table 1: Coverages for CIs for the AR(1) Process with
1− α = 0.90
ϕ cover µ avg. s.s. avg. r.p. avg. hw

0.50 92% 0 12320 ∞ 0.049474
0.75 89% 0 29600 ∞ 0.056243
0.95 88% 0 171840 ∞ 0.127643

Another stochastic model that allows exact analysis
performance criteria is the waiting-time of the M/M/1 dela
2
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in queue. Queuing systems are usually positively correla
and often strongly so. Furthermore, the skewness of
exponential distribution causes exponential-servers queu
models to yield output data that might be considered “wo
case.” Some feel that if an output-analytic method wor
well for an exponential-servers model, it is likely to wor
well in practice. We tested three M/M/1 queuing model
The service rate (ν) is set to 1.0 per period for all models
The arrival rate (λ) is set to 0.50, 0.75 and 0.95 per period
respectively.

Let {An} denote the interarrival-time i.i.d. sequenc
and {Sn} denote the service-time i.i.d. sequence. Then t
waiting-time sequence {Wn} is defined by

Wn+1 = (Wn + Sn − An+1)
+ for n ≥ 1,

wherew+ = max(w,0). In order to eliminate the initial bias,
w1 is set to a random variate drawn from the steady-sta
distribution.

The results of our mean estimations of the waiting-tim
of the M/M/1 delay-in-queue are summarized in Table 2.
is deceiving that the simulation run length forρ = 0.50 (of
the M/M/1 delay in queue) determined by the runs-up te
is larger the simulation run length forρ = 0.75, because for
ρ = 0.50 the algorithm was terminated by the exception
rule for discrete distributions (see Section 2.2). For t
M/M/1 queuing process withρ = 0.50, about half of the
incoming customers do not have to wait, i.e., waiting-tim
is 0. Therefore, there will be many customers with th
same waiting times. In general, the batch size determin
by the algorithm grows with the traffic intensityρ.

Table 2: Coverages for CIs for the Waiting-time of th
M/M/1 Delay in Queue with 1− α = 0.90
ρ cover µ avg. s.s. avg. r.p. avg. hw

0.50 93% 1.0 138240 0.012658 0.033024
0.75 86% 3.0 59520 0.032987 0.259181
0.95 90% 19.0 3097600 0.018606 1.047964

The actual coverage is close to the specified 1−α con-
fidence level, indicating the effectiveness of the algorithm
Moreover, if the half-width is longer than desired, we in
crease the number of batchesR until the required precision
is achieved. As the simulation run length increases, we w
reduce the number of batches and increase the batch s

Steiger and Wilson (1999) proposed the ASAP (Au
tomated Simulation Analysis Procedure) for batch-mea
procedures. We take the performance measure of the AS
from their paper and tested the QI algorithm under the sa
conditions for comparison. We would like to point out th
these two algorithms are executed with different rando
numbers. The first test case they presented is a process
fined by a real-valued function on a simple 2-state Discre
Time Markov Chain (DTMC) whose one-step probabilit
6
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transition matrix and cost vector associated with the sta
are respectively given by

0 1

P= 0
1

(
0.99 0.01
0.01 0.99

) 0 1
and h = ( 5 10

)
.

(6)

The second test case they presented is the waiting-time
the M/M/1 delay in queue withρ = 0.90.

We made 100 independent simulations of the DTM
and the waiting-time of the M/M/1 delay in queue an
attempted to construct nominal 90% confidence interva
for three cases:

1. no precision requirement, i.e., we terminated th
procedure when a CI was constructed based on t
default sample size.

2. 15% relative precision so thatr = 0.15 in (5); and
3. 7.5% relative precision so thatr = 0.075 in (5).

This enabled us to get a relative idea of the quality of o
CIs. Tables 3 and 4 display in detail the results of our tes

Table 3: Performance of Batch-Means Proce-
dures for the 2-State DTMC Defined by (8)
Based on 100 Independent Replications Seek-
ing Nominal 90% Confidence Intervals of the
True Meanµ = 7.5

Precision Procedure
Requirement ASAP QI

±7.5% PRECISION
avg. sample size 22711 128000

coverage 99% 89%
avg. rel. precision 0.059 0.007370
avg. CI half-width 0.438 0.155900
var. CI half-width 0.006 0.059750

ASAP adjusts the half-width when the batch means a
dependent and normally distributed, but the QI procedu
attempts to obtain batch means that are independent
normally distributed. Therefore, the average sample size
the DTMC with no precision was specified by the user to b
128,000 in the QI procedure, much larger than the 22,711
in the ASAP with a 7.5% relative precision requirement,
i.e., the achieved half-width should be smaller than 0.57
(7.5× 7.5%). Even though the coverages of QI CIs ar
less than that of the ASAP, we would like to point that th
average half-width is smaller in QI CIs and the achieve
relative precision is better from the QI procedure.

The average sample size of the M/M/1 queuing mod
when no precision was specified by the user is 636,160 in
the QI procedure, much larger than 7,719 in the ASAP. That
is, the QI procedure will obtain high precision by defaul
23
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Table 4: Performance of Batch-Means Proce-
dures for the Waiting-Time of the M/M/1 Delay
in Queue withρ = 0.90 Based on 100 In-
dependent Replications Seeking Nominal 90%
Confidence Intervals of the True Meanµ = 9.0

Precision Procedure
Requirement ASAP QI

NO PRECISION
avg. sample size 7719 636160

coverage 83% 92%
avg. rel. precision 1.088 0.022371
avg. CI half-width 11.8 0.621437
var. CI half-width 523.0 0.339490
±15% PRECISION

avg. sample size 298950 636160
coverage 88% 87%

avg. rel. precision 0.089 0.023748
avg. CI half-width 0.783 0.567189
var. CI half-width 0.082 0.290066
±7.5% PRECISION

avg. sample size 815755 718720
coverage 94% 93%

avg. rel. precision 0.046 0.020140
avg. CI half-width 0.413 0.464453
var. CI half-width 0.018 0.125578

So the half-width reduction phase of the QI procedure w
not activated until the relative precision requirement is le
than 15% (roughly), i.e., the achieved half-width shou
be less than 1.35 (9.0× 15%). We do not think this is
a major practical drawback for the QI procedure, becau
large relative half-width (larger than 15%) may provide litt
useful information. In the 15% and 7.5% relative precision
cases, the QI procedure shows a little less coverage t
the ASAP, but very close to the desired level. In th
7.5% relative precision case (i.e. the achieved half-wid
should be smaller than 0.675 (9.0 × 7.5%)), the sample
sizes determined by the QI procedure are smaller than fr
ASAP. The average CI half-width of these two procedur
are about the same; however, the variance of the CI h
width is larger in the QI procedure. On the other han
the average relative precision is better in the QI proced
than in the ASAP; the average relative fractionr in the QI
procedure is about 50% of that achieved in the ASAP. T
indicates that the point estimator¯̂µ of the QI procedure is
better than that from ASAP despite the small sample si
are used. This favorable average relative precision a
indicates that those QI CIs that do not cover the true me
must miss the true mean by only a very small amount, m
probably caused by the half-width being too small.

Performance data of 5.0% 2.5%, and 1.0% relative
precisions for the ASAP are not available. Table 5 lis
the performance of the QI procedure under these precis
requirements. The average relative precision is redu
6
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Table 5: Performance of Batch-Means Procedures for th
Waiting-Time of the M/M/1 Delay in Queue withρ = 0.90
Based on 100 Independent Replications Seeking Nomin
90% Confidence Intervals of the True Meanµ = 9.0

Precision Precision
Requirement 5.0% 2.5% 1.0%

avg. sample size 870400 1978880 12446720
coverage 87% 87% 87%

avg. rel. precision 0.019167 0.012639 0.004826
avg. CI half-width 0.355147 0.207948 0.086311
var. CI half-width 0.088165 0.022658 0.007058
duration hh:mm 0:49 1:54 11:36

from 0.022371 to 0.004826 when the relative precision o
1.0% is specified. Coverages from our experiments are a
close to the specified 90% level; this indicates the efficac
of the QI procedure. To get an idea of the speed of the Q
implementation, we also list the execution times to get thes
100 independent replications. This was done on a 32-b
SUN Ultrasparc 1/140 workstation under Solaris 2.5.1. Th
timings (in hours and minutes) are in Table 5. One shoul
keep in mind that these timings are strongly dependent o
the machine and its state.

4 CONCLUDING REMARKS

We have presented a confidence interval for the meanµ of
a stationary process. Some CIs require more observatio
than others before the asymptotics necessary for CIs becom
valid. Our proposed quasi-independent algorithm work
well in determining the required simulation run length and
the batch size for the asymptotic approximation to be valid
Although it is heuristic, the QI procedure has a strong
theoretical basis. The results from our empirical experimen
show that the QI procedure is excellent in achieving th
intended coverage, not only for slightly correlated processe
but also for highly correlated processes. The QI procedu
does not require any extensive computation; therefore,
is able to estimate highly correlated processes with goo
precision in a reasonable amount of run time. For exampl
to obtain one CI of the waiting time of the M/M/1 delay
in queue withρ = 0.90 and relative precision of 5.0%, the
execution takes less than 20 seconds. However, the varian
of the simulation run length from our sequential procedur
is large. This is not only because of randomness of th
output sequence but also because we double the lag leng
l every two iterations. Further research is then to develo
new algorithms so that the simulation run length does no
need to be doubled every two iterations.

Our proposed quasi-independent algorithm require
storing a sequence of quasi-independent observations th
most likely represent the underlying distribution. This se
quence is used by the runs-up test to check for independen
Our procedure is completely automatic and has the des
24
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able properties that it is a sequential procedure and do
not require the user to havea priori knowledge of values
that the data might assume. This allows the user to app
this method without having to make a pilot run to deter
mine the range of values to be expected or guess and r
having to re-run the simulation, either of which represen
potentially large costs because many realistic simulatio
are time-consuming to run. The main advantage of o
approach is that by using a straightforward runs-up te
to determine the simulation run length and the batch siz
we do not require more advanced statistical theory, th
making it easy to understand, simple to implement, an
fast to run. The simplicity of this method should make
it attractive to simulation practitioners. Moreover, the Q
simulation run length determination mechanism can also
used when estimating other parameters of the simulati
output sequence. Chen and Kelton (2000b) use this
algorithm to estimate quantiles.
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