Proceedings of the 2000 Winter Simulation Conference
J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, eds.

FAST COMBINED MULTIPLE RECURSIVE GENERATORS WITH
MULTIPLIERS OF THE FORM a = 4+279 £ 2"

Pierre L'Ecuyer
Renée Touzin

Département d’Informatique et de Recherche Opérationnelle
Université de Montréal, C.P. 6128, Succ. Centre-Ville
Montréal, H3C 3J7, CANADA

ABSTRACT obtain a primitive polynomial, one needs at least 2 non-
zero coefficientsz;’s. This minimal number of non-zero

We study a class of combined multiple recursive random coefficients yields the following economical version of (1):
number generators constructed in a way that each component
runs fast and is easy to implement, while the combination

enjoys excellent structural properties as measured by the
spectral test. Each componentis a linear recurrence of order The classical linear congruential generator (LCG) is obtained
k > 1, modulo a large prime number, and the coefficients with k = 1. Further details about MRGs can be found, e.g.,

are either 0 or are of the form = £29 ora = £29 + in Knuth (1998), Niederreiter (1992), L'Ecuyer (1994),

®)

Xn = (@rXn_r + arx,_;) Modm.

2". This allows a simple and very fast implementation,
because each modular multiplication by a power of 2 can
be implemented via a shift, plus a few additional operations
for the modular reduction. We select the parameters in
terms of the performance of the combined generator in the
spectral test. We provide a specific implementation.

1 INTRODUCTION: MULTIPLE
RECURSIVE GENERATORS

1.1 Multiple Recursive Generators

A multiple recursive generator (MRG) is defined by the
linear recurrence

(arxp—1 + - -+ + agxy—x) mod m;

Xp/m.

1)
(@)

Xn

Up

The modulusm and theorder k are positive integers, the
coefficientsa; belong toZ,, = {0,1,...,m — 1}, and the
stateat stepn is the vectorx,, = (x,—x+1,...,x,). The
maximal period length of the recurrence (1pis= m* — 1,
and this length is attained if and onlysif is prime and the
characteristic polynomial of the recurrence,

P@) =7 —at . —q,
is a primitive polynomial module:. Primitive polynomials
can be found by random search as explained in L'Ecuyer,
Blouin, and Couture (1993) and L'Ecuyer (1999a). To

683

L'Ecuyer (1996), and the references therein.

Besides period length, two importantissues in the design
of MRGs are thestatistical qualityand theefficiency of the
implementation

The statistical quality is traditionally assessed by mea-
suring the uniformity of the set of all vectors of successive
output values(uy, ..., u,+;—1), from all initial states, as
we explain in Section 2. For the implementation, the key
issue is how to compute efficiently the produgts mod m
whenm is large.

1.2 Implementation

A first approach for computingx mod m is approximate
factoring (Bratley, Fox, and Schrage 1987; L'Ecuyer and
Coté 1991). It uses integer arithmetic and a clever decom-
position ofm. It works if a2 < m or if a = |m/i] where

i? < m, and if all integers betweerm andm are well
represented on the computer.

A second approach computes the product and the divi-
sion bym (for the mod operation) directly ifloating-point
arithmetic. On computers that obey the IEEE 64-bit floating-
point standard (most computers do), all integers uptage
represente@xactlyin floating point, and the floating-point
implementation works itim < 2°3. See L’Ecuyer (1999a)
for details and examples.

A third approach, introduced by Wu (1997) and gen-
eralized by L'Ecuyer and Simard (1999), which we call
the powers-of-2 decompositiprassumes that is a sum
or a difference of a small number of powers of 2, e.g.,

L’Ecuyer and Touzin

a = +29+2". The product ofc by each power of 2 can be
implemented by a left shift of the binary representation of
x, and the productx is computed by adding and/or sub-
tracting. The details are given in Section 3. This approach
turns out to be more efficient than the other two, according
to our experiments.

Note that replacing any; by a; = m changes nothing
to the recurrence (1). If for some € Z,,, |a; —m| satisfies
one of the above conditions whereasloes not satisfy that
condition, then one can replaeg by a; = a; — m when
implementing (1). This is equivalent to allowing negatives
values for theg;’s, which we shall do in the remainder of
this paper.

1.3 Combined MRGs
A direct efficient implementation of the recurrence (1) can

generally be obtained only when the number of non-zero
coefficientsa; is small, and when special conditions are

imposed on these coefficients, as explained in the previous The remainder of the paper is organized as follows.
However, imposing these constraints usually Section 2, we recall the quality criteria for selecting MRGs

subsection.
implies that the resulting MRG has a poor lattice structure
(LEcuyer 1997; L'Ecuyer 1999a). In particular, good be-
havior is possible only if the sum of squares of theis
large (L'Ecuyer 1997).

This has motivated the introduction@dmbined MRGs

the sequencéu,, n > 0} produced by the MRG (1-2),
with m = mq1---my, and explains how to compute the
correspondings;’s. Moreover, the numbers, and w,
produced by (1.3) and (1.3), respectively, differ only by a
very small quantity when the:; are close to each other.
Explicit bounds on the difference are given in L'Ecuyer
(1996).

The generators considered in this paper are combined
MRGs of this form, constructed so that the structure of the
combined MRG has excellent quality while (1.3) can be im-
plemented efficiently for each This was already achieved
by L'Ecuyer (1996) and L'Ecuyer (1999a) for implementa-
tions based on approximate factoring and on floating-point
arithmetic, respectively. The aim of this paper is to propose
combined MRGs that ariasterfor an equivalent statistical
quality, by using the powers-of-2 decomposition method.

1.4 Overview of the Remainder
In

based on an analysis of their lattice structure by the spectral
test. In Section 3, we describe the implementation method
for coefficients that are a sum or a difference of a small
number of powers of 2. In Section 4, we explain how
we searched for good single and combined MRGs with

which are constructed so that the components are easy tocoefficients of this form, and why we prefer the combined

implement efficiently while the structure of the resulting
combined generator has good quality. LEcuyer (1996) has
proposed and analyzed the following class of combined
MRGs, based o' linear recurrences, with the same order
k and distinct prime moduliz;, running in parallel. For
1<j<J,let

Xjn = (aj1xjn-1+ - +ajxjn—) modm; (3)
and suppose that the recurrence (1.3) has pegriod m’]c —1.
Suppose also that the least common multiplegf.. ., o,
is p = p1---py/2/~1. (This is the best that one can
do, because each; is necessarily even.) Define the two
combinations

J
Zn = Z«Sm,n mod my; up =zu/m1 (3)
j=1

and

J
Six;
Wy = Z’m—;'” mod 1 (3)

j=1

where thes;’s are integers such that is relatively prime
with m; for eachj. L'Ecuyer (1996) has shown that the
sequence{w,, n > 0} defined by (1.3) is the same as

684

MRGs over the non-combined ones. In Section 5, we
give a specific implementation of a combined MRG of this

form and we compare its speed with other combined MRGs
proposed in L'Ecuyer (1996) and L'Ecuyer (1999a), and

implemented via approximate factoring and floating point
arithmetic.

2 LATTICE STRUCTURE AND
QUALITY CRITERIA

Let

¥, = {(uo, .. (3)

the set of all vectors of successive output values of
the MRG (1-2), from all possible initial states. If the initial
seed of the MRG is chosen at random, tifisis viewed in
a sense as the sample space from which points are chosen
at random to approximate the uniform distribution over the
t-dimensional unit hypercubg, 1)’. This means that the
generator should be constructed so thatcovers|0, 1)’
very evenly, fort up to some arbitrary number.

It is well known that the setV, for an MRG is equal
to the intersection of a latticé, with the unit hypercube
[0,1)" (Knuth 1998; L'Ecuyer and Couture 1997). This
implies that ¥, lies on a limited number of equidistant
parallel hyperplanes, at a distande apart, where Ad;
turns out to be equal to the Euclidean length of the shortest

) k
Sup—1) (X0, ..., Xk—1) € Z,},

L’Ecuyer and Touzin

nonzero vector in the dual lattice &f, defined as the set of
vectors in R whose scalar product by any vector bf is
an integer. Computing; is called thespectral tes{Knuth
1998; L'Ecuyer and Couture 1997). Fdr; to be evenly
distributed over0, 1), we wantd; to be small.

Here, we use the same figure of merit as in L'Ecuyer
(1999a), namely

P k
My, = min d/'(m™)/dy,

wherer; > k is a selected constant (the maximal dimension
that is considered) and (m*) = 1/(p,m*/") is an absolute
lower bound ord;, for givenk and¢. Fors < 8, we take
o as the value ofy, defined in Knuth (1998), page 109,
whereas forr > 8, we takep, = exp R(z)/t] where R(t)
is the bound of Rogers on the density of sphere packings
(Conway and Sloane 1999; L'Ecuyer 1999b). ThMg, is
always between 0 and 1 and we want it to be as large as
possible.

We recall that a general upper bound ofdd is given

by
k
1/d? < 1+ af,
i=1

which means that aecessargondition for good quality is
that the sum of squares of the coefficients must be large.
3 IMPLEMENTATION BY THE POWERS-
OF-2 DECOMPOSITION METHOD

We want to compute
y =27x modm 3)
where O< x < m. We decompose: andx asm = 2° —h

andx = xg+2° 9x1, whereh > 0, xp = x mod Z~4, and
x1 = |x/2°71]. We then have

y = 29(xo+2°9x1) mod (2° — h)
= (27x0+ hx1) mod (2° — h). 3
We assumethat the following inequalities hold:
h<?2 and h(2?—(h+1D27°T) <m. (3)

Under these conditions, each of the two termisg2and
hx1 in (3) is less thatz, andy can be computed as follows
(LEcuyer and Simard 1999): Shift the binary representation
of xg by ¢ positions to the left to obtain?2g, add/ times

x1, and subtraci if the result exceeds: — 1. This can be

To multiply x by a = £29 +£ 2" modulom, repeat the
procedure withr instead ofg, and add (or subtract) the
results modulom. L'Ecuyer and Simard (1999) give an
implementation in C.

Note that ifg = 0 in (3), nothing needs to be done
(y = x), whereas ifg = 1, one can simply add + x, and
subtractm if the result exceeds: — 1. We will exploit
these special cases when we will select the parameters of
our combined MRGs.

Wu (1997) introduced this method for the special case
whereh = 1. In this case, one obtaiys= 29xp-+x1, which
means that the binary representatiorya$ obtained simply
by exchanging the blocks of bitsy and x; in the binary
representation ok, i.e., rotating the bits by positions.
This simple rotation does not change the bitsxofrery
much. L'Ecuyer and Simard (1999) have shown that as a
result, the Hamming weights of and ofax modm (i.e.,
the number of 1's in their respective binary representations)
tend to be strongly dependent whenanda have the form
m=2¢—1anda = +29 £ 2". Fork =1 (i.e., LCGSs),
they showed that this dependence also appears between the
number of 1's in the binary representations of two successive
output values:,_1 and ofu,, and they proposed a simple
statistical test to detect it. The specific LCGs proposed by
Wu (1997) fail this independence test decisively, whereas
LCGs whose multipliers have a more complicated binary
representation typically pass this test.

LCGs with multipliers of the forna = +27+2" have in
fact been proposed and used a long time ago: The infamous
RANDU generator (IBM 1968) has indeed= 216+ 2+1
andm = 232, These parameters were selected for the ease
of implementation, but led to important deficiencies in the
generator’s structure (see, e.g., Law and Kelton 2000).

4 SEARCH FOR GOOD PARAMETERS

We performed computer searches to find good single and
combined MRGs that can be implemented via the powers-
of-2 decomposition method.

The first search was for MRGs of order= 6, with
modulusm = 231 — 1. With thism, we haveh = 1 and
we thus avoid the multiplication bg: We are back to the
special case considered by Wu (1997). We imposed the
condition that each coefficiemt had to be of the form

a==+294+1, a==+29, a=0.

or or

3)
Even with these conditions, an exhaustive search would
be too long, so we made a random search. Almost all of
the generators that we examined and that satisfied these
conditions had a very bad lattice structure in dimension 7,

implemented using unsigned integers and the intermediate 8 or 9. These generators typically had a good behavior in

results will never exceedn2— 1. The procedure requires
a single multiplication, betweeh and x;.

685

higher dimensions. The best generator that we found, based
on the criterionM16, hasM1s = 0.25012. This is not very

L’Ecuyer and

good. Its coefficients are; = 21°, ap =0, a3 = —2° + 1,

ag =220 -1, a5 = -2% — 1, andag = 226 — 1. We call

it MRG31k6s It has 5 non-trivial powers of two in its
coefficients, so it can be compared MRG31k3p to be
presented in the next section, in terms of the number of
multiplications by powers of two. We cannot recommend
it, however, because its lattice structure is relatively poor
and, perhaps more importantly, because the small number
of powers of 2 in the coefficients means (intuitively) that
there is not much mixing of the bits, similar to, e.g., the
generator of Wu 1997 (although not as bad).

In our second search, with the sarkeand m, we
allowed coefficients with more non-trivial powers of 2. The
condition on the coefficients was that they had to be of the
form a = £29 + 2". MRGs with good lattice structures
were much easier to find under these relaxed conditions.
The best generator that we found, basedf, hasM16 =
Mg = 0.59149. We call itMRG31k6l. Its coefficients
area; = 223 4 216, apy = 219 _ 212, az = 227 4 215,
ag = =20 — 27 a5 = —2* — 1, andag = 2?7 4 216
Of course, this generator will be slower thittRG31k3s
because there is more multiplications by powers of 2 to
perform. We will compare their speeds at the end of the
next section.

Our third search was farombinedVRGs with 2 com-
ponents of ordek = 3, with modulim; = 231 — 1 and
my = 231—-21069, and with some coefficients equal to zero
and the others of the forat2? or £27 + 1. We performed
a random search. For each coefficient of each component,
we specified the desired form: either 0,627, or 29 +1.
Each coefficient received randomly between 1 to 10 possible
values, depending on the specified form. We retained only
the coefficients for which the inequalities (3) were satisfied,
and only the recurrences (or characteristic polynomials) that
satisfied the maximal period conditions. We then examined
all the possible combinations of one MRG component of
each type, among those retained, to find out which combined

generator performed best on spectral test. These combined

MRG have approximatively the same period length as the
MRGs of order 6 in our first two searches. The best com-
bined MRG that we foundyiIRG31k3p is described in the
next section.

5 ASPECIFIC GENERATORAND SOME TIMINGS

In our third search, we found the following combined
MRG with J = 2 components of ordek = 3, whose
lattice structure is good at least up to 48 dimensions, with
Mg = 0.60159. The two components are defined by the
parameters

231 _ 1 — 2147483647
0

my

ail

686

Touzin
ay = 922
aiz = 2" +1
my = 23121069 = 2147462579
apy = 15
ap = 0
a3 2154+ 1.

Thus, each component has only 2 nonzero coefficients,
one of them of the forna;; = 27 and the other one of the
form a;; = 29 4+ 1. This will simplify the implementation.

The combination (1.3) is exactly equivalent to an MRG
of order 3 with parameters

m 4611640770946945613
ai 4341088847531259234
ap = 2349160800583431525
as 3927818590467337243

This generators has 2 distinct cycles of length=
mimp/2 ~ 2185

Figure 1 gives an implementation of this generator in
the C language. In this code, the bit maskask* are used
to separate the bits of the;;'s in 2 blocks as explained
in Section 3. For examplemaskl12 contains 23 zeros
followed by 9 ones. So, in the first line of the code for the
first component, the statement

((x11 & mask12) << 22) + (x11 >> 9)

extracts the 9 least significant bits ¥11, shifts them to
the left by 22 positions, and adds thisxbl shifted to the
right by 9 positions. The result is the productxdfl by
aio = 222, modulom = 231 — 1. The other products are
implemented in a similar way. The several instructions of
the form

if (y2 > m2) y2 -= m2;

are necessary to avoid overflow. Indeed, since the terms
added are between 0 an#!2 1 and since unsigned integers
cannot exceed® — 1, we cannot safely add more than 2
terms at a time without reducing the sum moduig.

To have an idea of the speed improvement of
this new generator over the previous combined MRG
implementations, for each generator we generated 10
million (107) random numbers and added them up, looked
at how much CPU time it took (user time + system
time), and printed the sum (this may be convenient for
checking correctness of an implementation). In all cases,
each integer in the seed was 12345. We did this on
a 64-bit SUN Ultra-2/160 using the system’s compiler
(cc, version 4.2) with the “fast -xtarget=ultra
-xarch=v8plusa " options and with the GNU Cdcc)

L’Ecuyer and Touzin

#define m1 2147483647

#define m2 2147462579

#define norm 4.656612873077393e-10
#define mask12 511

#define mask13 16777215

#define mask21 65535

unsigned long x10, x11, x12, x20, x21, x22;

double MRG31k3p ()
{

[* First component */
yl=

if (yl>ml)yl-=
yl += x12;

if (yl > ml)yl -=mi;

x12 = x11; x11 = x10; x10 =y1,;

ml;

[* Second component */
if (y1 > m2)yl -= m2;

if (y2 >m2)y2-=mz2;

y2 += Xx22;

if (y2 > m2) y2 -= m2;

y2 +=yl;

if (y2 > m2) y2 -= m2;

X22 = x21; x21 = x20; x20 =y2;

/* Combinaison */

else return ((x10 - x20) * norm);

register unsigned long y1, y2; /* For intermediate results */

(((x11 & mask12) << 22) + (x11 >> 9))
+ ((x12 & mask13) << 7) + (x12 >> 24));

y1 = ((x20 & mask21) << 15) + 21069 * (x20 >> 16);

y2 = ((x22 & mask21) << 15) + 21069 * (x22 >> 16);

if (x10 <= x20) return ((x10 - x20 + m1) * norm);

Figure 1: Implementation of a combined MRG with the Powers-of-2 Decomposition Method

and GNU C++ @¢++) compilers, with the options-O3
-ffast-math -fexpensive-optimizations
-finline-functions ". Then we did the same on two
other computers, with a 500 MHz Pentium 1ll processor
and a 750 MHz AMD Athlon processor, respectively, both
under the Red Hat Linux operating system, with the GNU
C and GNU C++ compilers, with the same options as on
the SUN.

The timings for the selected generators, in seconds,
are given in Table 1, for the C compilers. The timings
for the C++ compilers are practically identical to those
with the corresponding C compiler. In the table, we also
indicate the period length, the type of implementation (AF
for approximate factoring, FP for floating-point, and P2D
for powers-of-2 decomposition), and the sum of thd 10
numbers generated. The generatéiRG31k3pis that of
Figure 1,MRG31k6s and MRG31k6l were introduced in

687

the previous sectionMRG32k3ais the combined MRG
proposed in L'Ecuyer (1999aombMRG96ais that given

in Figure | of LEcuyer (1996), anccombMRG96bis a
variant of combMRG96awith the moduli and multipliers
defined as constants in the code instead of variables as in
combMRG96a

Aside from MRG31k3s which we discard because
of its poor performance in the spectral test, the generator
MRG31k3pin the first line of the table is the fastest on
all processors, except on the SUN with the GNU compiler,
whereMRG32k3awins by a small margin. This illustrates
the fact that speed comparisons depend heavily on compilers
and machine architecture.

The generator of Figure 1 gives only 31 bits of preci-
sion even though it returns 53-bit floating-point numbers. If
more precision is desired, one can combine two successive
numbers produced by the generator to construct each output

L’Ecuyer and Touzin

Table 1: CPU time (seconds) to generate and addrafdom numbers, and value of the sum

RNG Period Method | SUN Ultra-2 Pentium-III AMD Athlon | Sum
length = 500 MHz 750 MHz
cc gcc gcc gcc
MRG31k3p | 218° P2D 33 54 2.8 1.4 | 5000214.81
MRG31k6s 2186 P2D 3.4 4.6 2.8 1.3 | 4999947.37
MRG31k6l 2186 P2D 55 7.2 45 2.0 | 5000070.98
MRG32k3a 2191 FP 5.1 4.8 5.6 2.3 | 5001090.95
combMRG96a| 2185 AF 18.2 339 6.0 3.7 | 4999897.05
combMRG96b| 2185 AF 115 20.8 6.0 3.3 | 4999897.05

value. For example, iIMRG31k3p outputs the sequence
ui, uz, ..., one can use the sequeneg vy, ... of pseu-
dorandom numbers defined by = (vug; + uz;—1) mod 1
for some constant between 22 and 2732,

6 CONCLUSION

Combined MRGs with multipliers of the form27 4+ 2"
are the fastest good-quality MRGs available to date, when

comparing generators having approximatively the same pe-

Knuth, D. E. 1998.The art of computer programming, vol-
ume 2: Seminumerical algorithmdhird ed. Reading,
Mass.: Addison-Wesley.

Law, A. M and W. D. Kelton. 2000.Simulation modeling
and analysis Third ed. New York: McGraw-Hill.

L'Ecuyer, P. 1994. Uniform random number generation.
Annals of Operations Research3:77-120.

L'Ecuyer, P. 1996. Combined multiple recursive random
number generatorsOperations Resear¢h#4(5):816—
822.

riod length. These combined MRG possess good theorical LEcuyer, P. 1997. Bad lattice structures for vectors of non-

properties in terms of their period length and the quality of
their lattice structure, and behave well in empirical statistical

tests. In the future, we plan to search for good generators of L'Ecuyer, P. 1999a.

this form by applying the spectral test not only to the vectors

of successive output values produced by the generator (as
usual), but to certain vectors of non-successive output values L'Ecuyer, P. 1999b.

as well, as suggested by L'Ecuyer and Lemieux (2000) in
the context of selecting lattice rules for quasi-Monte Carlo
integration. These combined MRGs could also be com-
bined with small, efficient, nonlinear generators to destroy
the (linear) lattice structure and we intend to analyze such
combinations.

ACKNOWLEDGMENTS

successive values produced by some linear recurrences.

INFORMS Journal on Computin@(1):57-60.

Good parameters and implementa-

tions for combined multiple recursive random number

generators.Operations Researcht7(1):159-164.

Tables of linear congruential gen-
erators of different sizes and good lattice structure.
Mathematics of Computatio68(225):249-260.

L'Ecuyer, P, F. Blouin, and R. Couture. 1993. A search
for good multiple recursive random number genera-
tors. ACM Transactions on Modeling and Computer
Simulation 3(2):87-98.

L'Ecuyer, P. and S. C6té. 1991. Implementing a ran-
dom number package with splitting facilitiesACM
Transactions on Mathematical Softwafe/ (1):98-111.

This work has been supported by NSERC-Canada grant No. L'Ecuyer, P. and R. Couture. 1997. An implementation

ODGP0110050 and FCAR-Québec Grant No. 00ER3218

to the first author, and via an NSERC-Canada scholarship

to the second author.
REFERENCES

Bratley, P., B. L. Fox, and L. E. Schrage. 198X guide to
simulation Second ed. New York: Springer-Verlag.

Conway, J. H. and N. J. A. Sloane. 1998phere packings,
lattices and groups 3rd ed. Grundlehren der Math-
ematischen Wissenschaften 290, New York: Springer-
Verlag.

IBM. 1968. System/360 scientific subroutine package,
Version lll, Programmer’s ManualWhite Plains, New
York.

688

of the lattice and spectral tests for multiple recursive
linear random number generato’NFORMS Journal
on Computing9(2):206-217.

L'Ecuyer, P. and C. Lemieux. 2000. Variance reduction
via lattice rules.Management Sciencelo appear.

LEcuyer, P. and R. Simard. 1999. Beware of linear
congruential generators with multipliers of the form
a =427+ 2". ACM Transactions on Mathematical
Software 25(3):367-374.

Niederreiter, H. 1992. Random number generation and
guasi-monte carlo methodsolume 63 ofSIAM CBMS-
NSF Regional Conference Series in Applied Mathemat-
ics. Philadelphia: SIAM.

Wu, P.-C. 1997. Multiplicative, congruential random num-
ber generators with multipliet:2¥1 + 2¥2 and modulus

L’Ecuyer and Touzin

2P — 1. ACM Transactions on Mathematical Software
23(2):255-265.

AUTHOR BIOGRAPHIES

PIERRE LECUYER is a professor in the “Département
d’Informatique et de Recherche Opérationnelle”, at the
University of Montreal. He received a Ph.D. in opera-
tions research in 1983, from the University of Montréal.
He obtained theE. W. R. Steaciggrant from the Natu-

ral Sciences and Engineering Research Council of Canada
for the period 1995-97. His main research interests are
random number generation, quasi-Monte Carlo methods,
efficiency improvement via variance reduction, sensitiv-
ity analysis and optimization of discrete-event stochastic
systems, and discrete-event simulation in general. He
is an Area Editor for theACM Transactions on Model-
ing and Computer SimulationMore details at:<http:
/lwww.iro.umontreal.ca/"lecuyer> , where his
recent research articles are available on-line.

RENEE TOUZIN is currently an M.Sc. student in the “Dé-

partement d’'Informatique et de Recherche Opérationnelle”,
at the University of Montreal. She works on the design and
analysis of multiple recursive random number generators.

689

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

