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ABSTRACT One simple network that received a lot of attention is a
set of two or more queues in tandem. Despite its simplic-
In this paper, a method is presented for the efficient es- ity, a complete analysis of this system is hard due to the
timation of rare-event (overflow) probabilities in Jackson behaviour at the state-space boundaries. As a consequence,
gueueing networks using importance sampling. The method no importance sampling change of measure that is provably
differs in two ways from methods discussed in most earlier asymptotically efficient is known.
literature: the change of measure is state-dependent, i.e., it In Parekh and Walrand (1989), an importance sampling
is a function of the content of the buffers, and the change procedure was described for estimating the overflow prob-
of measure is determined using a cross-entropy-based adap-ability of the total population in tandem queues. A simple
tive procedure. This method yields asymptotically efficient and static (i.e., state-independent) change of measure was
estimation of overflow probabilities of queueing models used: exchange the arrival rate with the service rate (of the
for which it has been shown that methods using a state- bottleneck queue, in case of a tandem system). In Sad-
independent change of measure are not asymptotically ef- owsky (1991), the asymptotic efficiency of that method for
ficient. Numerical results demonstrating the effectiveness a single queue was proved. In Frater, Lennon, and An-

of the method are presented as well. derson (1991) this heuristic was extended to overflows of
the total population in any Jackson network. However, it
1 INTRODUCTION was shown in Glasserman and Kou (1995) that for two

or more queues in tandem, this heuristic does not always
During the last decade, there has been much interest in thegive an asymptotically efficient simulation, depending on
estimation of rare-event probabilities in queues and networks the values of arrival and service rates. It reasonable is to
of queues, with applications to models of telecommunication expect that similar problems will occur with this method in
networks as well as computer and manufacturing systems. other Jackson networks.
Two methods have gained popularity: importance sampling Clearly, by allowing the change of measure to depend
(Heidelberger 1995, Asmussen and Rubinstein 1995), and on the state of the system (i.e., the content of each of the
importance splitting (RESTART) (Villén-Altamirano and  queues), more efficient importance sampling schemes may
Villén-Altamirano 1994), the former of which is used in  be obtained. This approach was recently used in Kroese and
this paper. Nicola (1999), where the overflow probability of the second

gueue in a two-node tandem Jackson network is estimated
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using a simulation in which the change of measure depends for state-dependent simulation, and discusses some of the
on the content of the first buffer; the functional dependence problems involved and their solutions. In Section 4, em-
of the rates on the buffer contentis derived from on a Markov pirical results demonstrate the effectiveness of the method.
additive process representation of the system. Furthermore, Concluding remarks and directions for further research are
in Heegaard (1998) a state-dependent change of measure iggiven in Section 5.

used for simulating link overloads in a telecommunications

network; again, the functional dependence of the importance 2 PRINCIPLES OF THE CROSS-

sampling rates on the system state is derived using a heuristic. ENTROPY METHOD

The biggest obstacle to the use of a state-dependent change

of measure in general is the problem of determining this In this section, we briefly review the cross-entropy method
dependence: rather specific mathematical models are used infor the adaptive optimization of an importance sampling
the publications mentioned, making the results very specific simulation. Only the aspects that are relevant for the rest
to those problems. of this paper are discussed; for more details, the reader is

As an alternative to avoid the complex mathematical referred to Rubinstein and Melamed (1998) and Rubinstein

analysis often used to determine a good (state-independent)(1999).

change of measure, several adaptive methods have been

proposed recently; see Devetsikiotis and Townsend (1993b), 2.1 Basics

Devetsikiotis and Townsend (1993a), Al-Qaqg, Devetsikiotis,

and Townsend (1995), Rubinstein (1997), Rubinstein and Assume that the change of measure (or “tilting”) is param-
Melamed (1998), Rubinstein (1999), Lieber (1999). All eterized by some vector; then the aim of an adaptive
of these either try to iteratively minimize the variance of importance sampling procedure should be to find the value
the estimator involved, or a related quantity like the cross- of v which results in minimal variance for the resulting
entropy. However, none of these papers consider a state-estimator.

dependent change of measure for simulation of queueing Another approach for choosingwas introduced in Ru-
models. binstein (1999). It is well known that always an importance

In this paper, we present an adaptive method for deter- sampling distribution (change of measure) exists which re-

mining a state-dependent change of measure for rare eventssults in a zero-variance estimator, and that this distribution

in queueing problems. This is a rather versatile method: is precisely the original distribution conditioned on the oc-

currence of the rare event. In practice, this distribution may

 due to the adaptiveness, a complex mathematical not be within the family of distributions that can be obtained
analysis of the problem is not necessary. by the change of measure parameterizedvbyHowever,

+ since the state-dependent change of measure isif a simulation distribution is used that is in some sense
less restrictive, problems can be solved for which  “close” to the unattainable zero-variance distribution, then a
no effective state-independent change of measure |ow (but non-zero) variance should be expected. So instead
exists. of choosingv such that the variance is minimized explicitly,

one could try to devise a procedure that minimizes some

In particular, with this method the probability of overflow  gistance measure between the distribution under the change

of the total network popula}ti_on in Jackson tandem networks of measure given by, and the distribution that would give
can be asymptotically efficiently estimated, even in those ,qrq yarjance. The latter distribution will henceforth be
cases where Glasserman and Kou (1995) show that the .;ied the “zero-variance distribution”.

heuristic of exchanging the arrival rate with the bottleneck Before proceeding with details of such a procedure

service rate does not work. In_ addition, the combination gyme more notation needs to be defined. The sample path
of state-dependence and adaptiveness leads to another usess gne replication of the simulation is denoted By The

ful property: the standard deviation of the estimator can ¢,nction 7(7) is the indicator function of the occurrence of
decrease faster than proportional to the square-root of the yhe rare event . We already definedto denote the tilting
total simulation effort. vector; consistently with thisf (Z, v) is the probability (or,

Here we restrict our discussion to the estimation of rare- o continuous systems, the probability density) of the sample
event probabilities in discrete-time Markov chains (DTMCs). path Z under the tilting, with » = 0 corresponding to the

However, we plan to expand the method to more general qrigina| (untilted) system. The likelihood ratio associated

models in the future. , , with the sample pattz and the tilting vectow is denoted
The rest of this paper is organized as follows. Sec- by L(Z, v):

tion 2 provides a summary of the most important aspects of
the adaptive method from Rubinstein and Melamed (1998).
Section 3 explains the implementation of this algorithm

_ f(Z.0)

L(Z,v) = FZ)
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Finally, E, denotes the expectation under the tilting

A suitable “distance” measure for this procedure is the
Kullback-Leibler cross-entropy, which is defined, see Kapur
and Kesavan (1992), as

&dz,

CE =/f(z) In s,

where f(z) andg(z) are two density functions whose “dis-
tance” is to be calculated. Note that this “distance” measure
is not symmetric: in general, exchangingand g in the
above will result in a different value af E.

We want to apply the Kullback-Leibler cross-entropy

minimizing the variance of the estimator, although in practice
the difference turns out to be small:

1. Initialize as follows:
j := 1 (iteration counter)
v1 := initial tilting vector (see below)

2. SimulateN replications with tiltingv;, yielding
Z1...ZN.

3. Find the new tilting vectow;,1 from the maxi-
mization (2).

4. Incrementj and repeat steps 2—4, until the tilting

vector has converged (i.en,;+1 ~ v;).

to measure the distance between the distribution to be used Choosing the initial tilting vectop; in step 1 is not trivial.

for the simulation (assumed to be of the forfi(z, v))
and the zero-variance distribution. To do this, substitute
g(@) = f(z,v) (i.e., the distribution to be optimized by
changingv) and f(z) = pol (z) f (z, 0) with normalization
factor ,oo_1 = fI(z)f(z,O)dz into the above; note that
this f(z) is the original distribution conditioned on the rare
event (i.e., the zero-variance distribution). Then we need
to do the following minimization:

ot = arg min/ pol (z) f(z,0)In Mu’z
v f(z,v)
= arg rrlax/ 1(2)f(z,0)In f(z,v)dz
= argmaxtol (Z2)In f(Z,v), (1)
v
wherev' denotes the value af that minimizes the cross-
entropy. In the above form the equation is not useful,

since we do not knowEgl (Z)In f(Z, v).
can rewrite it as follows:

However, we

v =argmaxt,, 1(Z)L(Z,v;)In f(Z,v),
i ‘

wherev ; is any other tilting vector; we will later interpretitas
the tilting vector used during thgh iteration of an iterative
procedure. The above form can easily be approximated by
a sum (stochastic counterpart of the expectation) aver
samples from a simulation performed with tilting, thus
yielding an approximation te' which we callvjyq:

N

vjr1=argmaxy  1(Z)L(Zi,v)In f(Zi.v),
i=1

()

where theZ; are sample paths drawn under the tilting
2.2 Algorithm

Now we have all elements for an iterative procedure to
approximate the optimal tilting vectar' in the sense that
it minimizes the cross-entropy; this may not be equal to
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The most obvious choice is to sef = O, i.e., use the
original transition probabilities. However, with that choice
the rare event of interest will typically not be observed,
making (2) unusable. In Rubinstein (1999), this is solved
by introducing an additional step in the algorithm, in which
the rare event is temporarily modified into a less rare event.
In the present paper, a different approach is used: we
choosev; on the basis of heuristics like exchanging the
arrival rate with the bottleneck service rate. Although such
a heuristic by itself does not produce an asymptotically
efficient simulation in the cases considered here, it does
provide a convenient starting point for the iterative process.

3 STATE-DEPENDENT TILTING

One application of the adaptive procedure described above
is finding a “static” change of measure for queueing prob-
lems, i.e., finding the optimal arrival and service rates for
simulation of a buffer overflow. In that case, the vector
just contains one component for every rate that is allowed to
change. Indeed, for many problems this turns out to work
well; see Rubinstein and Melamed (1998) and de Boer
(2000) for examples. However, for many other problems
no static change of measure seems to exist that gives an
efficient simulation; for those systems, a less restrictive
change of measure should be used, which can be obtained
by allowing the arrival and service rates in the simulation
to depend on the state. In this section we will do precisely
that for DTMC models of queueing networks.

3.1 Principles

A DTMC model is completely described by its initial prob-
ability distribution and its set of transition probabilities: the
probabilities of going from one state to another. Since many
DTMC models (e.g., for queueing systems) are derived from
continuous time models with exponential arrival and service
time distributions (CTMCs), the transition probabilities are
typically calculated from transition rates: the probability
of going from state to state; is given bya;;j/ > ; dik,
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wherel;; is the transition rate from stafeto statej, and

kin )", runs over all states. In fact, for the cross-entropy
calculations done in this section, it is more convenient to
work with rates; the transition probabilities can trivially be
calculated from the rates by normalizing their sum to 1.
Collectively, all ratesk;; will be referred to as a vector.

In DTMC models, only one type of tilting is possi-

ble: changing the transition probabilities. Equivalently,

one can change the transition rates of the corresponding

CTMC model and calculate the transition probabilities for
the DTMC from those, as shown above. It turns out that the
latter approach is slightly simpler. So the aim is to find a
set of transition rates which minimizes the cross-entropy.
Before deriving the actual cross-entropy minimization
formula, let us first build a mathematical description of one
replicationZ of a DTMC simulation. Define the sequenge
i=1,223, ..., which denotes the state of the system just
before theith transition in this replicatior¥. Denote by
Mm the rate (or probability) of going from stafeto state
m. Then obviously the probability of th&h step is

)"Z[ZH—l

Zk )‘Zik '

wherek runs over all states (or only those states that can
be reached in one step from state since all otherk
are 0). The total probability of the sample pathis

5o

wherei runs over all steps in the sample path.

Substitute the above expression for the probability of
a sample path into equation (1); then we get the following
expression for the optimal transition rate vecidr

ZIZH—l

Pr(zZ) = S A
k Mzik

Al arg maxto! (Z) In H Jui

k Mzik

i
arg matio/ (2) > (In My — N )»z,-k) :
i k

To find the maximum in the right-hand side, set the derivative
with respect tar, to 0, for any two states andm:

1(z~ 1=m) 1
0=1IEo/(Z) ( o - ,
ZZ’;l Am D ok Mk
or, equivalently:
1
— ol (2) Z L pqmm) = ol (2) Z 1.
Alm izi=l k Mk izi=l
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Thus, we find the following expression for the optimal
transition probabilityg;,, from state/ to statem:

)
)‘lm

m_

Zk )‘lk

Eol(2) Zi:z,‘=l 1(Zi+1:m)

Eol(2)Y ;... 1 '

qim

©)

Of course, the expectations in the right-hand side are gen-
erally not known, but we can approximate them as follows:

EXjI(Z)L(Z’ A'j) Zi:z,:l 1(Zi+1:m)
E)‘,](Z)L(Z ).)Z =1

(2%

2 LOL(Z A ) Y Lia=m)
2 LOL(Z ) Y1

qim

P4

. (4)

where Z%’izl is a sum over the sample paths from
replications, simulated with transition ratgs (i.e., from

the jth iteration). Note that the factop ;. _, 1 in the
denominator is just the number of visits to statduring
replication Z, and that) ;. . _; 1¢;,,=m) in the numerator

is the number of those visits in which the transition to
statem was chosen next. Consequently, the right-hand side
of (4) can be interpreted as théservedconditional (on the
occurrence of the rare event) probability of the transition
from state/ to statem; this is not surprising, since it

is known that using the true conditional distributions for
importance sampling yields a zero-variance estimator, as
discussed before.

3.2 Practical Problems

Using the adaptive importance sampling algorithm from Sec-
tion 2.2 with state-dependent parameters chosen according
to (4) seems very simple. There are, however, practical
difficulties. The cause of these is the enormous number of
states that a typical queueing network can have. For exam-
ple, a network with three queues and an overflow level of 50
for the total network population has 23461 states. This is
the total number of ways to distribute among three distinct
queues a total of 1 customer (3 ways), 2 indistinguish-
able customers (6 ways), 3 indistinguishable customers (10
ways), up to 50 indistinguishable customers. Doubling the
overflow level to 100 multiplies this number of states by
almost 8. If the rare event of interest is the overflow of one
particular queue, other queues in the network can have an
infinite size, thus making the number of states infinite.

One of the consequences of the enormous state space
is that a lot of data needs to be stored: this takes a lot
of memory capacity; but with present-day computers and
the size of the queueing networks studied here, this is
typically not a problem (except if the state space is infinite,
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of course). However, manipulating such a lot of data (e.g.,
in the smoothing techniques that will be discussed later)
can be prohibitively time-consuming.

The accuracy of the estimations in the right-hand side
of (4) is more problematic. The only sample paths that give
a contribution to the sums in the numerator and denominator
are those thatreach the rare event (because éf #hefactor)
and pass through the stdtébecause of the summation over
i for which z; =1). The factorl (Z) will typically not be
a problem: the tilting used in thgth iteration is usually
such that the event of interest is no longer rare. However,
the tilting will not favor visits to states that are away from
some optimal path to the rare event of interest. If the state
space is multi-dimensional, this means that many states will

by also including observations from sample paths passing
through an appropriate set of such “similar” states. Of
course, this introduces an error, since the optimal proba-
bilities are probably not exactly equal. On the other hand,
since more samples are used, the accuracy of the estima-
tion increases. Furthermore, treating several states as if
they were one state saves memory for storing the transition
probabilities. This is necessary for systems with an infinite
number of states.

Note that the “error” discussed above does not imply
that the resulting estimate of the rare-event probability will
be biased; in principle that estimate will be unbiased as
long as the correct likelihood ratios are used. Rather, it
means that the used transition probabilities deviate from

not be visited often or at all, even under a tilting that makes the optimal transition probabilities, so the estimate has a
the event of interest non-rare. States that are not visited larger variance than without this error. In fact, such errors
at all during theN replications of a simulation yield /@ and the associated non-optimal variance are always present,
(undefined) in the right-hand side of (4). And states that even if no grouping of states is used, due to the fact that
are visited only a few times make the quotient of sums a the transition probabilities are estimated by simulation and
bad approximation of the quotient of expectations. thus subject to statistical errors.

There is in fact a rather fundamental risk here: suppose
the transition from some statdo another state: happens
in only 10 % of all visits to staté, and statd is visited
only 5 times during theN replications of a simulation.
Then it is quite likely that in none of those 5 visits to
statel, a transition to state: will be made. Consequently,
using (4) to choose the simulation parameters for the next
iteration would set the rate (probability) of this transition
to 0, thus making the transition impossible. Then in the
next simulation, surely no transitions from state statem
will be observed, so this rate will again be set to 0 for
the next iteration: it will remain at O forever, even though
that is wrong if the transition has a non-zero probability
in the untilted system, thus possibly resulting in a biased
estimator. transition probability estimates are good enough.

The only case in which the above does not give a The test for deciding whether the transition probability
biased estimator is when the rare event of interest can no estimates are good enough comprises several aspects. First
longer be reached after that particular transition has been of all, the number of visits to the state (including the states
made. As a matter of fact, all pati¥swhich contain such a with which it is being grouped): if the state or group of
transition necessarily havgZ) = 0; as a consequence, (4) states has been visited too few times, its transition probabil-
will automatically set the rate of such a transition to zero ity estimates cannot be trusted. Secondly, no probabilities
for the next iteration. Therefore, after the first iteratiaf, that theoretically should be non-zero, are set to zero: if this
sample paths will reach the rare event. happens, again the results cannot be trusted. Thirdly, one
can construct an estimator for the variance of the transi-
tion probability estimates, and compare its value to some
threshold to decide whether or not the transition probability
In this section, three techniques will be outlined to deal with estimate is acceptable.
the problems caused by the large state space. For details,
the reader is referred to de Boer (2000).

The basic idea of these techniques is the assumption
that the optimal transition probabilities for a particular state The boundary layer technique is based on the observation
are typically close to those of other “similar” states in its that when a queue’s content is sufficiently large, the optimal
neighbourhood. If this is the case, the estimates of the transition probabilities tend to become nearly independent
transition probabilities for a given state may be improved of that queue’s content. Thus, all states in which a queue

3.3.1 Local Average

The local average technique tries to automatically choose
the optimal amount of grouping, separately for every state.
It does this as follows:

First, just the observations obtained at the state itself
are used. If this gives good enough (see below) estimates
of the transition probabilities out of this state, then the
estimates are accepted. If not, the observations from a set
of neighbouring states are combined with those from this
state; if the transition probability estimates are now good
enough, these are accepted. If not, this is repeated with
ever larger sets of neighbouring states, until the resulting

3.3 Dealing with a Large Number of States

3.3.2 Boundary Layers
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containsB or more customers are grouped together. When after the local average step are already relatively good,
drawing this in a picture of the state space, layers are seen spline smoothing may worsen the accuracy by imposing an
along the boundaries; hence the name. See Figure 1 for unsuitable form on the data; on the other hand, if the data
B = 3 in a two-dimensional state-space. Choosing the is rather noisy, the spline smoothing usually improves its
optimal number of boundary layer8 seems to be done  accuracy. We will see examples of both in Section 4.
best by trial and error: using too few gives a less efficient
simulation, since the resulting change of measure is less 3.4 The Variance of the Estimator
dependent on the state.
It can be shown (see de Boer (2000)) that if the state-
n2 dependent transition probabilities given by (3) are used,
the resulting estimator for the rare event probability has
zero variance. In practice, the variance will not be zero,
due to the fact that one cannot obtain the exact transition
probabilities that satisfy (3): instead, simulation results are
used in equation (4) to approximate the optimal transition
probabilities, thus causing them to have a statistical error.
Furthermore, the techniques for dealing with the large state
space limit the accuracy of the transition probabilities.
Now consider what happens if the number of replications
per iteration is, say, quadrupled. If this had no influence on
the transition probability estimates, the relative error of the
01 2 3 4 5 6 rare-event probability estimator would obviously improve
Figure 1: Grouping of States Using Three by a factor ofv/4 = 2. However, errors in the estimates of
Boundary Layers in the State Space of a the transition probabilities would also improve, by up to a
Two-queue Systemy; = Level ofith Queue factor of 2 if the statistical error in them is dominant. This
means that they become closer to the optimal (zero-variance)
3.3.3 Smoothing Using Splines transition probabilities, causing the estimate of the rare-event
probability to improve; under some assumptions it can be
After app|y|ng the above two methods' the transition prob- argued that this improvement is linear in the reduction of
abilities can still be rather “noisy” functions of the state; the statistical error in the transition probabilities. Therefore,
they are simulation results, after all. It might be beneficial the error in the rare-event probability estimate decreases by
to replace the noisy data by a smooth function fitted through Up to a total factor of 4, i.e., up to linear in the number
it. The form of the optimal transition probability functions ~ Of replications used per iteration. We will demonstrate this
is not known in general, so fitting a flexible generic function ~experimentally in the next section.
to the data is the best one can do. We have succesfully used
cubic splines for this smoothing; basically, this means that 4 EXPERIMENTAL RESULTS
the state space is divided into pieces, and on every piece a
third-order polynomial of the coordinates (i.e., the contents N this section, overflows in a simple Jackson network will be

of the queues) is fitted to the data. Choosing the size of considered. The network consists of four queues in tandem,
the pieces is a compromise between noise reduction and with arrival and service rates chosen in the region where the

O L N W b O O

accurace of the fit. standard state-independent change of measure (exchanging
the arrival rate with the bottleneck service rate) does not
3.3.4 Combination work well according to Glasserman and Kou (1995): the

arrival rate is 0.09, the service rates of the first through

In practice’ two or all three of the above methods are fourth gueue are 0.23, 0.227, 0.227 and 0.226, respectively.
combined. Before the simulations are started, the number of The rare event of interest is the total network population
boundary layers is chosen; this is very effective at reducing reaching a high level, starting from 0 and before returning
the amount of data to be stored and processed. Next, to 0 again.

the simulation is performed. Following this, the transition For all experiments, the boundary layer technique was
rates are calculated on the basis of the simulation results, Used to reduce the enormous state space; 10 boundary layers
using equation (4); the local average technique is used to turned out to work well, but possibly fewer would have
group neighbouring states where necessary to obtain reliable been sufficient. Furthermore, the local average technique
estimates of the transition probabilities. Finally, the spline Was used. The spline-smoothing was only used in some
smoothing can be applied, if needed or desired. If the results cases, as indicated below.

651



de Boer, Nicola, and Rubinstein

4.1 Resultsfor Overflow Level 50

The results for an overflow level of 50 are presented in
Figure 2, both without and with spline-based smoothing.
Along the horizontal axis, the iteration number is indicated.
Vertically, the estimate of the overflow probability and its
relative error (standard deviation from the simulation, di-
vided by the estimate itself) are shown as two lines in the
graph. At the first iteration, a static tilting according to the
well-known heuristic of exchanging the arrival rate with

the bottleneck service rate was used, to get things started.

In the experiments without spline-based smoothing (upper
graph), 16 replications were used per iteration up to the
23rd iteration; the 23rd iteration was performed twice, once
with 10* and once with 19 replications, and all later iter-
ations used 1Dreplications. With spline-based smoothing
(lower graph), the switch from f0to 1 replications per
iteration was made at the 9th instead of the 23rd iteration.
Obviously, the spline smoothing is quite beneficial to
the convergence in this case: without splines, the conver-
gence is rather slow and irregular, with a major excursion

without splines

le-14— 1
A estimate——
oo relative error———- -
@
Q
le 401 =
2 3
=1 (0]
5 S
fe 40.01
10t repl.i 10° repl.
le-17 L L L S 0.001
0 5 10 15 20 25
iteration
with splines
le-14 1
estimate——
s relative error———- -
. T
le-15f {012
o) \ <
(%] \ D
5 * z
D . S
Pe-16§ e, {0.01
1d* repl.i 10° repl.
le-17 L L 0.001
0 5 10

iteration

Figure 2: Results for the Four-node Tandem Queue, Over-
flow Level = 50
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around the 13th iteration, whereas with spline smoothing
the convergence is quick and monotonic, and the resulting
relative error at 10replications is smaller by almost a factor
of 2.

Next, note what happens when the number of replica-
tionsis increased: atthe 23rd (without splines) and 9th (with
splines) iteration, the same simulation was done witf 10
and 10 replications; the relative error of the latter clearly
is about a factor o/10 smaller, as it should. However,
without splines the relative error continues to decrease in
the next iteration: this is a consequence of the fact that
these later iterations have better transition probabilities be-
cause those have been obtained wit? Ifstead of 16
replications, as discussed in Section 3.4. In the end, the
relative error has decreased by a factor of 10 in total. With
splines, this does not happen: the relative error does not
significantly decrease further, and in fact is higher than
without splines; apparently, the spline form does not fit the
optimal state-dependence well enough.

Figure 3 serves to give an idea of how the transition
probabilities depend on the state in this particular problem.
Of course, since we have up to five transition probabilities
and a four-dimensional state space, it is hardly feasible to
give a complete picture. Therefore, only the probability
of the transition corresponding to a service completion at
the first queue is shown, as a function of the contents
andny of the first and second queues, respectively, while
the third and fourth queues are empty. Clearly, the splines

10° repl., no spline

10% repl., no spline

10* repl., with spline 10° repl., with spline
Figure 3: State-dependent Transition Probabilities

perform a very effective smoothing: most of the noise
disappears. On the other hand, the splines used here are
apparently not able to completely follow the true functions:
the “dip” at np = 1 is much deeper without splines (only
sufficiently visible in the 1B-replications plot) than with
splines. This agrees with the experimental observation that
at 1@ replications, the final estimate is more accurate when
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the transition probabilities are not restricted by applying
splines.

4.2 Resultsfor Overflow Level 200

For the case of an overflow level of 200, Figure 4 shows the
simulation results. For this problem, all three techniques
(local average, 10 boundary layers, and splines) were used
initially (up to iteration 16). After convergence had been
achieved, the number of replications was increased, resulting
in branches b (with splines) and c¢ (without splines) in the
graph.

le-74 1
AN estimate—— -
A,  relative error-——- @
le-75} VN a {01 &
3 N 5
= | )
g N -
Pe-76F | S~-.. 001
1ct repl.i 10° repl.
le-77 L L L — 0.001
0 5 10 15 20
iteration
Branch | Iterations| Description
a 1-16 | 10% replications, splines
b 16-20 | 10° replications, splines
c 16-20 | 10° replications, no splines

Figure 4: Results for the Four-node Tandem Queue, Over-
flow Level = 200

It seems as if the convergence process can be divided
into two phases. During the first phase, the estimate is
quite inaccurate (typically too low), but it approaches the
correct value; in the present example, this phase comprises
iterations 1 through 7. During the second phase, the estimate
stays correct, and the relative error decreases to its final
value; in the present example this happens during iterations

relative error grows with the overflow level, but clearly less
than exponentially fast, while the probability of interest
does decrease exponentially fast. This demonstrates the
asymptotic efficiency of the method for this problem.

Table 1: Test of Asymptotic Efficiency

level exact estimate rel.error
25| 3.5283-10°97 | 3.504-1097 0.0026
50 - 2.396-1016  0.0042
100 - 1.422-1073% 0.0044
200 - 6.722-10°7°> 0.0082

The table also shows an exact (numerical) calculation
of the overflow probability for an overflow level of 25.
Comparing this with the simulation estimate shows a good
agreement. No exact numbers could be calculated for higher
overflow levels due to the large state space involved.

5 CONCLUSIONS AND FURTHER RESEARCH

In this paper, we have proposed an importance sampling sim-
ulation method with two important features: the change of
measure is completely state-dependent, and a cross-entropy-
based adaptive method is used to approximate the optimal
change of measure. To show the method’s performance,
we have applied it to estimate the overflow probability of
the total population of a Jackson network consisting of
four queues in tandem. This simulation has been shown
to be asymptotically efficient, at a parameter setting at
which asymptotically efficient simulation is not obtained
with state-independent tilting. Furthermore, the method’s
interesting property that the relative error can decrease faster
than proportional to the square root of the total simulation
effort has been demonstrated.

The method has also been applied successfully to other
rare-event problems in Jackson networks, like overflows
in networks with random routing and feedback, bounded
queues, and overflows of non-bottleneck queues; see de Boer
(2000).

However, all of the systems considered so far are mod-

7 through 11. These phases can also be recognized in theelled by DTMCs, and the number of queues is not too large

results with overflow level 50 in Figure 2.

Note, like before, the strong decrease of the relative
error after increasing the number of replications by a factor
of 10, and the fact that switching off spline smoothing at
that point is beneficial.

4.3 Asymptotic Efficiency

Results from the above experiments, and from repetitions
of those experiments at overflow levels 25 and 100, are
shown in Table 1. All of these experiments used the same
number of replications per iteration (0and no splines

in the final iterations. It is clear from the table that the
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to avoid state space explosion. This indicates two obvious
directions for future work: extension to non-DTMC sys-
tems, and developing more efficient methods for handling
large state spaces. Furthermore, it may be possible to im-
prove the method’s convergence by combining observations
from several iterations.

In the present paper, the good performance of the
method has only been demonstrated experimentally. Another
direction for further research would therefore be providing
more solid mathematical foundations, such as a proof of
the convergence of the tilting vector.



de Boer, Nicola, and Rubinstein

REFERENCES

Al-Qaqg, W. A., M. Devetsikiotis, and J. K. Townsend.
1995. Stochastic gradient optimization of importance
sampling for the efficient simulation of digital commu-
nication systemsIEEE Transactions on Communica-
tions 43:2975-2985.

Asmussen, S. and R. Rubinstein. 1995. Complexity prop-

erties of steady-state rare-events simulation in queueing

models. InAdvances in Queueing: Theory, Methods
and Open Problemsed. J. Dshalalow, 429-462. CRC
Press.

de Boer, P. T. 2000. Analysis and efficient simulation of
gueueing models of telecommunications systems. Ph.
D. thesis, University of Twente. In preparation.

Devetsikiotis, M. and J. K. Townsend. 1993a. An algo-
rithmic approach to the optimization of importance
sampling parameters in digital communication sys-
tem simulation. IEEE Transactions on Communi-
cations 41:1464-1473.

Devetsikiotis, M. and J. K. Townsend. 1993b. Statistical
optimization of dynamic importance sampling parame-
ters for efficient simulation of communication networks.
IEEE/ACM Transactions on Networking:293-305.

Frater, M. R., T. M. Lennon, and B. D. O. Anderson. 1991.
Optimally efficient estimation of the statistics of rare
events in queueing networkslEEE Transactions on
Automatic Control 36:1395-1405.

Glasserman, P. and S.-G. Kou. 1995, January. Analysis of

an importance sampling estimator for tandem queues.
ACM Transactions on Modeling and Computer Simu-
lation 5(1):22—42.

Heegaard, P. E. 1998. A scheme for adaptive biasing in
importance sampling. AEU International Journal of
Electronics and Communication§2:172-182.

Heidelberger, P. 1995. Fast simulation of rare events in
gueueing and reliability modelsACM Transactions on
Modeling and Computer Simulatios:43—85.

Kapur, J.N.and H. K. Kesavan. 199Entropy Optimization
Principles with Applications Academic Press.

Kroese, D. P. and V. F. Nicola. 1999. Efficient simulation of
a tandem jackson network. Proceedings of the 1999
Winter Simulation Conferenceed. P. A. Farrington,

H. B. Nembhard, D. T. Sturrock, and G. W. Evans,
411-4109.

Lieber, D. 1999. The cross-entropy method for estimating
probabilities of rare events. Ph. D. thesis, William
Davidson Faculty of Industrial Engineering and Man-
agement, Technion, Israel.

Parekh, S. and J. Walrand. 1989. A quick simulation
method for excessive backlogs in networks of queues.
IEEE Transactions on Automatic Contrd34:54—66.

654

Rubinstein, R. Y. 1997. Optimization of computer simu-
lation models with rare eventsEuropean Journal of
Operations Researct99:89-112.

Rubinstein, R. Y. 1999. Rare event simulation via cross-
entropy and importance sampling. $econd Interna-
tional Workshop on Rare Event Simulation, RESIM’'99
1-17.

Rubinstein, R. Y. and B. Melamed. 1998/odern Simu-
lation and Modeling Wiley.

Sadowsky, J. S. 1991. Large deviations theory and efficient
simulation of excessive backlogs itGd /G I /m queue.
IEEE Transaction on Automatic Contr86:1383—-1394.

Villén-Altamirano, M. and J. Villén-Altamirano. 1994,
RESTART: A straightforward method of fast simu-
lation of rare event. IfProceedings of the 1994 Winter
Simulation Conference282—-289.

AUTHOR BIOGRAPHIES

PIETER-TJERK DE BOER received the M.S. degree in
applied physics (specializing in theoretical physics) in 1996
from the University of Twente, The Netherlands. Since
then, he has been working towards a Ph.D. degree at the
Department of computer science, University of Twente. His
research interests include rare event simulation, importance
sampling, queueing theory, and large deviations theory, with
applications to performance analysis of telecommunication
networks.

VICTOR F. NICOLA holds the Ph.D. degree in computer
science from Duke University, North Carolina, the B.S.
and the M.S. degrees in electrical engineering from Cairo
University, Egypt, and Eindhoven University of Technol-
ogy, The Netherlands, respectively. From 1979, he held
faculty and research staff positions at Eindhoven University
and at Duke University. In 1987, he joined IBM Thomas
J. Watson Research Center, Yorktown Heights, New York,
as a Research Staff Member. Since 1993, he has been
an Associate Professor at the Department of Electrical En-
gineering, University of Twente, The Netherlands. His
research interests include performance and reliability mod-
eling, fault-tolerance, queueing theory, analysis and simula-
tion methodologies, with applications to computer systems
and telecommunication networks.

REUVEN Y. RUBINSTEIN Prof. Reuven Rubinstein is
with the Faculty of Industrial Engineering and Management
of the Technion since 1973. His fields of interest are
stochasic models, stochastic optimization and simulation.
He published over 80 papers and 4 books on simulation
and stochastic optimization, all with Wiley. He was the
head of operations research division at the Technion for 4
years. He has visited many universities and research centers
around the world, among them University of lllinois, Urbana



de Boer, Nicola, and Rubinstein

(1978-79 academic year), Harvard University (1985-86
academic year), George Washington University (1986—87
academic year), IBM Research Center (Summer 1980),
Bell Laboratories, Holmdel, NJ (Summers 1989 and 1990),
NEC (February 1992). Motorola US (1997, 6 months), The
Institute of Statistical Mathematics (1997-98, 4 months,
Tokyo). He is a Technion Management Chair Professor
since 1998.

655



	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print

