Proceedings of the 2000 Winter Simulation Conference

J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, eds.

A NEW CLASS OF LINEAR FEEDBACK

SHIFT REGISTER GENERATORS

Pierre L'Ecuyer
Francois Panneton

Département d’Informatique et de Recherche Opérationnelle
Université de Montréal, C.P. 6128, Succ. Centre-Ville
Montréal, H3C 3J7, CANADA

ABSTRACT

An efficient implementation of linear feedback shift register

sequences with a given characteristic polynomial is obtained
by a new method. It involves a polynomial linear congru-

ential generator over the finite field with two elements. We

obtain maximal equidistribution by constructing a suitable

output mapping. Local randomness could be improved by
combining the generator’s output with that of some other

(e.g., nonlinear and efficient) generator.

1 INTRODUCTION: LFSR GENERATORS

Linear feedback shift register (LFSR) random number gen-
erators are based on a linear recurrence of the form

Xn (a1xp—1+ - - - + agxy—x) mod 2

= 1)
wherek > 1 is theorder of the recurrenceg;, = 1, and

a; € {0, 1} for eachj. This recurrence is always purely
periodic (i.e., there is no transient state) and the period length
of its longest cycle is2— 1 if and only if its characteristic
polynomial

k
P@)=-) ai? (2)
i=0
(whereag = —1) is a primitive polynomial oveiF2, the
Galois field with 2 elements (Lidl and Niederreiter 1986).
A Tausworthe-type LFSR generator (Tausworthe 1965)
evolves according to (1) and produces the real number

w
Un = Z xnv+i—12_l
i=1

at stepn, wherev and w are positive integers. Tezuka
and L'Ecuyer (1991) and L'Ecuyer (1996) give efficient
algorithms for implementing this generator wheiz) is a

trinomial, P(z) = zX — z9 — 1, and the parameters satisfy

690

®3)

the conditions O< 29 < k < w and O< v < k — g.
Tausworthe generators that satisfy these conditions have
bad statistical properties (Lindholm 1968), but combining
several ones, e.g., by taking an exclusive-or of their cor-
responding bits,,1;_1, can provide generators with good
properties (Tezuka and L'Ecuyer 1991; L'Ecuyer 1996;
L'Ecuyer 1999b).

Related classes of generators aredbaeralized feed-
back shift register(GFSR) andtwisted GFSR(TGFSR)
generators (Tootill, Robinson, and Eagle 1973; Matsumoto
and Kurita 1994; Matsumoto and Nishimura 1998; Tezuka
1995; L'Ecuyer 1994), for which each bit of the state also
evolves according to a recurrence of the form (1) and where
each bit of the output is a linear combination modulo 2 of
the bits forming the state.

All these methods are covered by the following general

linear recurrence in matrix form:
X, = AXy—1, 4)
yn = an, (5)
w
u, = Zyn,i—lz_l’ (6)
i=1

where all the operations are performedHa (i.e., modulo
2), k andw are positive integersA is ak x k matrix, B is
aw x k matrix, X, = (x,.0, ..., X,.4—1)" is thek-bit state
at stepn, Y, = (1.0, ---» Yn.w—1)" is @ w-bit vector that
contains the bits of the output, angd < [0, 1) is theoutput
at stepn.

The two major considerations when choosing the general
form of A and B are: (i) the statistical quality of the RNG
thus obtained and (ii) the ease of constructing an efficient
and portable implementation. The former is traditionally
measured by thequidistributionof the output bitsy, ;, as
recalled in Section 2. The role of the linear transformation
(5) by the matrixB, also calledempering(Matsumoto and
Kurita 1994), is precisely to improve the equidistribution
(generally speaking) via some additional mixing of the bits.

L'Ecuyer and Panneton

In Section 3 of this paper, we introduce a class of k& with coefficients inlF;. To each statéx,, ..., x,+r—1)
generators allowing a fast implementation of the recurrence of the recurrence (1), we associate the polynomial
(4), with period length 2— 1. These generators can be

interpreted as linear congruential generators (LCGs) in a k-1 i1
space of polynomials oveF,. In Section 4, we explain pn(2) = ch,jz J (8)
how to obtain maximal equidistribution by tempering the Jj=0

output, i.e., by an appropriate choice of the matix We
discuss three specific tempering methods. In Section 5, we Where
summarize the results of our search for good parameters.

We give an example of an implementation in Section 6. In €n,0 1 0 .. 0 o
. . . . Cn1 ai 1 ... 0 Xn4+1
Section 7, we give an idea of the performance of this new S mod 2 (9)
class of generators by comparing our implementation with : : T :
other known generators. A conclusion follows in Section 8. Cnk—1 ar-1 ... a1 1) \xpqr—1
2 EQUIDISTRIBUTION This mapping is obviously one-to-one, and we have (see,

e.g., LEcuyer 1994)
Define ¥; as the set of all vectors af successive output
values produced by the generator (4—6), from all of the 2 Pnv(2) = 2" pn—1yv(z) mod P(z), (10)
possible initial states. That is,

where “modP (z)” means the remainder of the polynomial

W, = {Uo; = (ug, ..., ur—1) : Xo € IF’§}. @) division by P(z), with the operations on the coefficients

performed inlF2. This can be interpreted as an LCG in
For a given intege¥ > 0, if we partition each axis of the IF2[z]/(P), with modulusP (z) and multiplierz”. Note that
unit hypercubgO0, 1)’ into 2 equal parts, this determines if P(z) is a primitive polynomial oveiF,, every nonzero
a partition of the hypercube into"2small cubes of equal polynomial inIF2[z]/(P) can be written ag” mod P(z)
volume. The point se®; (and the corresponding RNG) is for some integep, so there is no loss of generality in taking

called (¢, £)-equidistributed or ¢-distributed with¢ bits of z¥ in (10) instead of a more general polynomial.
accuracy if each of these small cubes contains exactly2 Inthe past, this polynomial representation and its related
points fromy,. This means that if we consider tlienost formal seriesrepresentation

significant bits of the coordinates ofip;, the 2! different

bit vectors that can be constructed appear exactly the same ad ‘

number of times in¥;. Of course, this is possible only if sn(2) = pn(2)/P(2) = anﬂ—lz_] (11)
&t < k. If U, is |k/¢]-distributed with¢ bits of accuracy j=1

for 1 < ¢ < min(k, w), the RNG is calledasymptotically

random or maximally equidistributedME) for the word have been used @nalyzeLFSR generators whose imple-

sizew (see L'Ecuyer 1996; Tezuka 1995). An ME generator mentations were based on a state representation by the vector

has the best possible equidistribution for partitions of the (n, ... *nk—1) (LECuyer 1994; Tezuka 1995; Couture

unit hypercubeg0, 1)’ into cubic boxes of equal size, for and L’Ec_uyer 2000).
all ¢ <w andt£ < k. Note that every generator that uses In this paper, we propose to represent the state by the

recurrence (4) withB = I and a full rank matrixA is v8ectosr (€n.0, ...,cn,kil)_oflc?iﬁicients of the l%olynomri]al
(1, min(k, w))-equidistributed. (8). Suppose we take = 1. The recurrence (10) can then

To verify the equidistribution, one can write a system of be written as
linear equations that express thebits that are considered
as a linear transformation of the binary veckgr One has

k—1
t—dls_trlb_utlon tol bits of accuracy if and only if the matrix @) = z ch_l,jzk—j—l mod P (z)
of this linear transformation has full rank. LEcuyer (1996,)
1999) provides tables of combined Tausworthe generators i1
with the ME property. _ ch_ljzk—j mod P(z)
=0
3 POLYNOMIAL REPRESENTATION 2_2
. . = Zc 11412577+ ¢,_1 0z mod P(2)
Tausworthe generators can be interpreted as linear congru- ~ n=LJ+ n-10
J=

ential generators in a space of polynomials, as follows. Let
IF2[z]/(P) be the space of polynomials of degree less than

691

L'Ecuyer and Panneton

k—2
k—j—1
= Z cn-1,j+12 7
j=0

k
+cn-10 Zajzkij. (12)

j=1
To implement (12), the coefficient&, o, ..., cyx—1) Of

pn can be stored as &-bit string ¢, (which can fit in
one computer word ik does not exceed the word length)
and the coefficientsaq, ..., ar) of P(z) as anothek-bit
string a. To computep, (z) from p,_1(z), shift ¢,_1 to
the left by one bit, and make a bitwise exclusive-or with
a if the original leftmost bit ofc,_; was 1. The result is
¢,. This is easy to implement and fast (especially does
not exceed the computer’s word size), &y characteristic
polynomial. In algorithmic form, this can be written as:

if cy—10==1then ¢,=(c,-1<K)Dda
else ¢, =¢-1<1

where<« s denotes a left shift by bit and @ denotes the
bitwise exclusive-or operation.
This recurrence can also be written as

Gy = AC,_;
where

ai 1 0 O 0 0

aa 0 1 O 0 0

az 0 0 1 0 O

A= .

a1 0 O O 0 1

ay 0 0 O 0O 0

This is a special case of (4) if we reinterpogtasx,. This
form of A can provide a fast implementation and a full
period. A major weakness is that there is not much “mixing
of the bits” betweert,,_1 andc,. Half of the time, the bits
are just shifted by one position. However, this problem can
be taken care of by the tempering transformatin

Forv > 1, one can replace the matuxby AV, which is
equivalent to applying times the algorithm that computes
the recurrence with = 1. Of course, taking > 1 will
generally make the implementation slower than fos 1.
4 LINEAR TEMPERING TRANSFORMATIONS
In this section, we discuss three convenient types of linear
transformations that can be used to define the ma&triXhe
first one was introduced by Matsumoto and Kurita (1994).
The two others are new. The main objective of applying
linear transformations to the state vector is to improve the

692

equidistribution of the random number generator. We have

observed experimentally that applying only one of these

linear transformations to a polynomial LCG with= 1 is not

enough to get generators with a good equidistribution. We

shall therefore apply different transformations in succession.
These 3 transformations are defined by & k matrix

B as in (5), whose first,, = min(k, w) lines are linearly

independent. This implies th#& has full rankk,,, and also

that the output (6) is 1-distributed #q, bits of accuracy.
Inwhat follows, we shall assume for simplicity that<

k. Inordertobe able to apply several of these transformations

in succession, we will define each transformation in two

steps: The first step transforms thedimensional vector

X, into ak-dimensional vector, = (z,.0, - - -, Zn.k—1), and

the second step extracts the fiistbits of z, to get the

w-dimensional vectoy,. When several transformations are

applied in succession, this second step is performed only

for the last transformation. We will denote by; a bit

mask that keeps only the firsbits when applied to a given

bit vector, i.e., that contains 1's followed by zeros.

4.1 MK-Tempering

Matsumoto and Kurita (1994) have proposed a tempering
defined by the following transformation, far < k:

Xp @ (X, < 51) & bl);
Yn @ ((Vn < 52) & b);

n
Yn

whereX, = (x40, - .-, in,kw_l)T is the vector that contain
the firstk,, bits ofx,,, and &b; means a bitwise AND with
some bit maskb;. They suggest trying values 6% near
ky/2 andsy nearsp/2. The choice of these values and of
the bit masks is made so that the equidistribution of the
RNG is as good as possible.

We use the following variant of thisK tempering

Z, = X0 (X K51 & bl);
Z, = 2,0 (2, K52 & bZ);
Yo = Z, & my,.

That is, we apply the tempering to the entire stgieand
then cut out the firstv bits.

4.2 Self-Tempering

This linear transformation was originally motivated by a
problem observed on the polynomial LCG of Section 3. If
we use this generator directly, with= 1, when the state

¢, has only a few bits set to 1, then1 is very likely to

have only a few bits set to 1 as well. This leads to a strong
dependency between the binary representations (e.g., the
Hamming weights) of the successive valuescpfandu,,.

L'Ecuyer and Panneton

The self-temperingtransformation defined here has been

where<r means a bitwise rotation efbits to the left and

designed as a heuristic to reduce this dependency betweend; is a mask that removes théh bit. This can be verified

the successive Hamming weights. With this transformation,
the output vectoy,, does not necessarily have fewer bits set

by calculating the matrix? APT explicitly.

to 1 (e.g., on the average) when the associated state vector5 A SEARCH FOR GOOD PARAMETERS

X, has only a few bits set to 1.

To define the transformation, we choose two parameters
¢ andd so thatd < ¢ < ky, and letK = [k/c]. This
transformations cuts the bit vectgy, into K blocks of ¢
bits, denotedby, ..., bk, performs a bitwise exclusive-or
of these vectorb; to obtaine, shiftse by d bits to the left,
addse to eachb; to obtaind;, and concatenates thedgs
to obtainz,. This is performed by the following steps:

b= <c(j—1D)&m for j=1,...,K;
e= (@b «d;
di=b;®eforj=1...,K;

Z, = @j_q(d; > c(j — D);

VYo =2, & My,.

ok wbd PR

The implementation simplifies if we take andc equal
to the computer’s word length, e.gu,= ¢ = 32 on a 32-bit
computer. In this case, would be represented by 32-
bit wordsx?, ..., xX and the self-tempering transformation
simplifies to:

1 e= @ x) < d;
2. yw=xtoe

4.3 Permutations

This transformation permutes the coordinates by a one-
to-one mappingr : Z; — Z;. The transformation puts
Zni = Xnn@y fOr i = 0,...,k. Then,y, is defined by
Yni = zp; fori =0,...,w, as usual. IfP is thek x k
matrix that corresponds to this permutation, tieR” = 1
and we obtain the recurrence
z, = PAPTz, ;. (13)

In practice, one would choosé so that the multiplication
by the matrixPAPT is easy to implement efficiently, and
one would use the recurrence (13) directly #r

In the case of a polynomial LCG, if we chooséi) =
pi + g mod k wherep # 0 andg are inZ; and p has
no common factor withk, the multiplication byPAP7T is
very easy to implement. Led’ = Pa’, r be such that
pr = 1 modk, ¢t be such thapr + ¢ = 0 modk, ands
be such thaps + ¢ = k — 1 modk. The implementation
becomes

|f Zl‘l,t == 1
then z, = ((z,—1 <~< ry&dy) @ a
else z, = (z,-1 <~< r) & ds;

693

In order to find good polynomial LCGs, we tried many
primitive characteristic polynomials with different types of
linear transformations. For the results reported in this pa-
per, we have restricted our search to polynomial LCGs with
characteristic polynomials of degrees 32, 64, 96, and 128,
because of their ease of implementation. The equidistribu-
tion of these generators was analyzed with= k, even if

w will usually be less that in a practical implementation
(e.g.,w < 53 if the outputy, is in double precision floating
point).

To find the parameters of the linear transformations,
we tried many possibilities at random. For generators with
MK-tempering, we used a variant of the algorithm described
by Matsumoto and Kurita (1994) to choose the values of
b]_ and b2.

Without tempering, all the generators tested had a very
bad equidistribution in 2 dimensions or more. They were
always 1-distributed tok bits of accuracy, as expected,
but never 2-distributed t&/2 bits of accuracy. Another
interesting observation is that regardless of the characteristic
polynomial, they all showed the same (bad) equidistribution.

When applying only one of the linear transformations,
we easily obtained generators that akg/ |-distributed to
£ bit of accuracy for = 1, 2, 3, but not for¢ > 3. A single
linear transformation of the form described in Section 4 did
not suffice to “mix” the bits well enough.

When combining two linear transformations, namely
permutation of the coordinates and MK-tempering, we ob-
tained several ME generators foe= 32 and 64, but not for
the larger values of. We were unable to obtain generators
with a characteristic polynomial of degree 96 or 128 and
with satisfactory equidistribution. An example of a ME
generator of period® — 1 is the one with characteristic
polynomiala = 877fa931 41669185 , with permutation
defined by the parameteps= 45 andg = 43, and with MK-
tempering of parametess = 15,52 = 31,b; = 77aebcea
38168000 , andb, = 5f5ffec5 00000000 . (Through-
out this paper, we represent the characteristic polynomials
and the bit vector®; in hexadecimal notation.)

The best generator that we obtained with peridd-21
and with these two linear transformations is the one
with characteristic polynomia = 4acadal5 2e647ff5
396caa79 with permutation of coordinates of parame-
ters p = 67 andg = 55, and with MK-tempering of pa-
rameterssy = 23, so = 47, by = 2d1dbc4f 2fa875a0
13560ba6 , andb, = 3ef800b3 7b55f822 232317c7
This generator igk/¢]|-distributed to¢ bit of accuracy for
¢=1,...,7,9,10,11,14,33,...,47,49,...,96. For the

L'Ecuyer and Panneton

other values of, there is a gap of up to 3 between the upper
bound [k/¢] and the dimensiom for which the generator
is equidistributed.

In general, the more tempering transformations we
add to the output of the generators, the easier it is to
obtain generators with good equidistribution. With the
combination of the three types of tempering, (permutation of
the coordinates, self-tempering, and MK-tempering, applied
in this order), we found ME generators with characteristic
polynomial of degree 96 and very good generators of degree
128 (with only one or two values dffor which the generator
is not | k/¢]-distributed to¢ bit accuracy). On the other
hand, adding many tempering transformations slows down
the generator.

An example of an ME generator with characteristic
polynomial of degree 96 is given in Section 6. The best
generator with period 28 — 1 was | k/¢]-distributed to¢
bit of accuracy for all¢ = 1,...,128, except for¢ =
64 where it is only 1-distributed (it is thus ME for any
w < 64). Its characteristic polynomial & = 74b480cf
73f3a60c 979782a6 787ddcl3 , with permutation of
the coordinates of parametess= 91 andg = 97, followed
by a self-tempering of parametars= 32 andd = 22, and
an MK-tempering of parameterg = 31, s = 63, by =
23d831ef 295f73be 061a1808 00000000 andby =
O07edecab 5a92f304 2e241c80 31a06893

Another way to improve the equidistribution is to
take v > 1. We have observed that the generators
are |k/t]-distributed to ¢ bit accuracy for almost all
¢=1,...,min(v, k). In practice, we can either apply ex-
tensive tempering to the output of a generator with 1, or
apply less tempering to a generator with- 1. In the first
case, more tempering slows down the generator, whereas
in the second case, using a largemsually slows down the
generator as well. Further investigation should be done to
seek fast implementions of the multiplication By .

6 AN EXAMPLE

Here is an example of an ME polynomial LCG with char-
acteristic polynomial of degrée= 96, witha=dc7348d7
18975f66 2c2ba527 . To this polynomial LCG we apply

a permutation defined by (i) = 23; + 83 mod 96, so that
ais4b24716e fbc6cd96 Oab7ab0c , and the values of
r, s andr are 71, 84 and 59 respectively. A self-tempering
with ¢ = 32 andd = 10 is also applied, followed by an
MK tempering withs; = 23, so = 47, by = 2fa51fb4
2e1e2000 03000000 andb, = 78d849e0 55db0000
00000000 .

An implementation of this generator in language C is
given in Figure 1, forw = 32. This generator is ME for
any w < k. One can easily increase to 53 (the max-
imum resolution for thedouble type) by addingyl *
5.421010862247e-20 to the returned value and reac-

694

tivating the next-to-last instruction, which is commented
out.

To implement the permutation of the coordinates, we
use (13). The vectar, of (13) is contained in the variables
state0 , statel andstate2 . These variables must be
saved for the next step of the recurrence (13). The vector
z, resulting from each of the two other transformations is
contained in the variableg), y1 andy2.

The state vector, stored istate0 , statel and
state2 , is initialized to default values, but the initial
state can be changed by changing these values (they must
not be all zero) before the first call to the proceduné/96 .

7 TIMINGS

In this section, we compare the speed of the generator
poly96 of Figure 1 to that of other random number gener-
ators. Table 1 reports the information. The number given in
the table is the CPU time (in seconds) required to generate
10’ random numbers. We used the GNU C compiler and
the results are given for a Pentium-I1l 600 MHz processor
(P-111) and an AMD Athlon 750 MHz processor (AMD),
both running the Linux operating system. The generator
poly96* is the same generator g®ly96 , but with-

out any tempering transformation. This generator has bad
equidistribution properties, as discussed in Section 5. The
description oMRG32k3acan be found in LEcuyer (1999a).
The generatoMT19937 was introduced in Matsumoto and
Nishimura (1998) and we used the implementation provided
in this reference.

Table 1: Comparaison of the
Speed of Different Generators
(CPU time in seconds to gener-
ate 14 numbers)

Generator P-ll AMD
MT19937 1.73 1.20
poly96 211 145
poly96* 0.99 0.76
MRG32k3a 4.84 2.71

The generatopoly96* s the fastest, about twice as
fast aspoly96 , but it cannot be recommended because
of its bad theoretical properties. The genergoly96 is
faster thalMRG32k3a but a little bit slower thaMT19937.
The generatoMT19937 also has a much larger period than
poly96 . However, it is not ME.

8 CONCLUSION

We have defined and implemented a new class of polynomial
LCGs based on arithmetic modulo 2. The simplest form
of this generator, withv = 1, is very fast but requires

tempering transformations on the output to obtain good

L'Ecuyer and Panneton

#define a0 0x4b24716eUL
#define al Oxfbc6cd96UL
#define a2 Oxab7abOcUL
#define B10 Ox2fa51fb4UL
#define B11 0x2el1e2000UL
#define B12 0x03000000UL
#define B20 0x78d849e0UL
#define B21 0x55db0000UL

double poly96 (void) {
unsigned long e, y0, y1, y2, w0, wl, w2;

[* Bitwise rotation by 71 bits to the left */
w0 = (state0 >> 25) " (state2 << 7);
wl = (statel >> 25) ~ (state0 << 7);
w2 = (state2 >> 25) " (statel << 7);

w2 = w2 & Oxfffff7ffuL;
if (statel & 0x00000010UL) {

}

else {
state0 = w0; statel = wl; state2 = w2;

}

[* Self-tempering with ¢=32 and d=10 */
e = (stateO ~ statel ~ state2) << 10;

[* MK-tempering with s1=23 and s2=47 */
yo =y0 " (((yl >> 9) " (yO << 23)) & B10);
yl =yl1~ (((y2 >>9) " (yl << 23)) & B11);
y2 =y2 " ((y2 << 23) & B12);

y0 =y0 " ((y2 >> 17) " (y1 << 15)) & B20);
/¥yl =yl~ ((y2 << 15) & B21); */

return (yO * 2.3283064365e-10);

static unsigned long state0 = Ox1UL, statel = OxOUL, state2 = OxOUL;

/* Elimination of bit 84 and verification of bit 59 */

stateO = w0 " a0; statel = wl ~ al; state2 = w2 "~ a2;

y0 = state0 " e; yl = statel " e; y2 = state2 " g;

Figure 1: Implementation of poly96 in Language C

equidistribution properties. This slows down the generator
to a certain extent, but it nevertheless remains competitive
in terms of speed. We have experimented with some types
of tempering transformations. Further exploration remains
to be done in order to find more efficient transformations
that provide the required equidistribution properties.
Another avenue forimproving the local uniformity of the
set of output vectors would be to combine a fast polynomial
LCG with a small nonlinear generator, e.g., by running the
two generators in parallel and adding their outputs by a
bitwise exclusive-or. If these generators have relatively
prime period lengthg, and pp, the period length of the
combination will divide (and in almost all cases, equals)
the productpipo. We plan to investigate such types of
combinations, both theoretically and empirically.

ACKNOWLEDGMENTS

This work has been supported by NSERC-Canada grant No.
ODGP0110050 and FCAR-Québec Grant No. 00ER3218

695

to the first author, and via an NSERC-Canada scholarship
to the second author. Raymond Couture provided several
useful ideas, especially for the material of Sections 3 and
4.3.

REFERENCES

Couture, R and P. L'Ecuyer. 2000. Lattice computations
for random numbers. Mathematics of Computation
69(230):757-765.

L'Ecuyer, P. 1994. Uniform random number generation.
Annals of Operations Research3:77-120.

L'Ecuyer, P. 1996. Maximally equidistributed combined
Tausworthe generatordathematics of Computation
65(213):203-213.

L'Ecuyer, P. 1999a. Good parameters and implementa-
tions for combined multiple recursive random number
generators.Operations Research7(1):159—-164.

L'Ecuyer and Panneton

L'Ecuyer, P. 1999b. Tables of maximally equidistributed He works on the design and analysis of random number
combined LFSR generatordvlathematics of Compu- generators based on linear recurrences modulo 2.
tation, 68(225):261—-269.

Lidl, R and H. Niederreiter. 1986.Introduction to finite
fields and their applications Cambridge: Cambridge
University Press.

Lindholm, J. H. 1968. An analysis of the pseudo-
randomness properties of subsequences of lang
sequenceslEEE Transactions on Information Theogry
IT-14(4):569-576.

Matsumoto, M and Y. Kurita. 1994. Twisted GFSR genera-
tors Il. ACM Transactions on Modeling and Computer
Simulation 4(3):254-266.

Matsumoto, M. and T. Nishimura. 1998. Mersenne twister:
A 623-dimensionally equidistributed uniform pseudo-
random number generatohCM Transactions on Mod-
eling and Computer Simulatio8(1):3—-30.

Tausworthe, R. C. 1965. Random numbers generated
by linear recurrence modulo two. Mathematics of
Computation 19:201-209.

Tezuka, S. 1995.Uniform random numbers: Theory and
practice Norwell, Mass.: Kluwer Academic Publish-
ers.

Tezuka, S and P. LEcuyer. 1991. Efficient and
portable combined Tausworthe random number gener-
ators. ACM Transactions on Modeling and Computer
Simulation 1(2):99-112.

Tootill, J. P. R., W. D. Robinson, and D. J. Eagle. 1973. An
asymptotically random Tausworthe sequendeurnal
of the ACM 20:469-481.

AUTHOR BIOGRAPHIES

PIERRE LECUYER is a professor in the “Département
d’'Informatique et de Recherche Opérationnelle”, at the
University of Montreal. He received a Ph.D. in operations
research in 1983, from the University of Montréal. He
obtained theE. W. R. Steaciggrant from the Natural
Sciences and Engineering Research Council of Canada
for the period 1995-97. His main research interests
are random number generation, quasi-Monte Carlo
methods, efficiency improvement via variance reduction,
sensitivity analysis and optimization of discrete-event
stochastic systems, and discrete-event simulation in
general. He is an Area Editor for th®CM Transactions

on Modeling and Computer SimulatiorMore details at:
<http://www.iro.umontreal.ca/"lecuyer>

where his recent research articles are available on- Ilne

FRANCOIS PANNETON received a B. Sc. in computer

science from the Royal Military College of Canada. He is
an M.Sc. student in the “Département d’Informatique et de
Recherche Opérationnelle”, at the University of Montreal.

696

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

