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ABSTRACT

We summarize the results of an extensive experimental p
formance evaluation of selected batch means procedu
for building a confidence interval for a steady-state e
pected simulation response. We compare the performa
of the well-known ABATCH and LBATCH procedures ver-
sus ASAP, a recently proposed variant of the method
nonoverlapping batch means (NOBM) that operates as f
lows: the batch size is progressively increased until eith
(a) the batch means pass the von Neumann test for indep
dence, and then ASAP delivers a classical NOBM con
dence interval; or (b) the batch means pass the Shapiro-W
test for multivariate normality, and then ASAP delivers
correlation-adjusted confidence interval. The latter corre
tion is based on an inverted Cornish-Fisher expansion
the classical NOBMt-ratio, where the terms of the expan
sion are estimated via an autoregressive–moving avera
time series model of the batch means. Applying ABATCH
ASAP, and LBATCH to the analysis of a suite of twenty
test problems involving discrete-time Markov chains, time
series processes, and queueing systems, we found AS
to deliver confidence intervals that not only satisfy a use
specified absolute or relative precision requirement but a
frequently outperform the corresponding confidence inte
vals delivered by ABATCH and LBATCH with respect to
coverage probability.

1 INTRODUCTION

In discrete-event simulation, we are often interested in e
timating the steady-state meanµX of a stochastic output
process{Xi : i ≥ 1} generated by a single, though long
simulation run. Assuming the target process is stationa
and given a time series of lengthn from this process, we see
that a natural estimator ofµX is the sample mean, given by
X(n) = n−1∑n

i=1Xi . We also require some indication of
this estimator’s precision; and typically a confidence inte
val (CI) for µX is constructed at a certain confidence leve
1−α, where 0< α < 1. The CI forµX should satisfy two
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criteria: (a) it is narrow enough to be informative, and (b
its actual coverage probability is close to the nominal lev
1− α.

In the simulation analysis method of nonoverlappin
batch means (NOBM), the sequence of simulation-generat
outputs {Xi : i = 1, . . . , n} is divided into k adjacent
nonoverlapping batches, each of sizem. For simplicity, we
assume thatn is a multiple ofm so thatn = km. The
sample mean for thej th batch is

Yj (m) = 1

m

mj∑
i=m(j−1)+1

Xi for j = 1, . . . , k; (1)

and the grand mean of the individual batch means,

Y = Y (m, k) = 1

k

k∑
j=1

Yj (m) , (2)

is used as an estimator forµX (note thatY (m, k) = X(n)).
We seek to construct a CI centered on the estimator (2)

If the batch sizem is sufficiently large so that the batch
means

{
Yj (m) : 1≤ j ≤ k

}
are approximately independent

and identically distributed (i.i.d.) normal random variable
with meanµX, then we can apply a classical result from
statistics (see, for example, Steiger and Wilson 1999)
compute a confidence interval forµX from the batch means.
The sample variance of thek batch means for batches of
sizem is

S2
m,k =

1

k − 1

k∑
j=1

[
Yj (m)− Y (m, k)

]2
. (3)

Asm→∞ with k fixed so thatn→∞, an asymptotically
valid 100(1− α)% confidence interval forµX is

Y (m, k)± t1−α/2,k−1
Sm,k√
k
. (4)
27
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NOBM procedures address the problem of determinin
the batch size,m, and the number of batches,k, that
are required to satisfy approximately the assumptions
independence and normality of the batch means. If the
assumptions are exactly satisfied, then we will obtain C
whose actual coverage probability is exactly equal to th
nominal coverage probability. In this paper we prese
results of an experimental performance evaluation ofASAP
new NOBM procedure for analysis of steady-state simulatio
output, versus the well-known NOBM procedures ABATCH
and LBATCH (Fishman 1996; Fishman and Yarberry 199
Fishman 1998). A brief overview of ASAP is given in the
next section; a more complete description may be found
Steiger and Wilson (2000b).

2 OVERVIEW OF ASAP

ASAP requires the following user-supplied inputs:

1. a simulation-generated output process{Xj : j =
1,2, . . . , n} from which the steady-state expecte
responseµX is to be estimated;

2. a confidence coefficientα specifying that the de-
sired confidence-interval coverage probability i
1− α; and

3. an absolute or relative precision requirement spe
ifying the final confidence-interval half-length in
terms of (a) a maximum absolute half-lengthH ∗,
or (b) a maximum relative fractionr∗ of the mag-
nitude of the final grand meanY .

ASAP delivers the following outputs:

1. a nominal 100(1−α)% confidence interval forµX
having the form

Y ±H where H ≤ H ∗ or H ≤ r∗|Y |, (5)

provided no additional simulation-generated obse
vations are required;

2. a new total sample sizen to be supplied to the
algorithm.

If additional observations of the target process must
generated by the user’s simulation model before a confiden
interval with the required precision can be delivered, the
ASAP must be called again with the additional data; and th
cycle of simulation followed by analysis may be repeate
several times before ASAP finally delivers a confidenc
interval.

On each iteration of ASAP, the algorithm operates a
follows. The simulation outputs are divided into a fixe
number of batches (namely, 96 batches); and batch me
are computed. The first two batches are discarded, and
remaining 94 batch means are tested for independence
62
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the test for independence fails, then the batch means a
tested for joint multivariate normality. If the normality test
fails, then the batch size is increased by a factor of

√
2 and

the process is repeated until one of the tests is passed.
Upon acceptance of either the hypothesis of indepe

dence or the hypothesis of joint multivariate normality of the
batch means, a CI is constructed—either the usual NOB
CI (4) (in the case of acceptance of independence) or
correlation-adjusted CI (6) (in the case of acceptance
multivariate normality). The correlation correction uses a
inverted Cornish-Fisher expansion (Hall 1983; Kendall, Stu
art and Ord 1987; Chien 1989) of the classical NOBM Stu
dentt-ratio [Y (m∗, k∗)−µX]/[Sm∗,k∗/

√
k∗]; and the terms

of this expansion are estimated by fitting an autoregressiv
moving average time-series model (Box, Jenkins and Rei
sel 1994) to the final set ofk∗ batch means for batches
of sizem∗. Based on this approach, a correlation-adjuste
100(1− α)% confidence interval forµX is

Y (m∗, k∗)±
[
z1−α/2

(
1+ κ̂2− 1

2
− κ̂4

8

)
+ κ̂4

24
z3

1−α/2
]

×
√

V̂ar[Y (m∗)]
k∗

, (6)

whereκ̂2 andκ̂4 respectively denote estimators of the secon
and fourth cumulants of the usual NOBM Studentt-ratio
andV̂ar[Y (m∗)] denotes an estimator of the variance of the
batch means—and all these statistics are based on fitting
time-series model to the (correlated) batch means proce

Subsequent iterations of ASAP that are performed t
satisfy the user-specified precision requirement (if there
one) do not repeat testing for independence or multivar
ate normality of the overall set of batch means. Thes
subsequent iterations require additional sampling, compu
ing the additional batch means, and reconstructing the C
again discarding the first two batches of the overall data s
(consisting of all original observations plus any additiona
observations required by ASAP). Successive iterations
ASAP continue until the precision requirement is met.

A flow chart of ASAP is depicted in Figure 1. A
formal algorithmic statement of ASAP is given in Steiger
and Wilson (2000b). A standalone Windows-based versio
of ASAP and a user’s manual are available in Steiger an
Wilson (2000c).

3 PERFORMANCE EVALUATION FOR
SELECTED NOBM PROCEDURES

To evaluate the performance of ASAP with respect to th
coverage probability of its confidence intervals, the mea
and variance of the half-length of its confidence intervals
and its total sample size, we applied ASAP together with th
ABATCH and LBATCH algorithms (Fishman 1996, Fish-
8
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Figure 1: Flow Chart of ASAP
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man and Yarberry 1997) to a suite of twenty test problem
This suite includes some standard problems used for te
ing simulation output analysis procedures, some problem
which more closely resemble real-world applications, an
some problems possessing characteristics which we belie
will stress any output analysis procedure—namely, a pr
nounced, slowly decaying correlation structure or marked
nonnormal marginal distributions (or both). Included in
our twenty test problems are the fourteen stochastic mo
els that Law and Carson (1979) used to test their bat
means algorithm. In this section we summarize the resu
of our experimentation on nine of the test problems. Th
steady-state mean response is available analytically for ea
of these test problems; thus we were able to evaluate t
performance of ABATCH, ASAP, and LBATCH in terms
of actual versus nominal coverage probabilities for the co
fidence intervals delivered by each of these procedure
Experimental results for the eleven remaining test problem
are not presented here because they contribute little ad
tional insight into the relative performance of the algorithms
See Steiger (1999) for complete details on the experimen
performance evaluation for all twenty test problems.

For each test problem to be simulated, we performe
100 independent replications of each batch means proced
s.
ar
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to construct nominal 90% confidence intervals that satis
three different precision requirements:

(a) no precision requirement—that is, we continue
the simulation of each test problem until ASAP
delivered a confidence interval based on 94 batch
of the size at which the batch means passed eith
the statistical test for independence or the te
for multivariate normality without considering a
precision requirement;

(b) ±15% precision—that is, we continued the simu
lation of each test problem until ASAP delivered
a confidence interval (5) that satisfied the relativ
precision requirement withr∗ = 0.15; and

(c) ±7.5% precision—that is, we continued the sim
ulation of each test problem until ASAP delivered
a confidence interval (5) that satisfied the relativ
precision requirement withr∗ = 0.075.

Since ABATCH and LBATCH do not explicitly determine
a sample size, we passed to the ABATCH and LBATC
algorithms the same data sets used by ASAP. Based on
our computational experience with ASAP, we believe th
the results given below are typical of the performance
ASAP that can be expected in many practical application
For a number of reasons elaborated in §3.1.3, it is not cle
9
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that a similar statement can be made about ABATCH a
LBATCH; nevertheless, the results given below do provi
an arguably fair basis for comparing the performance
ABATCH, LBATCH, and ASAP. Since each confidenc
interval with a nominal coverage probability of 90% wa
replicated 100 times, the standard error of each cover
estimator is approximately 0.03. As explained below, th
level of precision in the estimation of coverage probabiliti
turns out to be sufficient to reveal significant differences
the performance of ASAP versus ABATCH and LBATCH
on many of the test problems.

3.1 Results for Selected Test Problems

3.1.1 Discrete-Time Markov Chain

The first test problem consists of a cost function defined o
simple two-state discrete-time Markov chain (DTMC) who
one-step transition probability matrix and cost function a
respectively,

P =
( 0 1

0 0.99 0.01
1 0.01 0.99

)
and h = (0 1

5 10
)
. (7)

The results for this problem are summarized in Table 1

Table 1: Performance of Batch-Means Procedures for th
2-State DTMC Defined by (7) Based on 100 Independen
Replications of Nominal 90% Confidence Intervals

Precision Procedure
Requirement LBATCH ABATCH ASAP†

NO PRECISION
avg. sample size 3036
coverage 70% 85% 96%
avg. rel. precision 0.069 0.086 0.159
avg. CI half-length 0.515 0.642 1.20
var. CI half-length 0.009 0.012 0.172
±15% PRECISION

avg. sample size 5171
coverage 72% 81% 96%
avg. rel. precision 0.060 0.070 0.120
avg. CI half-length 0.045 0.053 0.906
var. CI half-length 0.011 0.010 0.023
±7.5% PRECISION

avg. sample size 22711
coverage 81% 86% 99%
avg. rel. precision 0.034 0.038 0.059
avg. CI half-length 0.253 0.284 0.438
var. CI half-length 0.003 0.003 0.006

†No. of classical and adjusted CIs generated by ASAP: 0 and
100, respectively.

ASAP showed somewhat better confidence-interval co
erage than did ABATCH and LBATCH in the case of th
two-state Markov chain (7) with high positive correlation
63
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especially in the cases of no precision requirement and
precision requirement of±15%. For this model, ASAP de-
livered correlation-adjusted CIs based on a nonsignifica
result from the test for multivariate normality (that is, the
batch means passed the Shapiro-Wilk test for multivaria
normality) on all 100 replications of ASAP. The CIs from
ASAP are wider than those from ABATCH and LBATCH,
which is necessary for the improved coverage. Howeve
the coefficient of variation of the CI half-lengths delivere
by ASAP are smaller than those delivered by LBATCH an
ABATCH.

3.1.2 Autoregressive Process

We also applied ABATCH, LBATCH, and ASAP to an au-
toregressive process of order one—that is, an AR(1) proce
given by

Xi = µX + ϕ(Xi−1− µX)+ εi for i = 1,2, . . . , (8)

where |ϕ| < 1 and theεi ’s are i.i.d. normal with mean
zero and varianceσ 2

ε so that theXi ’s have meanµX and
varianceσ 2

X = σ 2
ε /(1− ϕ2). To ensure that (8) defines a

stationary process, we tookX0 ∼ N(µX, σ 2
X). This process

also has a geometrically declining positive autocorrelatio
function; but among the highly correlated processes test
this process exhibits the most rapid convergence to t
desired property of normally distributed batch means sin
in fact the batch means are exactly multivariate normal f
every batch size (Kang and Schmeiser 1987). We pres
the AR(1) process as a test problem for which all three bat
means algorithms performed well at small batch sizes. F
our simulations, we choseϕ = 0.9, Z0 ∼ N(2.0,5.263)
and εi ∼ N(0,1); and this implies the steady-state mea
µX = 2.0. Table 2 summarizes the experimental results f
this test problem.

3.1.3 Queueing Systems

We applied ABATCH, LBATCH, and ASAP to the waiting
time process in theM/M/1 queue with server utilization
τ = 0.9 and an empty-and-idle initial condition. This is a
particularly difficult test problem for several reasons: (a
the initialization bias is large and decays relatively slowl
(Wilson and Pritsker 1978); (b) in steady-state operation t
autocorrelation function of the waiting time process deca
very slowly with increasing lags; and (c) in steady-sta
operation the marginal distribution of waiting times ha
an exponential tail and is therefore markedly nonnorma
Because of these characteristics, we can expect slow con
gence to the classical requirement that the batch means
independent and identically normally distributed. This te
problem most dramatically displays one of the advantag
of the ASAP algorithm—namely, that ASAP does not rel
0
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Table 2: Performance of Batch-Means Procedures for
the AR(1) Process (8) withϕ = 0.9 andµX = 2.0
Based on 100 Independent Replications of Nominal
90% Confidence Intervals

Precision Procedure
Requirement LBATCH ABATCH ASAP†

NO PRECISION
average sample size 1624
coverage 84% 86% 93%
avg. rel. precision 0.180 0.198 0.228
avg. CI half length 0.351 0.387 0.446
var. CI half length 0.002 0.005 0.006
±15% PRECISION

average sample size 5862
coverage 88% 88% 93%
avg. rel. precision 0.104 0.107 0.123
avg. CI half length 0.208 0.212 0.244
var. CI half length 0.001 0.001 0.001
±7.5% PRECISION

average sample size 24860
coverage 87% 88% 91%
avg. rel. precision 0.053 0.054 0.059
avg. CI half length 0.106 0.108 0.118
var. CI half length 0.0003 0.0003 0.0003

†No. of classical and adjusted CIs generated by ASAP: 2 and
98, respectively.

solely on the von Neumann (1941) test for independenc
In fact, in 96 out of 100 replications of the procedure, ASAP
delivered correlation-adjusted CIs of the form (6).

As can be seen from Table 3, ASAP substantially outpe
forms ABATCH and LBATCH for the case of no precision
requirement. As we demand more precision, we are
course forced to perform more sampling. For the precisio
requirement of±7.5%, the three algorithms gave similar
results. This suggests that ABATCH and LBATCH will give
satisfactory results if these procedures are supplied with
adequate amount of data; however, ABATCH and LBATCH
provide no mechanism for determining the amount of da
that should be used. A desirable feature of ASAP is tha
it usually determines a sample size sufficient to yield ac
ceptable results, even when no precision requirement
specified.

Table 4 displays the additional results obtained throug
standalone application of LBATCH and ABATCH to waiting
times in theM/M/1 queue withτ = 0.9 when LBATCH
and ABATCH operate with a stopping rule based on a use
specified precision requirement for the final confidence in
terval. We began the experiments for these systems w
a sample size of 1536 (the same sample size required
the first iteration of ASAP). We then applied a stopping
rule similar to the one used for ASAP. After we performed
the simulation with an initial run length of 1536 observa
tions, we applied the precision requirement to the final C
constructed by LBATCH or ABATCH. If the precision re-
63
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Table 3: Performance of Batch-Means Procedures for
the M/M/1 Queue Waiting Time Process withτ = 0.9
Based on 100 Independent Replications of Nominal 90%
Confidence Intervals

Precision Procedure
Requirement LBATCH ABATCH ASAP†

NO PRECISION
avg. sample size 7719
coverage 44% 60% 83%
avg. rel. precision 0.202 0.301 1.088
avg. CI half-length 1.70 2.67 11.8
var. CI half-length 0.683 3.92 523.0
±15% PRECISION

avg. sample size 298950
coverage 79% 80% 88%
avg. rel. precision 0.061 0.069 0.089
avg. CI half-length 0.543 0.613 0.783
var. CI half-length 0.027 0.039 0.082
±7.5% PRECISION

avg. sample size 815755
coverage 88% 90% 94%
avg. rel. precision 0.039 0.043 0.046
avg. CI half-length 0.353 0.382 0.413
var. CI half-length 0.012 0.039 0.018

†No. of classical and adjusted CIs generated by ASAP: 4 and
96, respectively.

quirement was not satisfied, then we calculated an estim
of the number of additional observations needed to satis
the precision requirement, we generated the additional o
servations, and we executed LBATCH or ABATCH again
with all of the observations accumulated so far. This pro
cess was repeated until the final CI delivered by LBATCH
or ABATCH satisfied the precision requirement. Although
LBATCH and ABATCH were not necessarily designed to
be used in this way, we believe that this stopping rule is
natural approach to planning steady-state simulations a
that the results in Table 4 provide a more complete perspe
tive on the relative performance of LBATCH and ABATCH
versus ASAP. Since our applications of ABATCH and
LBATCH were completely automated in order to perform
100 replications of each procedure, we did not manual
analyze the convergence of the sample estimators delive
by LBATCH and ABATCH on each application of these
procedures along the lines suggested in Fishman (1998).
believe that the results of Tables 3 and 4 highlight the pe
formance advantages achieved by ASAP without requirin
analysis or manual intervention by the user.

From Table 4 we see that in theM/M/1 queue with
τ = 0.9, if LBATCH and ABATCH are run until a certain
precision requirement is met, coverage is severely degrad
especially when the precision requirement is so “loose" th
it leads to relatively little additional sampling. Note that the
sample sizes in Table 4 are much smaller than those requi
by ASAP to achieve the same precision. For example, t
1
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Table 4: Performance of LBATCH and
ABATCH under a Relative Precision Re-
quirement forM/M/1 Queue withτ = 0.9
Based on 100 Independent Replications of
Nominal 90% Confidence Intervals

Precision Procedure
Requirement LBATCH ABATCH

NO PRECISION
avg. sample size 1536 1536
coverage 35% 54%
avg. rel. precision 0.204 0.338
avg. CI half-length 1.648 2.882
var. CI half-length 0.552 4.250
±15% PRECISION

avg. sample size 34349 50910
coverage 65% 77%
avg. rel. precision 0.121 0.125
avg. CI half-length .1.071 1.080
var. CI half-length 0.0513 0.0336
±7.5% PRECISION

avg. sample size 227987 397387
coverage 80% 81%
avg. rel. precision 0.062 0.062
avg. CI half-length 0.551 0.553
var. CI half-length 0.005 0.007

average sample size used by ABATCH for the waiting time
process in theM/M/1 queue with utilizationτ = 0.9 and a
precision requirement of±7.5% is approximately 397,387.
This is considerably less than the average sample size
815,755 required by ASAP. For a precision requirement o
±7.5% and 90% confidence-interval coverage probability
Whitt’s (1989) approximation for estimating the required
run lengths of queueing simulations yields an estimate
sample size of 855,238 for the waiting time process in th
M/M/1 queue withτ = 0.9. This latter result suggests
that ASAP yields adequate sample sizes when a precisi
requirement is specified.

Our experimental performance evaluation also include
the eight queueing systems used by Law and Carson (197
In this paper we discuss the results obtained for three
these queueing systems: (a) theM/M/1 LIFO queue with
server utilizationτ = 0.8; (b) theM/M/1 queue with
service in random order (SIRO) andτ = 0.8; and (c) the
tandemM/M/1/M/1 queue withτ = 0.8. The simulations
of all queueing systems were started empty and idle. Th
steady-state expected waiting times for these systems a
given in Table 5.

From Table 6 we see that ASAP, ABATCH, and
LBATCH performed similarly for theM/M/1 LIFO queue
with τ = 0.8, showing some evidence of undercoverag
for the no-precision requirement and for the precision re
quirement of±15%. All the algorithms showed adequate
coverage for the precision requirement of±7.5%. In 92 of
632
f
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f

e

Table 5: Steady-State Expected Waiting Time in Se-
lected Queueing Systems

System Utilization τ Expected Waiting
Time

M/M/1 0.9 9.00
M/M/1 LIFO 0.8 3.20
M/M/1 SIRO 0.8 3.20
M/M/1/M/1 0.8 6.40

Table 6: Performance of Batch-Means Procedures for th
M/M/1 LIFO Queue Waiting Time Process withτ = 0.8
Based on 100 Independent Replications of Nominal 90%
Confidence Intervals

Precision Procedure
Requirement LBATCH ABATCH ASAP†

NO PRECISION
avg. sample size 5025
coverage 72% 75% 72%
avg. rel. precision 0.209 0.223 0.210
avg. CI half length 0.645 0.693 0.652
var. CI half length 0.070 0.113 0.074
±15% PRECISION

avg. sample size 14317
coverage 80% 81% 77%
avg. rel. precision 0.135 0.143 0.119
avg. CI half length 0.426 0.451 0.372
var. CI half length 0.009 0.013 0.004
±7.5% PRECISION

average sample size 57539
coverage 86% 89% 82%
avg. rel. precision 0.073 0.075 0.062
avg. CI half length NA 0.239 0.196
var. CI half length NA 0.002 0.0006

†No. of classical and adjusted CIs generated by ASAP: 92 and
8, respectively.

100 replications of the algorithm, ASAP delivered classic
(unadjusted) CIs of the form (4).

From Table 7 we see that for theM/M/1 SIRO queue
with server utilizationτ = 0.8, ASAP displayed better
coverages than LBATCH and ABATCH in the cases wit
no precision requirement and with a precision requireme
of ±15%. With a precision requirement of±7.5%, ASAP,
LBATCH, and ABATCH all delivered coverage close to th
nominal level.

From Table 8 we see that for theM/M/1/M/1 queue
with server utilizationτ = 0.8, ASAP performed better than
ABATCH and LBATCH for the no-precision requiremen
and for the precision requirement of±15%. With a precision
requirement of±7.5%, ASAP, LBATCH, and ABATCH all
delivered coverage close to the nominal level.
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Table 7: Performance of Batch-Means Procedures for th
M/M/1 SIRO Queue Waiting Time Process withτ = 0.8
Based on 100 Independent Replications of Nominal 90%
Confidence Intervals

Precision Procedure
Requirement LBATCH ABATCH ASAP†

NO PRECISION
avg. sample size 6481
coverage 66% 76% 88%
avg. rel. precision 0.168 0.199 0.264
avg. CI half length 0.534 0.652 0.901
var. CI half length 0.053 0.196 0.800
±15% PRECISION

average sample size 32544
coverage 81% 82% 92%
avg. rel. precision 0.093 0.102 0.115
avg. CI half length 0.299 0.328 0.370
var. CI half length 0.0064 0.0092 0.0062
±7.5% PRECISION

average sample size 116925
coverage 86% 88% 86%
avg. rel. precision 0.054 0.054 0.056
avg. CI half length 0.171 0.180 0.179
var. CI half length 0.0015 0.0017 0.0009

†No. of classical and adjusted CIs generated by ASAP: 29 and
71, respectively.

Table 8: Performance of Batch-Means Procedures for th
M/M/1/M/1 Queue Waiting Time Process withτ = 0.8
Based on 100 Independent Replications of Nominal 90%
Confidence Intervals

Precision Procedure
Requirement LBATCH ABATCH ASAP†

NO PRECISION
avg. sample size 3152
coverage 65% 75% 85%
avg. rel. precision 0.162 0.222 0.454
avg. CI half length 1.053 1.476 3.250
var. CI half length 0.119 0.585 14.06
±15% PRECISION

avg. sample size 46610
coverage 80% 80% 93%
avg. rel. precision 0.070 0.074 0.103
avg. CI half length 0.438 0.465 0.649
var. CI half length 0.016 0.018 0.030
±7.5% PRECISION

avg sample size 117339
coverage 85% 87% 90%
avg. rel. precision 0.042 0.044 0.050
avg. CI half length 0.266 0.281 0.318
var. CI half length 0.005 0.005 0.008

†No. of classical and adjusted CIs generated by ASAP: 6 and
93, respectively.

3.1.4 Computer Models

Law and Carson (1979) also tested their sequential out
analysis procedure on queueing network models of compu
63
ut
ter

systems. The first is a time-shared model with a singl
central processing unit (CPU) andJ terminals (jobs). Each
terminal “thinks" for a period of time that is exponentially
distributed with rateµ1 and then sends a job to the CPU
with a service time that is exponentially distributed with
rateµ2. The jobs join a queue at the CPU, which allocate
a maximum “time slice" ofs∗ time units to each job in
FIFO order. If the remaining service times of a job is
less thans∗, then the job spendss time units plus a fixed
overhead ofh time units at the CPU and then returns to
the terminal. Ifs > s∗, then the CPU spendss∗ + h time
units processing the job; and then the job returns to th
end of the queue. This process is continued until the job
finished, and then it returns to the terminal. The process o
interest is the response time of the jobs{Ri : i ≥ 1}—that
is, Ri is the elapsed time between the instant that jobi

joins the CPU queue at the end of a “thinking" period and
the instant that jobi completes its last time slice of service
on the CPU. We chose the same parameters that Law a
Carson used, i.e.,J = 35,µ1 = 1/25,µ2 = 5/4, s∗ = 0.1,
and h = 0.015. (See Law and Carson 1979 for a more
complete description of the model.)

Table 9 summarizes the results for the time-share
computer system. For this test problem, ASAP exhibit
almost ideal behavior. The sample size for the no-precisio
case is small, but coverage is acceptable. With increasing
stringent precision requirements, the CIs become small
and less variable and the coverage improves. For th
model, ASAP delivered correlation-adjusted CIs in all 100
replications of the procedure.

Table 9: Performance of Batch-Means Procedures for the
Time-Shared Model Based on 100 Independent Repli-
cations of Nominal 90% Confidence Intervals

Precision Procedure
Requirement LBATCH ABATCH ASAP†

NO PRECISION
avg. sample size 1765
coverage 73% 79% 92%
avg. rel. precision 0.113 0.139 0.183
avg. CI half length 0.900 1.102 1.468
var. CI half length 0.016 0.050 0.139
±15% PRECISION

avg. sample size 4496
coverage 83% 84% 94%
avg. rel. precision 0.088 0.095 0.121
avg. CI half length 0.722 0.772 0.985
var. CI half length 0.016 0.021 0.021
±7.5% PRECISION

avg. sample size 18747
coverage 86% 87% 98%
avg. rel. precision 0.046 0.048 0.061
avg. CI half length 0.380 0.392 0.500
var. CI half length 0.003 0.003 0.003

†No. of classical and adjusted CIs generated by ASAP: 0 and
100, respectively.
3
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The second computer model used by Law and Ca
son (1979) consists of a central server (CPU) andM − 1
peripheral units labeled 2 throughM. The system has a
fixed number jobs,N , in it. When a job is finished at
the CPU, it leaves the system with probabilityp1 and is
immediately replaced with another job at the CPU queu
If the job does not leave the system, then it is routed t
a peripheral unit. The probability that the job is routed to
unit i from the CPU ispi , i = 2, . . . ,M. After getting
service at one of the peripheral units, the job leaves th
system and is immediately replaced by a job joining th
CPU queue. The process of interest is the response tim
of a job, i.e., the time between its arrival at the CPU queu
and its departure from the system. Law and Carson cho
to simulate this model for four cases. Table 10 displays th
system parameters for cases 2 and 3 of the central-ser
model used by Law and Carson (1979). In both these cas
we see that:µ1, the service rate at the CPU is 1.0;p1,
the probability that the job leaves the system after servic
at the CPU, is zero; and the number of peripheral units
two. In model 2 the steady-state utilization of the CPU an
peripheral units 1 and 2 are 0.8, 0.8, and 0.8, respective
In model 3 these steady-state utilizations are 0.44, 0.8
and 0.88, respectively.

Table 10: Parameters for the Selected Central Serve
Models withM = 3, µ1 = 1.0, andp1 = 0

Expected Initial
Model N µ2 µ3 p2 p3 Response Time State

2 8 0.50 0.50 0.5 0.5 10.000 (1,1,6)
3 8 0.45 0.05 0.9 0.1 18.279 (5,1,2)

From Table 11 we see that ASAP achieved good cov
erage for central server model 2, satisfying the precisio
requirements of±15% and±7.5% without increasing the
sample size beyond that used in the no-precision case. T
ble 12 reveals that in central server model 3, the covera
losses incurred with all three procedures are serious b
not catastrophic. We also ran this model with a precisio
requirement of±2% and observed 85% coverage for the
nominal 90% CIs constructed by ASAP. In this system
LBATCH and ABATCH perform similarly to ASAP.

4 CONCLUSIONS

Batching schemes to date have ignored the question of n
mality based on the assumption that if the batch size is lar
enough for the batch means to be approximately independe
then the batch size is large enough for the batch means to
approximately normally distributed. These schemes ha
focused on selecting a batch size large enough to achie
near independence of the batch means. The method of
termining whether the batch means are independent var
from scheme to scheme. ABATCH and LBATCH, for in-
634
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Table 11: Performance of Batch-Means Procedures fo
the Central Server Model 2 Based on 100 Independen
Replications of Nominal 90% Confidence Intervals

Precision Procedure
Requirement LBATCH ABATCH ASAP†

NO PRECISION
avg. sample size 1580
coverage 87% 90% 86%
avg. rel. precision 0.039 0.040 0.039
avg. CI half length 0.388 0.400 0.387
var. CI half length 0.002 0.005 0.003
±15% PRECISION

avg. sample size 1580
coverage 87% 90% 86%
avg. rel. precision 0.039 0.040 0.039
avg. CI half length 0.388 0.400 0.387
var. CI half length 0.002 0.005 0.003
±7.5% PRECISION

average sample size 1580
coverage 87% 90% 86%
avg. rel. precision 0.039 0.040 0.039
avg. CI half length 0.388 0.400 0.387
var. CI half length 0.002 0.005 0.003

†No. of classical and adjusted CIs generated by ASAP: 67 and
33, respectively.

Table 12: Performance of Batch-Means Procedures fo
the Central Model 3 Based on 100 Independent Repli
cations of Nominal 90% Confidence Intervals

Precision Procedure
Requirement LBATCH ABATCH ASAP†

NO PRECISION
avg. sample size 2277
coverage 75% 79% 78%
avg. rel. precision 0.073 0.076 0.074
avg. CI half length 1.33 1.40 1.35
var. CI half length 0.107 0.163 0.135
±15% PRECISION

avg. sample size 2277
coverage 75% 79% 78%
avg. rel. precision 0.073 0.076 0.074
avg. CI half length 1.33 1.40 1.35
var. CI half length 0.107 0.163 0.135
±7.5% PRECISION

avg. sample size 3389
coverage 75% 76% 79%
avg. rel. precision 0.060 0.062 0.058
avg. CI half length 1.08 1.11 1.05
var. CI half length 0.037 0.047 0.028

†No. of classical and adjusted CIs generated by ASAP: 76 and
24, respectively.

stance, rely on the von Neumann test for independen
ASAP is the first method to recognize the frequently o
curring phenomenon of approximate multivariate normali
being achieved at smaller batch sizes than approximate
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dependence (Steiger and Wilson 2000a)insofar as these
properties affect the performance of NOBM analysis pro
cedures; and ASAP exploits this phenomenon when it is
detected so as to compensate for any remaining depende
between the batch means.

The experimental evaluation reveals the main advan
tage of ASAP—it performs with reasonable reliability in
highly dependent simulation output processes. In thes
cases, ASAP determines sample sizes that are sufficient
achieving adequate CI coverage but that are not excessive
large. Taken as a whole, the results of the experiment
performance evaluation reported in this paper strongly su
gest that significant improvements in the performance o
batch means procedures can be achieved using the appro
of ASAP for constructing correlation-adjusted confidence
intervals in situations for which it is difficult to identify a
batch size sufficiently large to ensure approximate indepe
dence of the batch means. We are continuing to explore a
refine this approach to the analysis of steady-state simulati
outputs.
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