
Proceedings of the 2000 Winter Simulation Conference
J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, eds.

FAST COMBINED MULTIPLE RECURSIVE GENERATORS WITH
MULTIPLIERS OF THE FORM a = ±2q ± 2r

Pierre L’Ecuyer
Renée Touzin

Département d’Informatique et de Recherche Opérationnelle
Université de Montréal, C.P. 6128, Succ. Centre-Ville

Montréal, H3C 3J7, CANADA

m
e

o
th
d
t

,
a
n
i

th

e

e
o

-

:

d
.,

n

-
e

y

-

vi-

-

-
l

.,
ABSTRACT

We study a class of combined multiple recursive rando
number generators constructed in a way that each compon
runs fast and is easy to implement, while the combinati
enjoys excellent structural properties as measured by
spectral test. Each component is a linear recurrence of or
k > 1, modulo a large prime number, and the coefficien
are either 0 or are of the forma = ±2q or a = ±2q ±
2r . This allows a simple and very fast implementation
because each modular multiplication by a power of 2 c
be implemented via a shift, plus a few additional operatio
for the modular reduction. We select the parameters
terms of the performance of the combined generator in
spectral test. We provide a specific implementation.

1 INTRODUCTION: MULTIPLE
RECURSIVE GENERATORS

1.1 Multiple Recursive Generators

A multiple recursive generator (MRG) is defined by th
linear recurrence

xn = (a1xn−1+ · · · + akxn−k) modm; (1)

un = xn/m. (2)

The modulusm and theorder k are positive integers, the
coefficientsai belong toZZm = {0,1, . . . , m− 1}, and the
stateat stepn is the vectorxn = (xn−k+1, . . . , xn). The
maximal period length of the recurrence (1) isρ = mk−1,
and this length is attained if and only ifm is prime and the
characteristic polynomial of the recurrence,

P(z) = zk − a1z
k−1− · · · − ak,

is a primitive polynomial modulom. Primitive polynomials
can be found by random search as explained in L’Ecuy
Blouin, and Couture (1993) and L’Ecuyer (1999a). T
68
nt
n
e
er
s

n
s
n
e

r,

obtain a primitive polynomial, one needs at least 2 non
zero coefficientsai ’s. This minimal number of non-zero
coefficients yields the following economical version of (1)

xn = (arxn−r + akxn−k) modm. (3)

The classical linear congruential generator (LCG) is obtaine
with k = 1. Further details about MRGs can be found, e.g
in Knuth (1998), Niederreiter (1992), L’Ecuyer (1994),
L’Ecuyer (1996), and the references therein.

Besides period length, two important issues in the desig
of MRGs are thestatistical qualityand theefficiency of the
implementation.

The statistical quality is traditionally assessed by mea
suring the uniformity of the set of all vectors of successiv
output values(un, . . . , un+t−1), from all initial states, as
we explain in Section 2. For the implementation, the ke
issue is how to compute efficiently the productsaix modm
whenm is large.

1.2 Implementation

A first approach for computingax modm is approximate
factoring (Bratley, Fox, and Schrage 1987; L’Ecuyer and
Côté 1991). It uses integer arithmetic and a clever decom
position ofm. It works if a2 < m or if a = bm/ic where
i2 < m, and if all integers between−m andm are well
represented on the computer.

A second approach computes the product and the di
sion bym (for the mod operation) directly infloating-point
arithmetic. On computers that obey the IEEE 64-bit floating
point standard (most computers do), all integers up to 253 are
representedexactlyin floating point, and the floating-point
implementation works ifam < 253. See L’Ecuyer (1999a)
for details and examples.

A third approach, introduced by Wu (1997) and gen
eralized by L’Ecuyer and Simard (1999), which we cal
the powers-of-2 decomposition, assumes thata is a sum
or a difference of a small number of powers of 2, e.g
3



L’Ecuyer and Touzin

s

n
r

-

a

r

ed
e
-

t
e

n

ral
d
ll

h

e

s

t

sen
e

st
a = ±2q ±2r . The product ofx by each power of 2 can be
implemented by a left shift of the binary representation o
x, and the productax is computed by adding and/or sub-
tracting. The details are given in Section 3. This approac
turns out to be more efficient than the other two, accordin
to our experiments.

Note that replacing anyai by ai ±m changes nothing
to the recurrence (1). If for someai ∈ ZZm, |ai−m| satisfies
one of the above conditions whereasai does not satisfy that
condition, then one can replaceai by ãi = ai − m when
implementing (1). This is equivalent to allowing negative
values for theai ’s, which we shall do in the remainder of
this paper.

1.3 Combined MRGs

A direct efficient implementation of the recurrence (1) ca
generally be obtained only when the number of non-ze
coefficientsai is small, and when special conditions are
imposed on these coefficients, as explained in the previo
subsection. However, imposing these constraints usua
implies that the resulting MRG has a poor lattice structur
(L’Ecuyer 1997; L’Ecuyer 1999a). In particular, good be
havior is possible only if the sum of squares of theai is
large (L’Ecuyer 1997).

This has motivated the introduction ofcombined MRGs,
which are constructed so that the components are easy
implement efficiently while the structure of the resulting
combined generator has good quality. L’Ecuyer (1996) h
proposed and analyzed the following class of combine
MRGs, based onJ linear recurrences, with the same orde
k and distinct prime modulimj , running in parallel. For
1≤ j ≤ J , let

xj,n = (aj,1xj,n−1+ · · · + aj,kxj,n−k) modmj (3)

and suppose that the recurrence (1.3) has periodρj = mkj−1.
Suppose also that the least common multiple ofρ1, . . . , ρJ
is ρ = ρ1 · · · ρJ /2J−1. (This is the best that one can
do, because eachρj is necessarily even.) Define the two
combinations

zn =
 J∑
j=1

δj xj,n

 modm1; un = zn/m1 (3)

and

wn =
 J∑
j=1

δj xj,n

mj

 mod 1 (3)

where theδj ’s are integers such thatδj is relatively prime
with mj for eachj . L’Ecuyer (1996) has shown that the
sequence{wn, n ≥ 0} defined by (1.3) is the same as
68
f

h
g

o

us
lly
e

to

s
d

the sequence{un, n ≥ 0} produced by the MRG (1–2),
with m = m1 · · ·mJ , and explains how to compute the
correspondingai ’s. Moreover, the numbersun and wn
produced by (1.3) and (1.3), respectively, differ only by a
very small quantity when themj are close to each other.
Explicit bounds on the difference are given in L’Ecuyer
(1996).

The generators considered in this paper are combin
MRGs of this form, constructed so that the structure of th
combined MRG has excellent quality while (1.3) can be im
plemented efficiently for eachj . This was already achieved
by L’Ecuyer (1996) and L’Ecuyer (1999a) for implementa-
tions based on approximate factoring and on floating-poin
arithmetic, respectively. The aim of this paper is to propos
combined MRGs that arefaster for an equivalent statistical
quality, by using the powers-of-2 decomposition method.

1.4 Overview of the Remainder

The remainder of the paper is organized as follows. I
Section 2, we recall the quality criteria for selecting MRGs
based on an analysis of their lattice structure by the spect
test. In Section 3, we describe the implementation metho
for coefficients that are a sum or a difference of a sma
number of powers of 2. In Section 4, we explain how
we searched for good single and combined MRGs wit
coefficients of this form, and why we prefer the combined
MRGs over the non-combined ones. In Section 5, w
give a specific implementation of a combined MRG of this
form and we compare its speed with other combined MRG
proposed in L’Ecuyer (1996) and L’Ecuyer (1999a), and
implemented via approximate factoring and floating poin
arithmetic.

2 LATTICE STRUCTURE AND
QUALITY CRITERIA

Let

9t = {(u0, . . . , ut−1) : (x0, . . . , xk−1) ∈ Zkm}, (3)

the set of all vectors oft successive output values of
the MRG (1–2), from all possible initial states. If the initial
seed of the MRG is chosen at random, this9t is viewed in
a sense as the sample space from which points are cho
at random to approximate the uniform distribution over th
t-dimensional unit hypercube[0,1)t . This means that the
generator should be constructed so that9t covers[0,1)t
very evenly, fort up to some arbitrary number.

It is well known that the set9t for an MRG is equal
to the intersection of a latticeLt with the unit hypercube
[0,1)t (Knuth 1998; L’Ecuyer and Couture 1997). This
implies that9t lies on a limited number of equidistant
parallel hyperplanes, at a distancedt apart, where 1/dt
turns out to be equal to the Euclidean length of the shorte
4



L’Ecuyer and Touzin

of

e

a

s)

the
ive

by
as
ry

us

se
e

nd
rs-

he

ld
of
ese
7,
in

sed
nonzero vector in the dual lattice ofLt , defined as the set of
vectors in IRt whose scalar product by any vector ofLt is
an integer. Computingdt is called thespectral test(Knuth
1998; L’Ecuyer and Couture 1997). For9t to be evenly
distributed over[0,1)t , we wantdt to be small.

Here, we use the same figure of merit as in L’Ecuye
(1999a), namely

Mt1 = min
t≤t1

d∗t (mk)/dt ,

wheret1 > k is a selected constant (the maximal dimensio
that is considered) andd∗t (mk) = 1/(ρtmk/t ) is an absolute
lower bound ondt , for given k and t . For t ≤ 8, we take
ρt as the value ofγt defined in Knuth (1998), page 109,
whereas fort > 8, we takeρt = exp[R(t)/t] whereR(t)
is the bound of Rogers on the density of sphere packin
(Conway and Sloane 1999; L’Ecuyer 1999b). ThisMt1 is
always between 0 and 1 and we want it to be as large
possible.

We recall that a general upper bound on 1/d2
t is given

by

1/d2
t ≤ 1+

k∑
i=1

a2
i ,

which means that anecessarycondition for good quality is
that the sum of squares of the coefficients must be large

3 IMPLEMENTATION BY THE POWERS-
OF-2 DECOMPOSITION METHOD

We want to compute

y = 2qx modm (3)

where 0< x < m. We decomposem andx asm = 2e − h
andx = x0+2e−qx1, whereh > 0, x0 = x mod 2e−q , and
x1 = bx/2e−qc. We then have

y = 2q(x0 + 2e−qx1) mod (2e − h)
= (2qx0 + hx1) mod (2e − h). (3)

We assumethat the following inequalities hold:

h < 2q and h(2q − (h+ 1)2−e+q) < m. (3)

Under these conditions, each of the two terms 2qx0 and
hx1 in (3) is less thatm, andy can be computed as follows
(L’Ecuyer and Simard 1999): Shift the binary representatio
of x0 by q positions to the left to obtain 2qx0, addh times
x1, and subtractm if the result exceedsm−1. This can be
implemented using unsigned integers and the intermedia
results will never exceed 2m − 1. The procedure requires
a single multiplication, betweenh andx1.
6

r

n

gs

as

.

n

te

To multiply x by a = ±2q ± 2r modulom, repeat the
procedure withr instead ofq, and add (or subtract) the
results modulom. L’Ecuyer and Simard (1999) give an
implementation in C.

Note that if q = 0 in (3), nothing needs to be done
(y = x), whereas ifq = 1, one can simply addx + x, and
subtractm if the result exceedsm − 1. We will exploit
these special cases when we will select the parameters
our combined MRGs.

Wu (1997) introduced this method for the special cas
whereh = 1. In this case, one obtainsy = 2qx0+x1, which
means that the binary representation ofy is obtained simply
by exchanging the blocks of bitsx0 and x1 in the binary
representation ofx, i.e., rotating the bits byq positions.
This simple rotation does not change the bits ofx very
much. L’Ecuyer and Simard (1999) have shown that as
result, the Hamming weights ofx and ofax modm (i.e.,
the number of 1’s in their respective binary representation
tend to be strongly dependent whenm anda have the form
m = 2e − 1 anda = ±2q ± 2r . For k = 1 (i.e., LCGs),
they showed that this dependence also appears between
number of 1’s in the binary representations of two success
output valuesun−1 and ofun, and they proposed a simple
statistical test to detect it. The specific LCGs proposed
Wu (1997) fail this independence test decisively, where
LCGs whose multipliers have a more complicated bina
representation typically pass this test.

LCGs with multipliers of the forma = ±2q±2r have in
fact been proposed and used a long time ago: The infamo
RANDU generator (IBM 1968) has indeeda = 216+2+1
andm = 232. These parameters were selected for the ea
of implementation, but led to important deficiencies in th
generator’s structure (see, e.g., Law and Kelton 2000).

4 SEARCH FOR GOOD PARAMETERS

We performed computer searches to find good single a
combined MRGs that can be implemented via the powe
of-2 decomposition method.

The first search was for MRGs of orderk = 6, with
modulusm = 231− 1. With thism, we haveh = 1 and
we thus avoid the multiplication byh: We are back to the
special case considered by Wu (1997). We imposed t
condition that each coefficientai had to be of the form

a = ±2q ± 1, or a = ±2q, or a = 0. (3)

Even with these conditions, an exhaustive search wou
be too long, so we made a random search. Almost all
the generators that we examined and that satisfied th
conditions had a very bad lattice structure in dimension
8 or 9. These generators typically had a good behavior
higher dimensions. The best generator that we found, ba
on the criterionM16, hasM16 = 0.25012. This is not very
85



L’Ecuyer and Touzin

d

e

t

d

t

s,

f

s

f

0
d

r
s,
n

good. Its coefficients area1 = 215, a2 = 0, a3 = −29+ 1,
a4 = 220− 1, a5 = −26 − 1, anda6 = 226− 1. We call
it MRG31k6s. It has 5 non-trivial powers of two in its
coefficients, so it can be compared toMRG31k3p, to be
presented in the next section, in terms of the number
multiplications by powers of two. We cannot recommen
it, however, because its lattice structure is relatively poo
and, perhaps more importantly, because the small numb
of powers of 2 in the coefficients means (intuitively) tha
there is not much mixing of the bits, similar to, e.g., th
generator of Wu 1997 (although not as bad).

In our second search, with the samek and m, we
allowed coefficients with more non-trivial powers of 2. The
condition on the coefficients was that they had to be of th
form a = ±2q ± 2r . MRGs with good lattice structures
were much easier to find under these relaxed condition
The best generator that we found, based onM16, hasM16 =
M48 = 0.59149. We call itMRG31k6l. Its coefficients
are a1 = 223 + 216, a2 = 219 − 212, a3 = 227 + 215,
a4 = −210 − 27, a5 = −24 − 1, and a6 = 227 + 216.
Of course, this generator will be slower thanMRG31k3s,
because there is more multiplications by powers of 2
perform. We will compare their speeds at the end of th
next section.

Our third search was forcombinedMRGs with 2 com-
ponents of orderk = 3, with moduli m1 = 231 − 1 and
m2 = 231−21069, and with some coefficients equal to zer
and the others of the form±2q or ±2q ± 1. We performed
a random search. For each coefficient of each compone
we specified the desired form: either 0, or±2q , or±2q±1.
Each coefficient received randomly between 1 to 10 possib
values, depending on the specified form. We retained on
the coefficients for which the inequalities (3) were satisfie
and only the recurrences (or characteristic polynomials) th
satisfied the maximal period conditions. We then examine
all the possible combinations of one MRG component o
each type, among those retained, to find out which combin
generator performed best on spectral test. These combin
MRG have approximatively the same period length as th
MRGs of order 6 in our first two searches. The best com
bined MRG that we found,MRG31k3p, is described in the
next section.

5 A SPECIFIC GENERATOR AND SOME TIMINGS

In our third search, we found the following combined
MRG with J = 2 components of orderk = 3, whose
lattice structure is good at least up to 48 dimensions, wi
M48 = 0.60159. The two components are defined by th
parameters

m1 = 231− 1= 2147483647

a11 = 0
68
of

r
er

t

e

s.

o
e

o

nt,

le
ly
,
at
d
f

ed
ed
e
-

h
e

a12 = 222

a13 = 27+ 1

m2 = 231− 21069 = 2147462579

a21 = 215

a22 = 0

a23 = 215+ 1.

Thus, each component has only 2 nonzero coefficient
one of them of the formaij = 2q and the other one of the
form aij = 2q + 1. This will simplify the implementation.

The combination (1.3) is exactly equivalent to an MRG
of order 3 with parameters

m = 4611640770946945613

a1 = 4341088847531259234

a2 = 2349160800583431525

a3 = 3927818590467337243.

This generators has 2 distinct cycles of lengthρ =
m1m2/2≈ 2185.

Figure 1 gives an implementation of this generator in
the C language. In this code, the bit masksmask* are used
to separate the bits of thexj,i ’s in 2 blocks as explained
in Section 3. For example,mask12 contains 23 zeros
followed by 9 ones. So, in the first line of the code for the
first component, the statement

((x11 & mask12) << 22) + (x11 >> 9)

extracts the 9 least significant bits ofx11 , shifts them to
the left by 22 positions, and adds this tox11 shifted to the
right by 9 positions. The result is the product ofx11 by
a12 = 222, modulom1 = 231− 1. The other products are
implemented in a similar way. The several instructions o
the form

if (y2 > m2) y2 -= m2;

are necessary to avoid overflow. Indeed, since the term
added are between 0 and 231−1 and since unsigned integers
cannot exceed 232− 1, we cannot safely add more than 2
terms at a time without reducing the sum modulomj .

To have an idea of the speed improvement o
this new generator over the previous combined MRG
implementations, for each generator we generated 1
million (107) random numbers and added them up, looke
at how much CPU time it took (user time + system
time), and printed the sum (this may be convenient fo
checking correctness of an implementation). In all case
each integer in the seed was 12345. We did this o
a 64-bit SUN Ultra-2/160 using the system’s compiler
(cc , version 4.2) with the “-fast -xtarget=ultra
-xarch=v8plusa ” options and with the GNU C (gcc )
6



L’Ecuyer and Touzin
#define m1 2147483647
#define m2 2147462579
#define norm 4.656612873077393e-10
#define mask12 511
#define mask13 16777215
#define mask21 65535

unsigned long x10, x11, x12, x20, x21, x22;

double MRG31k3p ()
{
register unsigned long y1, y2; /* For intermediate results */

/* First component */
y1 = (((x11 & mask12) << 22) + (x11 >> 9))

+ (((x12 & mask13) << 7) + (x12 >> 24));
if (y1 > m1) y1 -= m1;
y1 += x12;
if (y1 > m1) y1 -= m1;
x12 = x11; x11 = x10; x10 = y1;

/* Second component */
y1 = ((x20 & mask21) << 15) + 21069 * (x20 >> 16);
if (y1 > m2) y1 -= m2;
y2 = ((x22 & mask21) << 15) + 21069 * (x22 >> 16);
if (y2 > m2) y2 -= m2;
y2 += x22;
if (y2 > m2) y2 -= m2;
y2 += y1;
if (y2 > m2) y2 -= m2;
x22 = x21; x21 = x20; x20 = y2;

/* Combinaison */
if (x10 <= x20) return ((x10 - x20 + m1) * norm);
else return ((x10 - x20) * norm);
}

Figure 1: Implementation of a combined MRG with the Powers-of-2 Decomposition Method
r
h
U
n

s
s
e
o
F

in

or

r,

ers

-
If
ive
put
and GNU C++ (g++) compilers, with the options “-O3
-ffast-math -fexpensive-optimizations
-finline-functions ”. Then we did the same on two
other computers, with a 500 MHz Pentium III processo
and a 750 MHz AMD Athlon processor, respectively, bot
under the Red Hat Linux operating system, with the GN
C and GNU C++ compilers, with the same options as o
the SUN.

The timings for the selected generators, in second
are given in Table 1, for the C compilers. The timing
for the C++ compilers are practically identical to thos
with the corresponding C compiler. In the table, we als
indicate the period length, the type of implementation (A
for approximate factoring, FP for floating-point, and P2D
for powers-of-2 decomposition), and the sum of the 107

numbers generated. The generatorMRG31k3p is that of
Figure 1,MRG31k6s andMRG31k6l were introduced in
68
,

the previous section,MRG32k3a is the combined MRG
proposed in L’Ecuyer (1999a),combMRG96ais that given
in Figure I of L’Ecuyer (1996), andcombMRG96bis a
variant of combMRG96awith the moduli and multipliers
defined as constants in the code instead of variables as
combMRG96a.

Aside from MRG31k3s, which we discard because
of its poor performance in the spectral test, the generat
MRG31k3p in the first line of the table is the fastest on
all processors, except on the SUN with the GNU compile
whereMRG32k3awins by a small margin. This illustrates
the fact that speed comparisons depend heavily on compil
and machine architecture.

The generator of Figure 1 gives only 31 bits of preci
sion even though it returns 53-bit floating-point numbers.
more precision is desired, one can combine two success
numbers produced by the generator to construct each out
7



L’Ecuyer and Touzin
Table 1: CPU time (seconds) to generate and add 107 random numbers, and value of the sum
RNG Period Method SUN Ultra-2 Pentium-III AMD Athlon Sum

length ≈ 500 MHz 750 MHz
cc gcc gcc gcc

MRG31k3p 2185 P2D 3.3 5.4 2.8 1.4 5000214.81
MRG31k6s 2186 P2D 3.4 4.6 2.8 1.3 4999947.37
MRG31k6l 2186 P2D 5.5 7.2 4.5 2.0 5000070.98
MRG32k3a 2191 FP 5.1 4.8 5.6 2.3 5001090.95
combMRG96a 2185 AF 18.2 33.9 6.0 3.7 4999897.05
combMRG96b 2185 AF 11.5 20.8 6.0 3.3 4999897.05
.

-
es.

a-
r

-
.

-

-

r

t-

-

value. For example, ifMRG31k3p outputs the sequence
u1, u2, . . . , one can use the sequencev1, v2, . . . of pseu-
dorandom numbers defined byvi = (νu2i + u2i−1) mod 1
for some constantν between 2−21 and 2−32.

6 CONCLUSION

Combined MRGs with multipliers of the form±2q ± 2r

are the fastest good-quality MRGs available to date, whe
comparing generators having approximatively the same p
riod length. These combined MRG possess good theoric
properties in terms of their period length and the quality o
their lattice structure, and behave well in empirical statistica
tests. In the future, we plan to search for good generators
this form by applying the spectral test not only to the vectors
of successive output values produced by the generator (
usual), but to certain vectors of non-successive output value
as well, as suggested by L’Ecuyer and Lemieux (2000) in
the context of selecting lattice rules for quasi-Monte Carlo
integration. These combined MRGs could also be com
bined with small, efficient, nonlinear generators to destro
the (linear) lattice structure and we intend to analyze suc
combinations.

ACKNOWLEDGMENTS

This work has been supported by NSERC-Canada grant N
ODGP0110050 and FCAR-Québec Grant No. 00ER321
to the first author, and via an NSERC-Canada scholarsh
to the second author.

REFERENCES

Bratley, P., B. L. Fox, and L. E. Schrage. 1987.A guide to
simulation. Second ed. New York: Springer-Verlag.

Conway, J. H. and N. J. A. Sloane. 1999.Sphere packings,
lattices and groups. 3rd ed. Grundlehren der Math-
ematischen Wissenschaften 290, New York: Springer
Verlag.

IBM. 1968. System/360 scientific subroutine package
Version III, Programmer’s Manual. White Plains, New
York.
68
n
e-
al
f
l
of

as
s

-
y
h

o.
8
ip

-

,

Knuth, D. E. 1998.The art of computer programming, vol-
ume 2: Seminumerical algorithms. Third ed. Reading,
Mass.: Addison-Wesley.

Law, A. M and W. D. Kelton. 2000.Simulation modeling
and analysis. Third ed. New York: McGraw-Hill.

L’Ecuyer, P. 1994. Uniform random number generation
Annals of Operations Research, 53:77–120.

L’Ecuyer, P. 1996. Combined multiple recursive random
number generators.Operations Research, 44(5):816–
822.

L’Ecuyer, P. 1997. Bad lattice structures for vectors of non
successive values produced by some linear recurrenc
INFORMS Journal on Computing, 9(1):57–60.

L’Ecuyer, P. 1999a. Good parameters and implement
tions for combined multiple recursive random numbe
generators.Operations Research, 47(1):159–164.

L’Ecuyer, P. 1999b. Tables of linear congruential gen
erators of different sizes and good lattice structure
Mathematics of Computation, 68(225):249–260.

L’Ecuyer, P, F. Blouin, and R. Couture. 1993. A search
for good multiple recursive random number genera
tors. ACM Transactions on Modeling and Computer
Simulation, 3(2):87–98.

L’Ecuyer, P. and S. Côté. 1991. Implementing a ran
dom number package with splitting facilities.ACM
Transactions on Mathematical Software, 17(1):98–111.

L’Ecuyer, P. and R. Couture. 1997. An implementation
of the lattice and spectral tests for multiple recursive
linear random number generators.INFORMS Journal
on Computing, 9(2):206–217.

L’Ecuyer, P. and C. Lemieux. 2000. Variance reduction
via lattice rules.Management Science. To appear.

L’Ecuyer, P. and R. Simard. 1999. Beware of linea
congruential generators with multipliers of the form
a = ±2q ± 2r . ACM Transactions on Mathematical
Software, 25(3):367–374.

Niederreiter, H. 1992. Random number generation and
quasi-monte carlo methods. volume 63 ofSIAM CBMS-
NSF Regional Conference Series in Applied Mathema
ics. Philadelphia: SIAM.

Wu, P.-C. 1997. Multiplicative, congruential random num
ber generators with multiplier±2k1±2k2 and modulus
8



L’Ecuyer and Touzin

e
-
.

da
re
s,
-
ic
e

”,
d
.

2p−1. ACM Transactions on Mathematical Software,
23(2):255–265.

AUTHOR BIOGRAPHIES

PIERRE L’ECUYER is a professor in the “Département
d’Informatique et de Recherche Opérationnelle”, at th
University of Montreal. He received a Ph.D. in opera
tions research in 1983, from the University of Montréal
He obtained theE. W. R. Steaciegrant from the Natu-
ral Sciences and Engineering Research Council of Cana
for the period 1995–97. His main research interests a
random number generation, quasi-Monte Carlo method
efficiency improvement via variance reduction, sensitiv
ity analysis and optimization of discrete-event stochast
systems, and discrete-event simulation in general. H
is an Area Editor for theACM Transactions on Model-
ing and Computer Simulation. More details at:<http:
//www.iro.umontreal.ca/˜lecuyer> , where his
recent research articles are available on-line.

RENÉE TOUZIN is currently an M.Sc. student in the “Dé-
partement d’Informatique et de Recherche Opérationnelle
at the University of Montreal. She works on the design an
analysis of multiple recursive random number generators
689


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print

