
Proceedings of the 2000 Winter Simulation Conference
J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, eds.

A NEW CLASS OF LINEAR FEEDBACK SHIFT REGISTER GENERATORS

Pierre L’Ecuyer
Francois Panneton

Département d’Informatique et de Recherche Opérationnelle
Université de Montréal, C.P. 6128, Succ. Centre-Ville

Montréal, H3C 3J7, CANADA

r
e
-
e
e

r

n

t

.
5

t

ve
g
r-

;

to
a
o
re
f

al

ral

nt
y

n

s.
ABSTRACT

An efficient implementation of linear feedback shift registe
sequences with a given characteristic polynomial is obtain
by a new method. It involves a polynomial linear congru
ential generator over the finite field with two elements. W
obtain maximal equidistribution by constructing a suitabl
output mapping. Local randomness could be improved b
combining the generator’s output with that of some othe
(e.g., nonlinear and efficient) generator.

1 INTRODUCTION: LFSR GENERATORS

Linear feedback shift register (LFSR) random number ge
erators are based on a linear recurrence of the form

xn = (a1xn−1+ · · · + akxn−k) mod 2, (1)

wherek > 1 is theorder of the recurrence,ak = 1, and
aj ∈ {0,1} for eachj . This recurrence is always purely
periodic (i.e., there is no transient state) and the period leng
of its longest cycle is 2k−1 if and only if itscharacteristic
polynomial

P(z) = −
k∑
i=0

aiz
k−i (2)

(wherea0 = −1) is a primitive polynomial overIF2, the
Galois field with 2 elements (Lidl and Niederreiter 1986)

A Tausworthe-type LFSR generator (Tausworthe 196
evolves according to (1) and produces the real number

un =
w∑
i=1

xnν+i−12−i (3)

at stepn, where ν and w are positive integers. Tezuka
and L’Ecuyer (1991) and L’Ecuyer (1996) give efficien
algorithms for implementing this generator whenP(z) is a
trinomial, P(z) = zk − zq − 1, and the parameters satisfy
69
d

y

-

h

)

the conditions 0< 2q < k ≤ w and 0< ν < k − q.
Tausworthe generators that satisfy these conditions ha
bad statistical properties (Lindholm 1968), but combinin
several ones, e.g., by taking an exclusive-or of their co
responding bitsxnν+i−1, can provide generators with good
properties (Tezuka and L’Ecuyer 1991; L’Ecuyer 1996
L’Ecuyer 1999b).

Related classes of generators are thegeneralized feed-
back shift register(GFSR) andtwisted GFSR(TGFSR)
generators (Tootill, Robinson, and Eagle 1973; Matsumo
and Kurita 1994; Matsumoto and Nishimura 1998; Tezuk
1995; L’Ecuyer 1994), for which each bit of the state als
evolves according to a recurrence of the form (1) and whe
each bit of the output is a linear combination modulo 2 o
the bits forming the state.

All these methods are covered by the following gener
linear recurrence in matrix form:

xn = Axn−1, (4)

yn = Bxn, (5)

un =
w∑
i=1

yn,i−12−i , (6)

where all the operations are performed inIF2 (i.e., modulo
2), k andw are positive integers,A is a k× k matrix,B is
a w × k matrix, xn = (xn,0, . . . , xn,k−1)

T is thek-bit state
at stepn, yn = (yn,0, . . . , yn,w−1)

T is a w-bit vector that
contains the bits of the output, andun ∈ [0,1) is theoutput
at stepn.

The two major considerations when choosing the gene
form of A andB are: (i) the statistical quality of the RNG
thus obtained and (ii) the ease of constructing an efficie
and portable implementation. The former is traditionall
measured by theequidistributionof the output bitsyn,i , as
recalled in Section 2. The role of the linear transformatio
(5) by the matrixB, also calledtempering(Matsumoto and
Kurita 1994), is precisely to improve the equidistribution
(generally speaking) via some additional mixing of the bit
0



L’Ecuyer and Panneton

n

e,

l

ed

ctor

he
In Section 3 of this paper, we introduce a class o
generators allowing a fast implementation of the recurrenc
(4), with period length 2k − 1. These generators can be
interpreted as linear congruential generators (LCGs) in
space of polynomials overIF2. In Section 4, we explain
how to obtain maximal equidistribution by tempering the
output, i.e., by an appropriate choice of the matrixB. We
discuss three specific tempering methods. In Section 5, w
summarize the results of our search for good paramete
We give an example of an implementation in Section 6. I
Section 7, we give an idea of the performance of this ne
class of generators by comparing our implementation wit
other known generators. A conclusion follows in Section 8

2 EQUIDISTRIBUTION

Define9t as the set of all vectors oft successive output
values produced by the generator (4–6), from all of the 2k

possible initial states. That is,

9t = {u0,t = (u0, . . . , ut−1) : x0 ∈ IFk2}. (7)

For a given integer̀ ≥ 0, if we partition each axis of the
unit hypercube[0,1)t into 2` equal parts, this determines
a partition of the hypercube into 2`t small cubes of equal
volume. The point set9t (and the corresponding RNG) is
called (t, `)-equidistributed, or t-distributed with` bits of
accuracy, if each of these small cubes contains exactly 2k−`t
points from9t . This means that if we consider the` most
significant bits of thet coordinates ofu0,t , the 2`t different
bit vectors that can be constructed appear exactly the sa
number of times in9t . Of course, this is possible only if
`t ≤ k. If 9t is bk/`c-distributed with` bits of accuracy
for 1 ≤ ` ≤ min(k, w), the RNG is calledasymptotically
random or maximally equidistributed(ME) for the word
sizew (see L’Ecuyer 1996; Tezuka 1995). An ME generato
has the best possible equidistribution for partitions of th
unit hypercubes[0,1)t into cubic boxes of equal size, for
all ` ≤ w and t` ≤ k. Note that every generator that uses
recurrence (4) withB = I and a full rank matrixA is
(1, min(k, w))-equidistributed.

To verify the equidistribution, one can write a system o
linear equations that express the`t bits that are considered
as a linear transformation of the binary vectorx0. One has
t-distribution to` bits of accuracy if and only if the matrix
of this linear transformation has full rank. L’Ecuyer (1996
1999) provides tables of combined Tausworthe generato
with the ME property.

3 POLYNOMIAL REPRESENTATION

Tausworthe generators can be interpreted as linear cong
ential generators in a space of polynomials, as follows. L
IF2[z]/(P ) be the space of polynomials of degree less tha
69
f
e

a

e
rs.
n
w
h
.

me

r
e

f

,
rs

ru-
et

k with coefficients inIF2. To each state(xn, . . . , xn+k−1)

of the recurrence (1), we associate the polynomial

pn(z) =
k−1∑
j=0

cn,j z
k−j−1 (8)

where
cn,0
cn,1
...

cn,k−1

=


1 0 . . . 0
a1 1 . . . 0
...

. . .
...

ak−1 . . . a1 1




xn
xn+1
...

xn+k−1

 mod 2. (9)

This mapping is obviously one-to-one, and we have (se
e.g., L’Ecuyer 1994)

pnν(z) = zνp(n−1)ν(z) mod P(z), (10)

where “modP(z)” means the remainder of the polynomia
division by P(z), with the operations on the coefficients
performed inIF2. This can be interpreted as an LCG in
IF2[z]/(P ), with modulusP(z) and multiplierzν . Note that
if P(z) is a primitive polynomial overIF2, every nonzero
polynomial in IF2[z]/(P ) can be written aszν mod P(z)
for some integerν, so there is no loss of generality in taking
zν in (10) instead of a more general polynomial.

In the past, this polynomial representation and its relat
formal seriesrepresentation

sn(z) = pn(z)/P (z) =
∞∑
j=1

xn+j−1z
−j (11)

have been used toanalyzeLFSR generators whose imple-
mentations were based on a state representation by the ve
(xn, . . . , xn+k−1) (L’Ecuyer 1994; Tezuka 1995; Couture
and L’Ecuyer 2000).

In this paper, we propose to represent the state by t
vector (cn,0, . . . , cn,k−1) of coefficients of the polynomial
(8). Suppose we takeν = 1. The recurrence (10) can then
be written as

pn(z) = z

k−1∑
j=0

cn−1,j z
k−j−1 mod P(z)

=
k−1∑
j=0

cn−1,j z
k−j mod P(z)

=
k−2∑
j=0

cn−1,j+1z
k−j−1+ cn−1,0z

k mod P(z)
1



L’Ecuyer and Panneton

h

e
e

e
n.

ns
o

ly

g

e

f

g
the
=
k−2∑
j=0

cn−1,j+1z
k−j−1

+ cn−1,0

k∑
j=1

aj z
k−j . (12)

To implement (12), the coefficients(cn,0, . . . , cn,k−1) of
pn can be stored as ak-bit string cn (which can fit in
one computer word ifk does not exceed the word length)
and the coefficients(a1, . . . , ak) of P(z) as anotherk-bit
string a. To computepn(z) from pn−1(z), shift cn−1 to
the left by one bit, and make a bitwise exclusive-or wit
a if the original leftmost bit ofcn−1 was 1. The result is
cn. This is easy to implement and fast (especially ifk does
not exceed the computer’s word size), foranycharacteristic
polynomial. In algorithmic form, this can be written as:

if cn−1,0==1then cn=(cn−1�1)⊕a
else cn = cn−1� 1

where� s denotes a left shift bys bit and⊕ denotes the
bitwise exclusive-or operation.

This recurrence can also be written as

cTn = AcTn−1

where

A =



a1 1 0 0 . . . 0 0
a2 0 1 0 . . . 0 0
a3 0 0 1 . . . 0 0
...

...
...

...
. . .

...
...

ak−1 0 0 0 . . . 0 1
ak 0 0 0 . . . 0 0


This is a special case of (4) if we reinterpretcn asxn. This
form of A can provide a fast implementation and a ful
period. A major weakness is that there is not much “mixin
of the bits” betweencn−1 andcn. Half of the time, the bits
are just shifted by one position. However, this problem ca
be taken care of by the tempering transformationB.

Forν > 1, one can replace the matrixA byAν , which is
equivalent to applyingν times the algorithm that computes
the recurrence withν = 1. Of course, takingν > 1 will
generally make the implementation slower than forν = 1.

4 LINEAR TEMPERING TRANSFORMATIONS

In this section, we discuss three convenient types of line
transformations that can be used to define the matrixB. The
first one was introduced by Matsumoto and Kurita (1994
The two others are new. The main objective of applyin
linear transformations to the state vector is to improve th
69
l
g

n

ar

).
g
e

equidistribution of the random number generator. We hav
observed experimentally that applying only one of thes
linear transformations to a polynomial LCG withν = 1 is not
enough to get generators with a good equidistribution. W
shall therefore apply different transformations in successio

These 3 transformations are defined by aw× k matrix
B as in (5), whose firstkw = min(k, w) lines are linearly
independent. This implies thatB has full rankkw, and also
that the output (6) is 1-distributed tokw bits of accuracy.

In what follows, we shall assume for simplicity thatw ≤
k. In order to be able to apply several of these transformatio
in succession, we will define each transformation in tw
steps: The first step transforms thek-dimensional vector
xn into ak-dimensional vectorzn = (zn,0, . . . , zn,k−1), and
the second step extracts the firstw bits of zn to get the
w-dimensional vectoryn. When several transformations are
applied in succession, this second step is performed on
for the last transformation. We will denote bymi a bit
mask that keeps only the firsti bits when applied to a given
bit vector, i.e., that containsi 1’s followed by zeros.

4.1 MK-Tempering

Matsumoto and Kurita (1994) have proposed a temperin
defined by the following transformation, forw ≤ k:

ỹn = x̃n ⊕ ((x̃n � s1) & b1);
yn = ỹn ⊕ ((ỹn � s2) & b2);

wherex̃n = (x̃n,0, . . . , x̃n,kw−1)
T is the vector that contain

the firstkw bits of xn, and & bi means a bitwise AND with
some bit maskbi . They suggest trying values ofs2 near
kw/2 ands1 nears2/2. The choice of these values and of
the bit masks is made so that the equidistribution of th
RNG is as good as possible.

We use the following variant of thisMK tempering:

zn = xn ⊕ ((xn � s1) & b1);
zn = zn ⊕ ((zn � s2) & b2);
yn = zn & mw.

That is, we apply the tempering to the entire statexn, and
then cut out the firstw bits.

4.2 Self-Tempering

This linear transformation was originally motivated by a
problem observed on the polynomial LCG of Section 3. I
we use this generator directly, withν = 1, when the state
cn has only a few bits set to 1, thencn+1 is very likely to
have only a few bits set to 1 as well. This leads to a stron
dependency between the binary representations (e.g.,
Hamming weights) of the successive values ofcn andun.
2



L’Ecuyer and Panneton

n
t

r

e

-
h
8,
u-

,
h
d
f

ry
e

tic
.

,

d

-

d

ls

e

The self-temperingtransformation defined here has been
designed as a heuristic to reduce this dependency betwe
the successive Hamming weights. With this transformatio
the output vectoryn does not necessarily have fewer bits se
to 1 (e.g., on the average) when the associated state vec
xn has only a few bits set to 1.

To define the transformation, we choose two paramete
c and d so thatd < c ≤ kw, and letK = dk/ce. This
transformations cuts the bit vectorxn into K blocks of c
bits, denotedb1, . . . ,bK , performs a bitwise exclusive-or
of these vectorsbj to obtaine, shiftse by d bits to the left,
addse to eachbj to obtaindj , and concatenates thesedj ’s
to obtainzn. This is performed by the following steps:

1. bj = (xn � c(j − 1)) & mc for j = 1, . . . , K;
2. e= (⊕K

j=1 bj )� d;
3. dj = bj ⊕ e for j = 1, . . . , K;
4. zn =⊕K

j=1(dj � c(j − 1));
5. yn = zn & mw.

The implementation simplifies if we takew andc equal
to the computer’s word length, e.g.,w = c = 32 on a 32-bit
computer. In this case,xn would be represented byK 32-
bit wordsx1

n, . . ., xKn and the self-tempering transformation
simplifies to:

1. e= (⊕K
j=1 xjn)� d;

2. yn = x1
n ⊕ e.

4.3 Permutations

This transformation permutes the coordinates by a on
to-one mappingπ : ZZk → ZZk. The transformation puts
zn,i = xn,π(i) for i = 0, . . . , k. Then, yn is defined by
yn,i = zn,i for i = 0, . . . , w, as usual. IfP is the k × k
matrix that corresponds to this permutation, thenPPT = I
and we obtain the recurrence

zn = PAPT zn−1. (13)

In practice, one would chooseA so that the multiplication
by the matrixPAPT is easy to implement efficiently, and
one would use the recurrence (13) directly forzn.

In the case of a polynomial LCG, if we chooseπ(i) =
pi + q mod k wherep 6= 0 andq are in ZZk and p has
no common factor withk, the multiplication byPAPT is
very easy to implement. Let̃aT = PaT , r be such that
pr ≡ 1 mod k, t be such thatpt + q ≡ 0 mod k, and s
be such thatps + q ≡ k − 1 mod k. The implementation
becomes

if zn,t == 1
then zn = ((zn−1 �̃ r) & ds) ⊕ ã
else zn = (zn−1 �̃ r) & ds ;
69
en
,

tor

s

-

where�̃r means a bitwise rotation ofr bits to the left and
ds is a mask that removes thesth bit. This can be verified
by calculating the matrixPAPT explicitly.

5 A SEARCH FOR GOOD PARAMETERS

In order to find good polynomial LCGs, we tried many
primitive characteristic polynomials with different types of
linear transformations. For the results reported in this pa
per, we have restricted our search to polynomial LCGs wit
characteristic polynomials of degrees 32, 64, 96, and 12
because of their ease of implementation. The equidistrib
tion of these generators was analyzed withw = k, even if
w will usually be less thank in a practical implementation
(e.g.,w ≤ 53 if the outputun is in double precision floating
point).

To find the parameters of the linear transformations
we tried many possibilities at random. For generators wit
MK-tempering, we used a variant of the algorithm describe
by Matsumoto and Kurita (1994) to choose the values o
b1 andb2.

Without tempering, all the generators tested had a ve
bad equidistribution in 2 dimensions or more. They wer
always 1-distributed tok bits of accuracy, as expected,
but never 2-distributed tok/2 bits of accuracy. Another
interesting observation is that regardless of the characteris
polynomial, they all showed the same (bad) equidistribution

When applying only one of the linear transformations
we easily obtained generators that arebk/`c-distributed to
` bit of accuracy for̀ = 1,2,3, but not for̀ > 3. A single
linear transformation of the form described in Section 4 di
not suffice to “mix” the bits well enough.

When combining two linear transformations, namely
permutation of the coordinates and MK-tempering, we ob
tained several ME generators fork = 32 and 64, but not for
the larger values ofk. We were unable to obtain generators
with a characteristic polynomial of degree 96 or 128 an
with satisfactory equidistribution. An example of a ME
generator of period 264− 1 is the one with characteristic
polynomiala = 877fa931 41669185 , with permutation
defined by the parametersp = 45 andq = 43, and with MK-
tempering of parameterss1 = 15, s2 = 31,b1 = 77aebcea
38168000 , andb2 = 5f5ffec5 00000000 . (Through-
out this paper, we represent the characteristic polynomia
and the bit vectorsbi in hexadecimal notation.)

The best generator that we obtained with period 296−1
and with these two linear transformations is the on
with characteristic polynomiala = 4acada15 2e647ff5
396caa79 with permutation of coordinates of parame-
ters p = 67 andq = 55, and with MK-tempering of pa-
rameterss1 = 23, s2 = 47, b1 = 2d1dbc4f 2fa875a0
13560ba6 , andb2 = 3ef800b3 7b55f822 232317c7 .
This generator isbk/`c-distributed to` bit of accuracy for
` = 1, . . . ,7,9,10,11,14,33, . . . ,47,49, . . . ,96. For the
3



L’Ecuyer and Panneton

e
t
e
o

ic
e

c
s

rs

t

-

g

s

d

e

or
s

ust

tor
-
in
te
d
r

or

ad
he

d

e

ial

d

other values of̀ , there is a gap of up to 3 between the uppe
boundbk/`c and the dimensiont for which the generator
is equidistributed.

In general, the more tempering transformations w
add to the output of the generators, the easier it is
obtain generators with good equidistribution. With th
combination of the three types of tempering, (permutation
the coordinates, self-tempering, and MK-tempering, applie
in this order), we found ME generators with characterist
polynomial of degree 96 and very good generators of degr
128 (with only one or two values of̀for which the generator
is not bk/`c-distributed to` bit accuracy). On the other
hand, adding many tempering transformations slows dow
the generator.

An example of an ME generator with characteristi
polynomial of degree 96 is given in Section 6. The be
generator with period 2128− 1 wasbk/`c-distributed to`
bit of accuracy for all` = 1, . . . ,128, except for` =
64 where it is only 1-distributed (it is thus ME for any
w < 64). Its characteristic polynomial isa = 74b480cf
73f3a60c 979782a6 787ddc13 , with permutation of
the coordinates of parametersp = 91 andq = 97, followed
by a self-tempering of parametersc = 32 andd = 22, and
an MK-tempering of parameterss1 = 31, s2 = 63, b1 =
23d831ef 295f73be 061a1808 00000000 andb2 =
07edeca6 5a92f304 2e241c80 31a06893 .

Another way to improve the equidistribution is to
take ν > 1. We have observed that the generato
are bk/`c-distributed to ` bit accuracy for almost all
` = 1, . . . ,min(ν, k). In practice, we can either apply ex-
tensive tempering to the output of a generator withν = 1, or
apply less tempering to a generator withν > 1. In the first
case, more tempering slows down the generator, where
in the second case, using a largerν usually slows down the
generator as well. Further investigation should be done
seek fast implementions of the multiplication byAν .

6 AN EXAMPLE

Here is an example of an ME polynomial LCG with char
acteristic polynomial of degreek = 96, witha=dc7348d7
18975f66 2c2ba527 . To this polynomial LCG we apply
a permutation defined byπ(i) = 23i + 83 mod 96, so that
ã is 4b24716e fbc6cd96 0ab7ab0c , and the values of
r, s and t are 71, 84 and 59 respectively. A self-temperin
with c = 32 andd = 10 is also applied, followed by an
MK tempering with s1 = 23, s2 = 47, b1 = 2fa51fb4
2e1e2000 03000000 andb2 = 78d849e0 55db0000
00000000 .

An implementation of this generator in language C i
given in Figure 1, forw = 32. This generator is ME for
any w ≤ k. One can easily increasew to 53 (the max-
imum resolution for thedouble type) by addingy1 *
5.421010862247e-20 to the returned value and reac-
69
r

o

f
d

e

n

t

as

o

tivating the next-to-last instruction, which is commente
out.

To implement the permutation of the coordinates, w
use (13). The vectorzn of (13) is contained in the variables
state0 , state1 andstate2 . These variables must be
saved for the next step of the recurrence (13). The vect
zn resulting from each of the two other transformations i
contained in the variablesy0 , y1 andy2 .

The state vector, stored instate0 , state1 and
state2 , is initialized to default values, but the initial
state can be changed by changing these values (they m
not be all zero) before the first call to the procedurepoly96 .

7 TIMINGS

In this section, we compare the speed of the genera
poly96 of Figure 1 to that of other random number gener
ators. Table 1 reports the information. The number given
the table is the CPU time (in seconds) required to genera
107 random numbers. We used the GNU C compiler an
the results are given for a Pentium-III 600 MHz processo
(P-III) and an AMD Athlon 750 MHz processor (AMD),
both running the Linux operating system. The generat
poly96* is the same generator aspoly96 , but with-
out any tempering transformation. This generator has b
equidistribution properties, as discussed in Section 5. T
description ofMRG32k3acan be found in L’Ecuyer (1999a).
The generatorMT19937 was introduced in Matsumoto and
Nishimura (1998) and we used the implementation provide
in this reference.

Table 1: Comparaison of the
Speed of Different Generators
(CPU time in seconds to gener-
ate 107 numbers)

Generator P-III AMD
MT19937 1.73 1.20
poly96 2.11 1.45
poly96* 0.99 0.76
MRG32k3a 4.84 2.71

The generatorpoly96* is the fastest, about twice as
fast aspoly96 , but it cannot be recommended becaus
of its bad theoretical properties. The generatorpoly96 is
faster thanMRG32k3a, but a little bit slower thanMT19937.
The generatorMT19937 also has a much larger period than
poly96 . However, it is not ME.

8 CONCLUSION

We have defined and implemented a new class of polynom
LCGs based on arithmetic modulo 2. The simplest form
of this generator, withν = 1, is very fast but requires
tempering transformations on the output to obtain goo
4



L’Ecuyer and Panneton
#define a0 0x4b24716eUL
#define a1 0xfbc6cd96UL
#define a2 0xab7ab0cUL
#define B10 0x2fa51fb4UL
#define B11 0x2e1e2000UL
#define B12 0x03000000UL
#define B20 0x78d849e0UL
#define B21 0x55db0000UL
static unsigned long state0 = 0x1UL, state1 = 0x0UL, state2 = 0x0UL;

double poly96 (void) {
unsigned long e, y0, y1, y2, w0, w1, w2;

/* Bitwise rotation by 71 bits to the left */
w0 = (state0 >> 25) ˆ (state2 << 7);
w1 = (state1 >> 25) ˆ (state0 << 7);
w2 = (state2 >> 25) ˆ (state1 << 7);

/* Elimination of bit 84 and verification of bit 59 */
w2 = w2 & 0xfffff7ffUL;
if (state1 & 0x00000010UL) {

state0 = w0 ˆ a0; state1 = w1 ˆ a1; state2 = w2 ˆ a2;
}

else {
state0 = w0; state1 = w1; state2 = w2;
}

/* Self-tempering with c=32 and d=10 */
e = (state0 ˆ state1 ˆ state2 ) << 10;
y0 = state0 ˆ e; y1 = state1 ˆ e; y2 = state2 ˆ e;

/* MK-tempering with s1=23 and s2=47 */
y0 = y0 ˆ (((y1 >> 9) ˆ (y0 << 23)) & B10);
y1 = y1 ˆ (((y2 >> 9) ˆ (y1 << 23)) & B11);
y2 = y2 ˆ ((y2 << 23) & B12);
y0 = y0 ˆ (((y2 >> 17) ˆ (y1 << 15)) & B20);
/* y1 = y1 ˆ ((y2 << 15) & B21); */
return (y0 * 2.3283064365e-10);
}

Figure 1: Implementation of poly96 in Language C
o
v
e
s
s

a
e
a
ly

)
f

o.
8

l

-

equidistribution properties. This slows down the generat
to a certain extent, but it nevertheless remains competiti
in terms of speed. We have experimented with some typ
of tempering transformations. Further exploration remain
to be done in order to find more efficient transformation
that provide the required equidistribution properties.

Another avenue for improving the local uniformity of the
set of output vectors would be to combine a fast polynomi
LCG with a small nonlinear generator, e.g., by running th
two generators in parallel and adding their outputs by
bitwise exclusive-or. If these generators have relative
prime period lengthsρ1 and ρ2, the period length of the
combination will divide (and in almost all cases, equals
the productρ1ρ2. We plan to investigate such types o
combinations, both theoretically and empirically.

ACKNOWLEDGMENTS

This work has been supported by NSERC-Canada grant N
ODGP0110050 and FCAR-Québec Grant No. 00ER321
69
r
e
s

l

to the first author, and via an NSERC-Canada scholarship
to the second author. Raymond Couture provided severa
useful ideas, especially for the material of Sections 3 and
4.3.

REFERENCES

Couture, R and P. L’Ecuyer. 2000. Lattice computations
for random numbers. Mathematics of Computation,
69(230):757–765.

L’Ecuyer, P. 1994. Uniform random number generation.
Annals of Operations Research, 53:77–120.

L’Ecuyer, P. 1996. Maximally equidistributed combined
Tausworthe generators.Mathematics of Computation,
65(213):203–213.

L’Ecuyer, P. 1999a. Good parameters and implementa
tions for combined multiple recursive random number
generators.Operations Research, 47(1):159–164.
5



L’Ecuyer and Panneton

-

-

r:
-

ed

r-

n

e
s

da
ts
lo
,
t
in

e
l.

er
L’Ecuyer, P. 1999b. Tables of maximally equidistributed
combined LFSR generators.Mathematics of Compu-
tation, 68(225):261–269.

Lidl, R and H. Niederreiter. 1986.Introduction to finite
fields and their applications. Cambridge: Cambridge
University Press.

Lindholm, J. H. 1968. An analysis of the pseudo
randomness properties of subsequences of longm-
sequences.IEEE Transactions on Information Theory,
IT-14(4):569–576.

Matsumoto, M and Y. Kurita. 1994. Twisted GFSR genera
tors II. ACM Transactions on Modeling and Computer
Simulation, 4(3):254–266.

Matsumoto, M. and T. Nishimura. 1998. Mersenne twiste
A 623-dimensionally equidistributed uniform pseudo
random number generator.ACM Transactions on Mod-
eling and Computer Simulation, 8(1):3–30.

Tausworthe, R. C. 1965. Random numbers generat
by linear recurrence modulo two. Mathematics of
Computation, 19:201–209.

Tezuka, S. 1995.Uniform random numbers: Theory and
practice. Norwell, Mass.: Kluwer Academic Publish-
ers.

Tezuka, S and P. L’Ecuyer. 1991. Efficient and
portable combined Tausworthe random number gene
ators. ACM Transactions on Modeling and Computer
Simulation, 1(2):99–112.

Tootill, J. P. R., W. D. Robinson, and D. J. Eagle. 1973. A
asymptotically random Tausworthe sequence.Journal
of the ACM, 20:469–481.

AUTHOR BIOGRAPHIES

PIERRE L’ECUYER is a professor in the “Département
d’Informatique et de Recherche Opérationnelle”, at th
University of Montreal. He received a Ph.D. in operation
research in 1983, from the University of Montréal. He
obtained theE. W. R. Steaciegrant from the Natural
Sciences and Engineering Research Council of Cana
for the period 1995–97. His main research interes
are random number generation, quasi-Monte Car
methods, efficiency improvement via variance reduction
sensitivity analysis and optimization of discrete-even
stochastic systems, and discrete-event simulation
general. He is an Area Editor for theACM Transactions
on Modeling and Computer Simulation. More details at:
<http://www.iro.umontreal.ca/˜lecuyer> ,
where his recent research articles are available on-line.

FRANÇOIS PANNETON received a B. Sc. in computer
science from the Royal Military College of Canada. He is
an M.Sc. student in the “Département d’Informatique et d
Recherche Opérationnelle”, at the University of Montrea
69
He works on the design and analysis of random numb
generators based on linear recurrences modulo 2.
6


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print

