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ABSTRACT

In this paper, a method is presented for the efficient es
timation of rare-event (overflow) probabilities in Jackson
queueing networks using importance sampling. The metho
differs in two ways from methods discussed in most earlie
literature: the change of measure is state-dependent, i.e.
is a function of the content of the buffers, and the chang
of measure is determined using a cross-entropy-based ada
tive procedure. This method yields asymptotically efficien
estimation of overflow probabilities of queueing models
for which it has been shown that methods using a state
independent change of measure are not asymptotically e
ficient. Numerical results demonstrating the effectivenes
of the method are presented as well.

1 INTRODUCTION

During the last decade, there has been much interest in t
estimation of rare-event probabilities in queues and network
of queues, with applications to models of telecommunicatio
networks as well as computer and manufacturing system
Two methods have gained popularity: importance samplin
(Heidelberger 1995, Asmussen and Rubinstein 1995), an
importance splitting (RESTART) (Villén-Altamirano and
Villén-Altamirano 1994), the former of which is used in
this paper.
ed
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One simple network that received a lot of attention is
set of two or more queues in tandem. Despite its simplic
ity, a complete analysis of this system is hard due to th
behaviour at the state-space boundaries. As a consequen
no importance sampling change of measure that is provab
asymptotically efficient is known.

In Parekh and Walrand (1989), an importance samplin
procedure was described for estimating the overflow prob
ability of the total population in tandem queues. A simple
and static (i.e., state-independent) change of measure w
used: exchange the arrival rate with the service rate (of th
bottleneck queue, in case of a tandem system). In Sa
owsky (1991), the asymptotic efficiency of that method fo
a single queue was proved. In Frater, Lennon, and An
derson (1991) this heuristic was extended to overflows o
the total population in any Jackson network. However,
was shown in Glasserman and Kou (1995) that for tw
or more queues in tandem, this heuristic does not alwa
give an asymptotically efficient simulation, depending on
the values of arrival and service rates. It reasonable is
expect that similar problems will occur with this method in
other Jackson networks.

Clearly, by allowing the change of measure to depen
on the state of the system (i.e., the content of each of th
queues), more efficient importance sampling schemes m
be obtained. This approach was recently used in Kroese a
Nicola (1999), where the overflow probability of the second
queue in a two-node tandem Jackson network is estimat
6
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using a simulation in which the change of measure depend
on the content of the first buffer; the functional dependenc
of the rates on the buffer content is derived from on a Marko
additive process representation of the system. Furthermor
in Heegaard (1998) a state-dependent change of measure
used for simulating link overloads in a telecommunications
network; again, the functional dependence of the importanc
sampling rates on the system state is derived using a heurist
The biggest obstacle to the use of a state-dependent chan
of measure in general is the problem of determining this
dependence: rather specific mathematical models are used
the publications mentioned, making the results very specifi
to those problems.

As an alternative to avoid the complex mathematica
analysis often used to determine a good (state-independe
change of measure, several adaptive methods have be
proposed recently; see Devetsikiotis and Townsend (1993b
Devetsikiotis and Townsend (1993a), Al-Qaq, Devetsikiotis
and Townsend (1995), Rubinstein (1997), Rubinstein an
Melamed (1998), Rubinstein (1999), Lieber (1999). All
of these either try to iteratively minimize the variance of
the estimator involved, or a related quantity like the cross
entropy. However, none of these papers consider a stat
dependent change of measure for simulation of queuein
models.

In this paper, we present an adaptive method for dete
mining a state-dependent change of measure for rare eve
in queueing problems. This is a rather versatile method:

• due to the adaptiveness, a complex mathematica
analysis of the problem is not necessary.

• since the state-dependent change of measure
less restrictive, problems can be solved for which
no effective state-independent change of measur
exists.

In particular, with this method the probability of overflow
of the total network population in Jackson tandem network
can be asymptotically efficiently estimated, even in thos
cases where Glasserman and Kou (1995) show that th
heuristic of exchanging the arrival rate with the bottleneck
service rate does not work. In addition, the combination
of state-dependence and adaptiveness leads to another u
ful property: the standard deviation of the estimator can
decrease faster than proportional to the square-root of th
total simulation effort.

Here we restrict our discussion to the estimation of rare
event probabilities in discrete-time Markov chains (DTMCs).
However, we plan to expand the method to more genera
models in the future.

The rest of this paper is organized as follows. Sec
tion 2 provides a summary of the most important aspects o
the adaptive method from Rubinstein and Melamed (1998
Section 3 explains the implementation of this algorithm
6
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for state-dependent simulation, and discusses some of
problems involved and their solutions. In Section 4, em
pirical results demonstrate the effectiveness of the metho
Concluding remarks and directions for further research a
given in Section 5.

2 PRINCIPLES OF THE CROSS-
ENTROPY METHOD

In this section, we briefly review the cross-entropy metho
for the adaptive optimization of an importance sampling
simulation. Only the aspects that are relevant for the re
of this paper are discussed; for more details, the reader
referred to Rubinstein and Melamed (1998) and Rubinste
(1999).

2.1 Basics

Assume that the change of measure (or “tilting”) is param
eterized by some vectorv; then the aim of an adaptive
importance sampling procedure should be to find the valu
of v which results in minimal variance for the resulting
estimator.

Another approach for choosingv was introduced in Ru-
binstein (1999). It is well known that always an importance
sampling distribution (change of measure) exists which re
sults in a zero-variance estimator, and that this distributio
is precisely the original distribution conditioned on the oc
currence of the rare event. In practice, this distribution ma
not be within the family of distributions that can be obtained
by the change of measure parameterized byv. However,
if a simulation distribution is used that is in some sens
“close” to the unattainable zero-variance distribution, then
low (but non-zero) variance should be expected. So inste
of choosingv such that the variance is minimized explicitly,
one could try to devise a procedure that minimizes som
distance measure between the distribution under the chan
of measure given byv, and the distribution that would give
zero variance. The latter distribution will henceforth be
called the “zero-variance distribution”.

Before proceeding with details of such a procedure
some more notation needs to be defined. The sample p
of one replication of the simulation is denoted byZ. The
functionI (Z) is the indicator function of the occurrence of
the rare event inZ. We already definedv to denote the tilting
vector; consistently with this,f (Z, v) is the probability (or,
for continuous systems, the probability density) of the samp
pathZ under the tiltingv, with v = 0 corresponding to the
original (untilted) system. The likelihood ratio associated
with the sample pathZ and the tilting vectorv is denoted
by L(Z, v):

L(Z, v) = f (Z,0)

f (Z, v)
.

47
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Finally, Ev denotes the expectation under the tiltingv.
A suitable “distance” measure for this procedure is th

Kullback-Leibler cross-entropy, which is defined, see Kapu
and Kesavan (1992), as

CE =
∫
f (z) ln

f (z)

g(z)
dz,

wheref (z) andg(z) are two density functions whose “dis-
tance” is to be calculated. Note that this “distance” measu
is not symmetric: in general, exchangingf and g in the
above will result in a different value ofCE.

We want to apply the Kullback-Leibler cross-entropy
to measure the distance between the distribution to be us
for the simulation (assumed to be of the formf (z, v))
and the zero-variance distribution. To do this, substitut
g(z) = f (z, v) (i.e., the distribution to be optimized by
changingv) andf (z) = ρ0I (z)f (z,0) with normalization
factor ρ−1

0 = ∫
I (z)f (z,0)dz into the above; note that

this f (z) is the original distribution conditioned on the rare
event (i.e., the zero-variance distribution). Then we nee
to do the following minimization:

v† = arg min
v

∫
ρ0I (z)f (z,0) ln

ρ0I (z)f (z,0)

f (z, v)
dz

= arg max
v

∫
I (z)f (z,0) ln f (z, v)dz

= arg max
v
E0I (Z) ln f (Z, v), (1)

wherev† denotes the value ofv that minimizes the cross-
entropy. In the above form the equation is not usefu
since we do not knowE0I (Z) ln f (Z, v). However, we
can rewrite it as follows:

v† = arg max
v
Evj I (Z)L(Z, vj ) ln f (Z, v),

wherevj is any other tilting vector; we will later interpret it as
the tilting vector used during thej th iteration of an iterative
procedure. The above form can easily be approximated
a sum (stochastic counterpart of the expectation) overN

samples from a simulation performed with tiltingvj , thus
yielding an approximation tov† which we callvj+1:

vj+1 = arg max
v

N∑
i=1

I (Zi)L(Zi, vj ) ln f (Zi, v), (2)

where theZi are sample paths drawn under the tiltingvj .

2.2 Algorithm

Now we have all elements for an iterative procedure t
approximate the optimal tilting vectorv† in the sense that
it minimizes the cross-entropy; this may not be equal t
6
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minimizing the variance of the estimator, although in practic
the difference turns out to be small:

1. Initialize as follows:
j := 1 (iteration counter)
v1 := initial tilting vector (see below)

2. SimulateN replications with tiltingvj , yielding
Z1 . . . ZN .

3. Find the new tilting vectorvj+1 from the maxi-
mization (2).

4. Incrementj and repeat steps 2–4, until the tilting
vector has converged (i.e.,vj+1 ≈ vj ).

Choosing the initial tilting vectorv1 in step 1 is not trivial.
The most obvious choice is to setv1 = 0, i.e., use the
original transition probabilities. However, with that choice
the rare event of interest will typically not be observed
making (2) unusable. In Rubinstein (1999), this is solve
by introducing an additional step in the algorithm, in which
the rare event is temporarily modified into a less rare even
In the present paper, a different approach is used: w
choosev1 on the basis of heuristics like exchanging th
arrival rate with the bottleneck service rate. Although suc
a heuristic by itself does not produce an asymptotical
efficient simulation in the cases considered here, it do
provide a convenient starting point for the iterative proces

3 STATE-DEPENDENT TILTING

One application of the adaptive procedure described abo
is finding a “static” change of measure for queueing prob
lems, i.e., finding the optimal arrival and service rates fo
simulation of a buffer overflow. In that case, the vectorv

just contains one component for every rate that is allowed
change. Indeed, for many problems this turns out to wo
well; see Rubinstein and Melamed (1998) and de Bo
(2000) for examples. However, for many other problem
no static change of measure seems to exist that gives
efficient simulation; for those systems, a less restrictiv
change of measure should be used, which can be obtain
by allowing the arrival and service rates in the simulatio
to depend on the state. In this section we will do precise
that for DTMC models of queueing networks.

3.1 Principles

A DTMC model is completely described by its initial prob-
ability distribution and its set of transition probabilities: the
probabilities of going from one state to another. Since man
DTMC models (e.g., for queueing systems) are derived fro
continuous time models with exponential arrival and servic
time distributions (CTMCs), the transition probabilities are
typically calculated from transition rates: the probability
of going from statei to statej is given byλij /

∑
k λik,
48
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whereλij is the transition rate from statei to statej , and
k in

∑
k runs over all states. In fact, for the cross-entropy

calculations done in this section, it is more convenient to
work with rates; the transition probabilities can trivially be
calculated from the rates by normalizing their sum to 1.
Collectively, all ratesλij will be referred to as a vectorλ.

In DTMC models, only one type of tilting is possi-
ble: changing the transition probabilities. Equivalently,
one can change the transition rates of the correspondin
CTMC model and calculate the transition probabilities for
the DTMC from those, as shown above. It turns out that the
latter approach is slightly simpler. So the aim is to find a
set of transition ratesλ which minimizes the cross-entropy.

Before deriving the actual cross-entropy minimization
formula, let us first build a mathematical description of one
replicationZ of a DTMC simulation. Define the sequencezi ,
i = 1,2,3, . . . , which denotes the state of the system just
before theith transition in this replicationZ. Denote by
λlm the rate (or probability) of going from statel to state
m. Then obviously the probability of theith step is

λzizi+1∑
k λzik

,

wherek runs over all states (or only those states that can
be reached in one step from statezi , since all otherλzik
are 0). The total probability of the sample pathZ is

Pr(Z) =
∏
i

λzizi+1∑
k λzik

,

wherei runs over all steps in the sample path.
Substitute the above expression for the probability of

a sample path into equation (1); then we get the following
expression for the optimal transition rate vectorλ†:

λ† = arg max
λ
E0I (Z) ln

∏
i

λzizi+1∑
k λzik

= arg max
λ
E0I (Z)

∑
i

(
ln λzizi+1 − ln

∑
k

λzik

)
.

To find the maximum in the right-hand side, set the derivative
with respect toλlm to 0, for any two statesl andm:

0= E0I (Z)
∑
i:zi=l

(
1(zi+1=m)
λlm

− 1∑
k λlk

)
,

or, equivalently:

1

λ
†
lm

E0I (Z)
∑
i:zi=l

1(zi+1=m) =
1∑
k λ

†
lk

E0I (Z)
∑
i:zi=l

1.
,

6

g

Thus, we find the following expression for the optima
transition probabilityqlm from statel to statem:

qlm = λ
†
lm∑
k λ

†
lk

= E0I (Z)
∑
i:zi=l 1(zi+1=m)

E0I (Z)
∑
i:zi=l 1

. (3)

Of course, the expectations in the right-hand side are ge
erally not known, but we can approximate them as follows

qlm = Eλj I (Z)L(Z,λj )
∑
i:zi=l 1(zi+1=m)

Eλj I (Z)L(Z,λj )
∑
i:zi=l 1

≈
∑ZN
Z=Z1

I (Z)L(Z,λj )
∑
i:zi=l 1(zi+1=m)∑ZN

Z=Z1
I (Z)L(Z,λj )

∑
i:zi=l 1

, (4)

where
∑ZN
Z=Z1

is a sum over the sample paths fromN
replications, simulated with transition ratesλj (i.e., from
the j th iteration). Note that the factor

∑
i:zi=l 1 in the

denominator is just the number of visits to statel during
replicationZ, and that

∑
i:zi=l 1(zi+1=m) in the numerator

is the number of those visits in which the transition to
statem was chosen next. Consequently, the right-hand sid
of (4) can be interpreted as theobservedconditional (on the
occurrence of the rare event) probability of the transitio
from state l to statem; this is not surprising, since it
is known that using the true conditional distributions for
importance sampling yields a zero-variance estimator,
discussed before.

3.2 Practical Problems

Using the adaptive importance sampling algorithm from Sec
tion 2.2 with state-dependent parameters chosen accord
to (4) seems very simple. There are, however, practic
difficulties. The cause of these is the enormous number
states that a typical queueing network can have. For exa
ple, a network with three queues and an overflow level of 5
for the total network population has 23461 states. This
the total number of ways to distribute among three distinc
queues a total of 1 customer (3 ways), 2 indistinguish
able customers (6 ways), 3 indistinguishable customers (
ways), up to 50 indistinguishable customers. Doubling th
overflow level to 100 multiplies this number of states by
almost 8. If the rare event of interest is the overflow of on
particular queue, other queues in the network can have
infinite size, thus making the number of states infinite.

One of the consequences of the enormous state spa
is that a lot of data needs to be stored: this takes a l
of memory capacity; but with present-day computers an
the size of the queueing networks studied here, this
typically not a problem (except if the state space is infinite
49
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of course). However, manipulating such a lot of data (e.g
in the smoothing techniques that will be discussed late
can be prohibitively time-consuming.

The accuracy of the estimations in the right-hand sid
of (4) is more problematic. The only sample paths that giv
a contribution to the sums in the numerator and denomina
are those that reach the rare event (because of theI (Z) factor)
and pass through the statel (because of the summation over
i for which zi = l). The factorI (Z) will typically not be
a problem: the tilting used in thej th iteration is usually
such that the event of interest is no longer rare. Howeve
the tilting will not favor visits to states that are away from
some optimal path to the rare event of interest. If the sta
space is multi-dimensional, this means that many states w
not be visited often or at all, even under a tilting that make
the event of interest non-rare. States that are not visit
at all during theN replications of a simulation yield 0/0
(undefined) in the right-hand side of (4). And states th
are visited only a few times make the quotient of sums
bad approximation of the quotient of expectations.

There is in fact a rather fundamental risk here: suppo
the transition from some statel to another statem happens
in only 10 % of all visits to statel, and statel is visited
only 5 times during theN replications of a simulation.
Then it is quite likely that in none of those 5 visits to
statel, a transition to statem will be made. Consequently,
using (4) to choose the simulation parameters for the ne
iteration would set the rate (probability) of this transition
to 0, thus making the transition impossible. Then in th
next simulation, surely no transitions from statel to statem
will be observed, so this rate will again be set to 0 fo
the next iteration: it will remain at 0 forever, even though
that is wrong if the transition has a non-zero probabilit
in the untilted system, thus possibly resulting in a biase
estimator.

The only case in which the above does not give
biased estimator is when the rare event of interest can
longer be reached after that particular transition has be
made. As a matter of fact, all pathsZ which contain such a
transition necessarily haveI (Z) = 0; as a consequence, (4)
will automatically set the rate of such a transition to zer
for the next iteration. Therefore, after the first iteration,all
sample paths will reach the rare event.

3.3 Dealing with a Large Number of States

In this section, three techniques will be outlined to deal wit
the problems caused by the large state space. For deta
the reader is referred to de Boer (2000).

The basic idea of these techniques is the assumpti
that the optimal transition probabilities for a particular stat
are typically close to those of other “similar” states in its
neighbourhood. If this is the case, the estimates of th
transition probabilities for a given state may be improve
6
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by also including observations from sample paths passin
through an appropriate set of such “similar” states. O
course, this introduces an error, since the optimal prob
bilities are probably not exactly equal. On the other hand
since more samples are used, the accuracy of the estim
tion increases. Furthermore, treating several states as
they were one state saves memory for storing the transitio
probabilities. This is necessary for systems with an infinit
number of states.

Note that the “error” discussed above does not impl
that the resulting estimate of the rare-event probability wi
be biased; in principle that estimate will be unbiased a
long as the correct likelihood ratios are used. Rather,
means that the used transition probabilities deviate fro
the optimal transition probabilities, so the estimate has
larger variance than without this error. In fact, such error
and the associated non-optimal variance are always prese
even if no grouping of states is used, due to the fact th
the transition probabilities are estimated by simulation an
thus subject to statistical errors.

3.3.1 Local Average

The local average technique tries to automatically choos
the optimal amount of grouping, separately for every stat
It does this as follows:

First, just the observations obtained at the state itse
are used. If this gives good enough (see below) estimat
of the transition probabilities out of this state, then the
estimates are accepted. If not, the observations from a s
of neighbouring states are combined with those from th
state; if the transition probability estimates are now goo
enough, these are accepted. If not, this is repeated w
ever larger sets of neighbouring states, until the resultin
transition probability estimates are good enough.

The test for deciding whether the transition probability
estimates are good enough comprises several aspects. F
of all, the number of visits to the state (including the state
with which it is being grouped): if the state or group of
states has been visited too few times, its transition probab
ity estimates cannot be trusted. Secondly, no probabilitie
that theoretically should be non-zero, are set to zero: if th
happens, again the results cannot be trusted. Thirdly, o
can construct an estimator for the variance of the trans
tion probability estimates, and compare its value to som
threshold to decide whether or not the transition probabilit
estimate is acceptable.

3.3.2 Boundary Layers

The boundary layer technique is based on the observati
that when a queue’s content is sufficiently large, the optim
transition probabilities tend to become nearly independe
of that queue’s content. Thus, all states in which a queu
50
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containsB or more customers are grouped together. Whe
drawing this in a picture of the state space, layers are se
along the boundaries; hence the name. See Figure 1
B = 3 in a two-dimensional state-space. Choosing th
optimal number of boundary layersB seems to be done
best by trial and error: using too few gives a less efficien
simulation, since the resulting change of measure is le
dependent on the state.

n2

n1

0 1 2 3 4 5 6
0

1

2

3

4

5

6

Figure 1: Grouping of States Using Three
Boundary Layers in the State Space of a
Two-queue System;ni = Level ofith Queue

3.3.3 Smoothing Using Splines

After applying the above two methods, the transition prob
abilities can still be rather “noisy” functions of the state
they are simulation results, after all. It might be beneficia
to replace the noisy data by a smooth function fitted throug
it. The form of the optimal transition probability functions
is not known in general, so fitting a flexible generic function
to the data is the best one can do. We have succesfully us
cubic splines for this smoothing; basically, this means tha
the state space is divided into pieces, and on every piece
third-order polynomial of the coordinates (i.e., the conten
of the queues) is fitted to the data. Choosing the size
the pieces is a compromise between noise reduction a
accurace of the fit.

3.3.4 Combination

In practice, two or all three of the above methods ar
combined. Before the simulations are started, the number
boundary layers is chosen; this is very effective at reducin
the amount of data to be stored and processed. Ne
the simulation is performed. Following this, the transition
rates are calculated on the basis of the simulation resul
using equation (4); the local average technique is used
group neighbouring states where necessary to obtain relia
estimates of the transition probabilities. Finally, the splin
smoothing can be applied, if needed or desired. If the resu
65
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after the local average step are already relatively goo
spline smoothing may worsen the accuracy by imposing
unsuitable form on the data; on the other hand, if the da
is rather noisy, the spline smoothing usually improves i
accuracy. We will see examples of both in Section 4.

3.4 The Variance of the Estimator

It can be shown (see de Boer (2000)) that if the stat
dependent transition probabilities given by (3) are use
the resulting estimator for the rare event probability ha
zero variance. In practice, the variance will not be zero
due to the fact that one cannot obtain the exact transiti
probabilities that satisfy (3): instead, simulation results a
used in equation (4) to approximate the optimal transitio
probabilities, thus causing them to have a statistical erro
Furthermore, the techniques for dealing with the large sta
space limit the accuracy of the transition probabilities.

Now consider what happens if the number of replication
per iteration is, say, quadrupled. If this had no influence o
the transition probability estimates, the relative error of th
rare-event probability estimator would obviously improve
by a factor of

√
4= 2. However, errors in the estimates of

the transition probabilities would also improve, by up to
factor of 2 if the statistical error in them is dominant. This
means that they become closer to the optimal (zero-varian
transition probabilities, causing the estimate of the rare-eve
probability to improve; under some assumptions it can b
argued that this improvement is linear in the reduction o
the statistical error in the transition probabilities. Therefore
the error in the rare-event probability estimate decreases
up to a total factor of 4, i.e., up to linear in the numbe
of replications used per iteration. We will demonstrate th
experimentally in the next section.

4 EXPERIMENTAL RESULTS

In this section, overflows in a simple Jackson network will b
considered. The network consists of four queues in tande
with arrival and service rates chosen in the region where t
standard state-independent change of measure (exchang
the arrival rate with the bottleneck service rate) does n
work well according to Glasserman and Kou (1995): th
arrival rate is 0.09, the service rates of the first throug
fourth queue are 0.23, 0.227, 0.227 and 0.226, respective
The rare event of interest is the total network populatio
reaching a high level, starting from 0 and before returnin
to 0 again.

For all experiments, the boundary layer technique wa
used to reduce the enormous state space; 10 boundary la
turned out to work well, but possibly fewer would have
been sufficient. Furthermore, the local average techniq
was used. The spline-smoothing was only used in som
cases, as indicated below.
1
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4.1 Results for Overflow Level 50

The results for an overflow level of 50 are presented i
Figure 2, both without and with spline-based smoothing
Along the horizontal axis, the iteration number is indicated
Vertically, the estimate of the overflow probability and its
relative error (standard deviation from the simulation, di
vided by the estimate itself) are shown as two lines in th
graph. At the first iteration, a static tilting according to the
well-known heuristic of exchanging the arrival rate with
the bottleneck service rate was used, to get things starte
In the experiments without spline-based smoothing (uppe
graph), 104 replications were used per iteration up to the
23rd iteration; the 23rd iteration was performed twice, onc
with 104 and once with 105 replications, and all later iter-
ations used 105 replications. With spline-based smoothing
(lower graph), the switch from 104 to 105 replications per
iteration was made at the 9th instead of the 23rd iteration

Obviously, the spline smoothing is quite beneficial to
the convergence in this case: without splines, the conve
gence is rather slow and irregular, with a major excursio
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105 repl.104 repl.

with splines

iteration
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Figure 2: Results for the Four-node Tandem Queue, Ove
flow Level = 50
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around the 13th iteration, whereas with spline smoothing
the convergence is quick and monotonic, and the resultin
relative error at 104 replications is smaller by almost a factor
of 2.

Next, note what happens when the number of replica
tions is increased: at the 23rd (without splines) and 9th (with
splines) iteration, the same simulation was done with 104

and 105 replications; the relative error of the latter clearly
is about a factor of

√
10 smaller, as it should. However,

without splines the relative error continues to decrease i
the next iteration: this is a consequence of the fact tha
these later iterations have better transition probabilities be
cause those have been obtained with 105 instead of 104

replications, as discussed in Section 3.4. In the end, th
relative error has decreased by a factor of 10 in total. With
splines, this does not happen: the relative error does n
significantly decrease further, and in fact is higher than
without splines; apparently, the spline form does not fit the
optimal state-dependence well enough.

Figure 3 serves to give an idea of how the transition
probabilities depend on the state in this particular problem
Of course, since we have up to five transition probabilities
and a four-dimensional state space, it is hardly feasible t
give a complete picture. Therefore, only the probability
of the transition corresponding to a service completion a
the first queue is shown, as a function of the contentsn1
andn2 of the first and second queues, respectively, while
the third and fourth queues are empty. Clearly, the spline
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n1 10

5
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105 repl., with spline
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Figure 3: State-dependent Transition Probabilities

perform a very effective smoothing: most of the noise
disappears. On the other hand, the splines used here a
apparently not able to completely follow the true functions:
the “dip” at n2 = 1 is much deeper without splines (only
sufficiently visible in the 105-replications plot) than with
splines. This agrees with the experimental observation tha
at 105 replications, the final estimate is more accurate whe
2
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the transition probabilities are not restricted by applying
splines.

4.2 Results for Overflow Level 200

For the case of an overflow level of 200, Figure 4 shows th
simulation results. For this problem, all three technique
(local average, 10 boundary layers, and splines) were us
initially (up to iteration 16). After convergence had been
achieved, the number of replications was increased, resultin
in branches b (with splines) and c (without splines) in the
graph.

relative error
estimate

c

b

105 repl.104 repl.

a

iteration

relative
error

estim
ate

1

0.1
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0.001
20151050

1e-74

1e-75

1e-76

1e-77

Branch Iterations Description
a 1–16 104 replications, splines
b 16–20 105 replications, splines
c 16–20 105 replications, no splines

Figure 4: Results for the Four-node Tandem Queue, Ove
flow Level = 200

It seems as if the convergence process can be divide
into two phases. During the first phase, the estimate
quite inaccurate (typically too low), but it approaches the
correct value; in the present example, this phase compris
iterations 1 through 7. During the second phase, the estima
stays correct, and the relative error decreases to its fin
value; in the present example this happens during iteration
7 through 11. These phases can also be recognized in t
results with overflow level 50 in Figure 2.

Note, like before, the strong decrease of the relativ
error after increasing the number of replications by a facto
of 10, and the fact that switching off spline smoothing at
that point is beneficial.

4.3 Asymptotic Efficiency

Results from the above experiments, and from repetition
of those experiments at overflow levels 25 and 100, ar
shown in Table 1. All of these experiments used the sam
number of replications per iteration (105) and no splines
in the final iterations. It is clear from the table that the
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relative error grows with the overflow level, but clearly less
than exponentially fast, while the probability of interest
does decrease exponentially fast. This demonstrates t
asymptotic efficiency of the method for this problem.

Table 1: Test of Asymptotic Efficiency
level exact estimate rel.error

25 3.5283· 10−07 3.504· 10−07 0.0026
50 – 2.396· 10−16 0.0042

100 – 1.422· 10−35 0.0044
200 – 6.722· 10−75 0.0082

The table also shows an exact (numerical) calculatio
of the overflow probability for an overflow level of 25.
Comparing this with the simulation estimate shows a goo
agreement. No exact numbers could be calculated for high
overflow levels due to the large state space involved.

5 CONCLUSIONS AND FURTHER RESEARCH

In this paper, we have proposed an importance sampling sim
ulation method with two important features: the change o
measure is completely state-dependent, and a cross-entro
based adaptive method is used to approximate the optim
change of measure. To show the method’s performanc
we have applied it to estimate the overflow probability of
the total population of a Jackson network consisting o
four queues in tandem. This simulation has been show
to be asymptotically efficient, at a parameter setting a
which asymptotically efficient simulation is not obtained
with state-independent tilting. Furthermore, the method’
interesting property that the relative error can decrease fas
than proportional to the square root of the total simulation
effort has been demonstrated.

The method has also been applied successfully to oth
rare-event problems in Jackson networks, like overflow
in networks with random routing and feedback, bounde
queues, and overflows of non-bottleneck queues; see de Bo
(2000).

However, all of the systems considered so far are mod
elled by DTMCs, and the number of queues is not too larg
to avoid state space explosion. This indicates two obviou
directions for future work: extension to non-DTMC sys-
tems, and developing more efficient methods for handlin
large state spaces. Furthermore, it may be possible to im
prove the method’s convergence by combining observation
from several iterations.

In the present paper, the good performance of th
method has only been demonstrated experimentally. Anoth
direction for further research would therefore be providing
more solid mathematical foundations, such as a proof o
the convergence of the tilting vector.
3
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