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ABSTRACT

This paper discusses implementation of a two-stage pro
dure to determine the simulation run length for selectin
the best ofk designs. We purpose anEnhanced Two-Stage
Selection(ETSS) procedure. The number of additiona
replications at the second stage for each design is de
mined by both the variances of the sample means and
differences of the sample means of alternative designs.
show that the ETSS procedure gives valid selections w
significantly reduced simulation replications compared
Rinott’s procedure. An experimental performance evalu
tion demonstrates the validity of the ETSS procedure.

1 INTRODUCTION

Discrete event simulations are widely used to compare alt
native system designs or operating policies. When evaluat
k alternative system designs, we would like to select t
best of thesek designs and to control the probability tha
the selected design really is the best one. Letµi denote the
expected response of designi. Our goal is to find the design
with the smallest expected responseµ∗ = mini=1,2,...,k(µi).
If the goal is to select a design with the biggest expect
response, the procedure can be modified easily to accom
date that. We achieve this goal by using a class of rank
and selection (R&S) procedures.

Many R&S procedures are directly or indirectly based o
Dudewicz and Dalal (1975) or Rinott’s (1978) indifference
zone-selection procedure. Unfortunately, their procedu
require the simulation output sequence to be independ
and normally distributed. When the simulation output a
sample averages, by the Central Limit Theorem (CLT), t
normality assumption is typically valid provided that th
sample size is large enough. The independence assu
tion, though, requires more attention. Moreover, ma
indifference-zone-selection procedures determine the nu
ber of additional replications based on a conservativeleast
favorable configuration(LFC) assumption (Rinott 1978);
see Section 2.5. Some new approaches (Chen et al. 19
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incorporate first-stage sample mean information in dete
mining the number of additional replications. They sugge
that an average case analysis may lead to a significa
reduction in computing effort, relative to indifference-zone
selection procedures. For an overview of existing metho
of ranking and selection see Law and Kelton (2000), o
Bechhofer, Santner, and Goldsman (1995).

Generally speaking, we can improve the efficiency o
R&S procedures with apre-selection(Goldsman et al. 1999).
The pre-selection approach is a screening device that
tempts to select a (random-size) subset of thek alternative
designs that contains the best one. The inferior desig
will be excluded from further consideration, reducing th
overall simulation time. After we cut down a large numbe
of alternatives into a more manageable number, we th
carry out a higher accuracy selection to make the fine-tun
choice of the best. In some extreme cases, the sub
may contain only one design, i.e., we select outright th
best design. We propose an Enhanced Two-Stage Selec
(ETSS) procedure that is efficient in allocating the require
simulation replications at the second stage.

This paper derives an enhanced two-stage selection p
cedure that utilizes the information of both the means an
variances obtained from the first stage to determine the nu
ber of additional replications. In Section 2 we recall Rinott’
(1978) procedure that serves as reference for comparis
We provide background necessary to understand our p
posed procedure. In Section 3 we present our methodolog
and proposed procedure for the ranking and selection.
Section 4, we show our empirical-experiment results. Th
new procedure compares favorably with Rinott’s (1978
procedure. In Section 5, we give concluding remarks.

2 BACKGROUND

To facilitate what follows we define some notation:

Ni : the number of replications (or batches) for
designi,

σ 2
i : the variance of designi,
7
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Xij : the average of the observations from thej th

replication of theith design, or thej th batch
mean of theith design of a terminating or
steady-state simulation.

µi : the mean performance measure for desig
i, i.e.,µi = E(Xij ),

µ̂i : the sample mean performance measure fo
designi, i.e.,

∑Ni
j=1Xij /Ni ,

S2
i (Ni): the sample variance of designi with Ni

replications.

2.1 Indifference-Zone-Selection Procedure

Let µil be thelth smallest of theµi ’s, so thatµi1 ≤ µi2 ≤
. . . ≤ µik . Our goal is to select a design with the small-
est expected response,µi1. Let “CS” denote this event of
“correct selection.” In stochastic simulation, CS typically
cannot be guaranteed with certainty. Furthermore, ifµi1
andµi2 are very close together, we might not care if we
mistakenly choose designi2, whose expected response is
µi2. This “practically significant” differenced∗ (a positive
real number) is called theindifference zonein the statisti-
cal literature. Therefore, we want a procedure that avoid
making a large number of replications to resolve this unim
portant difference. That is, we want P(CS)≥ P ∗ provided
thatµi2 −µi1 ≥ d∗, where the minimal CS probabilityP ∗
and the “indifference” amountd∗ are both specified by the
user.

2.2 Two-Stage Rinott Procedure

The two-stage procedure of Rinott (1978) has been wide
applied. Let n0 be the number of initial replications
from each design. The first-stage sample meansµ̂i =∑n0
j=1Xij /n0, and marginal sample variances

S2
i (n0) =

∑n0
j=1(Xij − µ̂i)2
n0 − 1

, for i = 1,2, . . . , k

are computed. Based on the number of initial replicationsn0
and the sample variance estimatesS2

i (n0) obtained from the
first stage, the number of additional simulation replication
for each design in the second stage isNi − n0, where

Ni = max(n0, d(hSi(n0)/d
∗)2e), for i = 1,2, . . . , k, (1)

wheredze is the smallest integer that is greater than or equ
to the real numberz, andh (which depends onk, P ∗, and
n0) is a constant that solves Rinott’s (1978) integral (h can
also be found from the tables in Wilcox, 1984). We then
compute the overall sample means¯̂µi =

∑Ni
j=1Xij /Ni ,

and select the design with the smallest¯̂µi as the best one.
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Basically, the computing budget is allocated proportion
to the estimated sample variances.

2.3 Subset Selection

Goldsman et al. (1999) describe a procedure to pre-se
the subset of designs so that inferior designs can be exclu
from further simulation.

Designil , whose sample mean̂µil = mini=1,2,...,k(µ̂i),
is automatically included in the subset. For alli 6= il , let

t = t
1−(P ∗) 1

k−1 ,n0−1
,

S2
i,il
=
∑n0
j=1(Xij −Xilj − (µ̂i − µ̂il ))2

n0 − 1
,

and

Wi,il = tSi,il /
√
n0.

Then designi will be included in the subset only if̂µi−µ̂il ≤
(Wi,il − d∗)+, where(a)+ = max(0, a), and t1−α,n is the
1−α quantile of thet distribution withn degrees of freedom
(df).

2.4 Optimal Computing Budget Allocation (OCBA)

Chen et al. (1999) point out that a drawback of Rinot
procedure is that only the information of variances is us
when determining the additional replications at the seco
stage. They propose an OCBA that utilizes the informati
of both the means and variances obtained from the fi
stage. Their procedure is based on a fixed total comput
budgetT =∑k

i=1Ni and attempts to maximize P(CS).
They use theApproximate Probability of Correct Se-

lection(APCS) as a lower bound on the P(CS). That is

P(CS)≥ 1−
k∑
l=2

P(µ̂i1 > µ̂il ).

The right hand side of the above equation is theAPCS.
They show that for a fixed number of replications, theAPCS

can be asymptotically maximized when

Ni1

Ni2
→ σi1

σi2

[
k∑
l=2

(
δ̂2
i2,i1

δ̂2
il ,i1

)]1/2

, (2)

Nil

Ni2
→
(
σil /δ̂il ,i1

σi2/δ̂i2,i1

)2

for l = 3,4, . . . , k, (3)

where δ̂il ,i1 = µ̂il − µ̂i1, andσi is the standard deviation
of the response of designi. However, in reality the value
8



Chen and Kelton

l

n

e
a

o

i

s

u

o
e

b

of σi is unknown, so the standard deviation of the samp
responsesSi(n0) will be used.

2.5 Motivation

Rinott’s procedure is a conservative procedure that obtai
P(CS)≥ P ∗ by assumingµil = µi1+d∗ for l = 2,3, . . . , k,
i.e., the LFC. In reality, we rarely encounter the LFC. Th
OCBA modifies Rinott’s procedure and takes into consider
tion the difference between mean estimatorsδ̂il ,i1 = µ̂il−µ̂i1
for l = 2,3, . . . , k. However, OCBA is a fixed-sample-size
procedure; it attempts to maximize the P(CS) with a fixe
total computing budget. Moreover, the achieved P(CS
cannot be estimated until the end of the procedure. If th
achieved P(CS) is less than desired then the simulati
needs to be restarted with a bigger simulation budget. W
propose an ETSS procedure, which also takes into co
sideration the difference between mean estimatorsδ̂il ,i1 for
l = 2,3, . . . , k when estimating the required replications a
the second stage. However, the ETSS attempts to minim
the total number of second-stage replications with a give
P ∗. The approach of the OCBA and the ETSS are com
pletely different. However, the final allocation strategie
are very similar. The ETSS provides some insights into th
optimization results of the OCBA.

3 METHODOLOGIES

In this section we introduce the methodologies we used
our procedures. To meet the i.i.d. samples requirement
the case of steady-state simulation , one can use the pop
output-analysis method:batch means, for example Chen
and Kelton (2000a,b). We incorporate subset pre-selecti
and the two-stage Rinott procedure to form the Enhanc
Two-Stage Selection (ETSS) procedure.

3.1 Enhanced Two-Stage Selection Procedure

Using the QI procedure, we will simulaten0 replications
for each design at the first stage. We then perform th
subset pre-selection at the end of the first stage. Therefo
stage two will evaluate onlyk′ ≤ k designs, wherek′ is the
number of designs included in the subset.

In Rinott’s procedure, only one positive real numberh

is used to estimate additional simulation replications at th
second stage, see Section (2.2). That is, only one varia
h is used in Rinott’s integral for allk designs based on the
LFC. Without loss of generality, assumingµil −µi1 ≥ d∗,
for il 6= i1. If we let f and F denote the density and
distribution function, respectively, of thet distribution with
n0 − 1 df, the equation

P(CS)≥ P ∗ =
∫ ∞
−∞

F (h+ t)k−1 f (t)dt (4)
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is based on the LFC, P(µ̂i1 < µ̂il |µi1 + d∗ = µil ) =
(P ∗)1/(k−1) for l = 2,3 . . . , k, see Law and Kelton (2000),
pp. 575-576. However, we seldom encounter the LFC in
practice, i.e.,µi1 + d∗ < µil for someil . Thus, with all
other things being equal

P(µ̂i1 < µ̂il |µi1 + d∗ < µil ) > (P ∗)1/(k−1).

Because the computation ofNi is based on the LFC, it is
larger than necessary whenµi1 + d∗ < µil for someil .

To eliminate this deficiency, we propose an enhanced
simulation replications allocation algorithm. Based on the
equation

P(CS)= 5kl=2P(µ̂i1 < µ̂il |µi1 + d∗ ≤ µil ),

it can be shown that

P(CS)=
∫ ∞
−∞

5kl=2F

(
µil − µi1
d∗/h

+ t
)
f (t)dt. (5)

For l = 2,3, . . . , k, we will set

P(µ̂i1 < µ̂il |δil ,i1 = µil − µi1) = (P ∗)1/(k−1),

then

P ∗ = 5kl=2P(µ̂i1 < µ̂il |δil ,i1 = µil − µi1).

Note that in contrast to the LFC,δil ,i1 may be larger than
d∗. In essence, we propose using differenthi values for
different designsi. Let

ri = max(µi − µi1, d∗)/d∗, (6)

and

hi = h/ri, (7)

then equation (5) becomes

P(CS)=
∫ ∞
−∞

5kl=2F
(
ril hil + t

)
f (t)dt.

Therefore,

P(CS) =
∫ ∞
−∞

F (h+ t)k−1 f (t)dt. (8)

Hereh is the same as Rinott’s procedure. We would like to
point out that this integral is an approximation suggested
in Rinott (1978), which includes some comparison between
9
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the integral he proposed with this approximation. Solveh

from the above equation with P(CS) set toP ∗, and let

Ni=max(n0, d(hiSi(n0)/d
∗)2e), for i = 1,2, . . . , k. (9)

In practice, however, exact value ofri cannot be computed
becauseµi is unknown, so

r̂i = max(µ̂i − µ̂i1, d∗)/d∗

will be used.
The difference between equations (9) and (1) is thathi

instead ofh is used. The information of the difference of
the sample means between alternative designs is embedd
in the value ofhi throughri of equation (6), thus, equation
(9) utilizes the information of both the means and variance
We would like to point out that the derivation of thisNi is
based entirely on equalities, thus, it is optimal. However
the true value ofri is unknown and̂ri will be used. Because
r̂i is a random variable, P(CS)=P ∗ may be not true for this
heuristic approach. To be conservative, a constant 0< c < 1
can be used so thatr̂i = max(c(µ̂il − µ̂i1), d∗)/d∗, or the
(1− α) confidence limits ofµi can be used to computêri ,
i.e., r̂i = max(L(µ̂i) − µ̂i1, d∗)/d∗, whereL(µ̂i) are the
1− α lower confidence limits ofµi . On the LFC equation
(4) becomes P(CS)= P ∗, therefore, theNi ’s determined by
equation (9) will be exactly the same as if they are obtaine
from Rinott’s procedure. However, if̂µi1 + d∗ < µ̂i , then
less computational budget will be allocated for designi
than that allocated according to Rinott’s procedure, becau
hi < h. In cases thatµ̂i1 + d∗ > µ̂i , r̂i = 1 is used
because the difference between these two sample mean
less than the indifference amount; it will be considered a
correct selection if thisµi is selected. Therefore, it is not
necessary to make a large number of replications to resol
this insignificant difference.

Interestingly enough, if we compute the ratioNil /Ni2
with Ni estimated from equation (9) and assumingδ̂i2,i1 ≥
d∗, we get

Nil

Ni2
=
(
Sil (n0)/δ̂il ,i1

Si2(n0)/δ̂i2,i1

)2

for l = 2,3, . . . , k.

This is the same as equation (3) in Section (2.4). Therefor
for l = 2,3, . . . , k, the ratioNil /Ni2 will be the same as
that in OCBA. On the other hand, the ratio

Ni1

Ni2
= r̂2

i2
(Si1(n0)/Si2(n0))

2.

This is different from that of OCBA, i.e., equation(2), be-
cause OCBA does not use the indifference parameterd∗
and OCBA attempts to maximize P(CS) with a fixed tota
73
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simulation budget, while we try to minimize total simulation
budget with givenP ∗. If the user is not able to provide
the indifference amountd∗, thend∗ = δ̂i2,i1 will be used
in the ETSS procedure. Therefore, if the user attemp
to maximize P(CS) with a given simulation budget then
OCBA can be used. On the hand, the ETSS can be us
not only when the user attempts to minimize simulation
budget with a givenP ∗, but also when the user attempts
to maximize P(CS) with a given simulation budget. Fo
example, if ETSS determines the total number of simula
tion replicationsT =∑i=k

i=1Ni and the available budget is
A < T , then we will useNi = Ni × A/T replications for
designi.

The ETSS algorithm:

1. Simulaten0 replications.
2. Perform subset pre-selection according to proce

dures developed by Goldsman et al. (1999), se
Section (2.3).

3. If there is only one element in the subset, go to
step 6.

4. For each designi in the subset, compute the needed
additional replicationsNi − n0. HereNi will be
computed according to equation (9).

5. SimulateNi − n0 additional replications for each
designi in the subset.

6. Return the valuesi1 and ¯̂µi1.

Because the information of the means is used in com
puting additional replications, ETSS has better performanc
than the performance of Rinott procedure.

3.2 Properties of ETSS

Goldsman and Schmeiser (1997) list some properties th
a good estimator should posses. We use these proper
to assess the desirability of our algorithm. The follow
ings describe the performance of our algorithm under eac
property.

• Statistical performance. If we obtain reasonably
accurate estimates of the differences of the mea
responses and variances from the first stage, th
the P(CS) from our ETSS should be close to th
pre-specified levelP ∗.

• Ease of computation. Our algorithm involves only
little more thanO(N) operations,N is the number
of observations. The enhancement, calculation o
r̂i , added to Two-Stage Rinott procedure is com
putationally inexpensive.

• Parsimonious storage requirements. Our data sto
age isk, one for the each sample means.
0
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• Ease of understanding. Our algorithm is a straigh
forward enhancement of Rinott’s procedure.

• Numerical stability. The limits of machine preci-
sion is the limits of our algorithm precision.

• User-specified parameters. We require only tw
parameters: the desired probability of correct se
lectionP ∗, and the indifference amountd∗.

• Amenability for use in algorithms. Our algorithm
can be incorporated with other procedures easil

4 EMPIRICAL EXPERIMENTS

In this section we present some empirical results obtain
from simulations using Rinott’s procedure and the ETS
procedure proposed in this paper. The purpose of t
experiments was not so much to test the methods thorough
but rather to demonstrate the interdependence between
variances and the differences of the sample means a
simulation run lengths, and the validity of our methods.

In this experiment, we focus on the validity and perfor
mance of the ETSS at the second stage. Therefore, ste
of the ETSS was skipped. Moreover, we assume that the
is more than one element in the subset. Furthermore, t
input dataXij for step 4 will be i.i.d. normal because they
are batch means, and the difference ofXi1j andXikj will
be small because they are in the pre-selection subset.

4.1 Experiment 1: Equal Variances

There are ten alternative designs in the pre-selection sub
SupposeXij ∼ N (i,62), i = 1,2, . . . ,10, whereN (µ, σ 2)

denotes the normal distribution with meanµ and variance
σ 2. We want to select a design with the minimum mean
It is obvious that design 1 is the actual best design. Th
indifference amountd∗ is set to 0.90 for all cases. We
compare the required simulation replications of Rinott’
procedure and our ETSS. Furthermore, 10,000 independ
experiments are performed to obtain the actual P(CS), w
count the number of times we successfully selected t
true best design (design 1 in this example) in those 10,0
independent experiments. P(CS) is then obtained by dividi
this number by 10,000 representing the correct selecti
percentage. We use two different initial replicationsn0 =
20, and 30.

Table 1: P(CS) and Sample Sizes for Experiment 1
P ∗ = 0.90 P ∗ = 0.95

Procedure P(CS) avg s.r. P(CS) avg s.r.
Rinott(20) 98.94% 4284 99.73% 6720
ETSS(20) 98.08% 1335 98.91% 1929
Reduction 2949 4791
Rinott(30) 99.45% 5020 99.69% 6343
ETSS(30) 98.94% 1433 99.27% 1760
Reduction 3587 4583
731
,
e
d

2
e
e

t.

t

The results of our experiment 1 are summarized i
Table 1. TheP(CS)column lists the percentage of correc
selection. Theavg s.r. column lists the average of the total
simulation replications (

∑k
i=1Ni) used in each procedure.

The Rinott(20) row lists the results of Rinott’s procedure
with initial replicationsn0 = 20. TheETSS(20)row lists
the results of ETSS procedure with initial replicationsn0 =
20. The Reductionrow lists the reduction of simulation
replications achieved by the ETSS procedure. Note that t
P(CS) are all larger than the specifiedP ∗ = 0.90 andP ∗ =
0.95. This is an indication that both selection procedure
are conservative, which is expected for Rinott’s procedu
because it is based on the LFC. On the other hand, this
a nice result for the ETSS procedure because its derivati
is not based on the LFC. ETSS is more efficient tha
Rinott’s procedure because when determining addition
simulation replications, ETSS exploits the information o
both the sample means and variances. The sample means
provide valuable information of relative differences amon
different designs.

Table 2 lists the detailed simulation replications use
for each design under different selection procedures wi
P ∗ = 0.95 andn0 = 20. TheRinott column lists the aver-
age simulation replications for each design under Rinott
procedure. TheETSScolumn lists the average simulation
replications for each design under ETSS procedure. T
Reductioncolumn lists the reduction of simulation repli-
cations, and theR% column lists the percentage of the
reduction of the number of simulation replications. We
would like to point that Rinott’s procedure will be the same
as equal allocation for additional simulation replications i
this settings, i.e., the variances are equal for all design
Our experimental results confirm that. On the other hand,
the ETSS the number of additional simulation replication
decreases as the differencesδ̂i,i1 increase. This makes good
sense because as the difference ofµi −µi1(> 0) increases,
it is more likely thatµ̂i > µ̂i1. In another words, as the
observedδ̂i,i1 = µ̂i − µ̂i1(> 0) increases, it is less likely
that µi < µi1. The ratio of the average number of sim-
ulation replications allocated for design 10 and design

Table 2: Detailed Sample Sizes forP ∗ = 0.95 and
n0 = 20 of Experiment 1

Design Rinott ETSS Reduction R%
1 706 700 6 0.85%
2 664 437 227 34.19%
3 669 313 356 53.21%
4 672 199 473 70.39%
5 666 112 554 83.18%
6 672 61 611 90.92%
7 670 36 634 94.63%
8 666 25 641 96.26%
9 664 21 643 96.84%
10 665 20 645 96.99%
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of Rinott’s procedure is 0.942 (665/706), which is close
the theoretical value 1((S10(n0)/S1(n0))

2 = (6/6)2). On
the other hand, this ratio is only 0.0286 (20/700) und
the ETSS procedure. This is where ETSS can significan
improve the efficiency of Two-Stage Rinott procedure.

4.2 Experiment 2: Increasing Variances

This is a variation of experiment 1. All settings are preserv
except that the variance of each design increases as
mean increases. Namely,Xij ∼ N (i, (6 + i/2)2), i =
1,2, . . . ,10.

The results are listed in Tables 3 and 4. Because m
designs have larger variances than those in experimen
the total number of simulation replications is more than
experiment 1. We are less confident of the best selection w
these settings. Therefore, more simulation replications
needed to obtain the desired confidence. Rinott’s proced
will allocate more additional simulation replications fo
designs with larger variances and the simulation replicatio
allocation is based entirely on the variances, thus,Ni > Nj
when Si > Sj . Even though ETSS also allocates mor
additional simulation replications for designs with large
variances, it takes into account the difference of the sam
means. Therefore, it is not always true thatNi > Nj when
Si > Sj . In fact,δi,i1 has such a big influence inhi that the
additional simulation replications decrease as the varian
increase. The ratio of the average simulation replicatio
allocated for design 10 and design 1 of Rinott’s procedure
2.77 (2042/738), which is smaller than the theoretical val
3.36((11/6)2). This ratio is only 0.057 (42/736) under the
ETSS procedure. ETSS is most effective in this settin
achieving about 80% reduction in the number of simulatio
replications.

4.3 Experiment 3: Decreasing Variances

This is another variation of experiment 1. All settings a
preserved except that the variance of each design decre
as the mean increases. Namely,Xij ∼ N (i, (6− i/2)2),
i = 1,2, . . . ,10.

The results are listed in Tables 5 and 6. Because m
designs have smaller variances than those in experimen
the total number of simulation replications is less than

Table 3: P(CS) and Sample Sizes for Eperiment 2
P ∗ = 0.90 P ∗ = 0.95

Procedure P(CS) avg s.r. P(CS) avg s.r.
Rinott(20) 99.46% 10300 99.70% 13031
ETSS(20) 98.28% 2108 98.73% 2701
Reduction 8192 10330
Rinott(30) 99.42% 9754 99.81% 12287
ETSS(30) 98.62% 1835 99.08% 2279
Reduction 7919 10008
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Table 4: Detailed Sample Sizes forP ∗ = 0.95 and
n0 = 20 of Experiment 2

Design Rinott ETSS Reduction R%
1 738 736 2 0.27%
2 780 508 272 34.87%
3 900 428 472 52.44%
4 1039 333 706 67.95%
5 1176 243 933 79.34%
6 1333 162 1171 87.85%
7 1505 112 1393 92.56%
8 1670 78 1592 95.33%
9 1842 53 1789 97.12%
10 2042 42 2000 97.94%

experiment 1. We are more confident of the best selectio
with these settings. Therefore, fewer simulation replica
tions are needed to obtain the desired confidence. Rinot
procedure allocates fewer additional simulation replication
for designs with inferior designs in this setting, i.e., as th
sample means increase the variances decrease. The r
of the average number of simulation replications allocate
for design 10 and design 1 of Rinott’s procedure is 0.062
(43/690), which is larger than the theoretical value 0.02
((1/6)2). This ratio is 0.029 (20/686) under the ETSS
procedure. ETSS achieves less improvement in this se
ting. However, the percentage reduction of the number o
simulation replications is still about 50%.

Table 5: P(CS) and Sample Sizes for Experiment 3
P ∗ = 0.90 P ∗ = 0.95

Procedure P(CS) avg s.r. P(CS) avg s.r.
Rinott(20) 99.41% 2386 99.71% 3033
ETSS(20) 98.64% 1232 98.95% 1525
Reduction 1154 1508
Rinott(30) 99.34% 2269 99.78% 3018
ETSS(30) 98.79% 1200 99.38% 1459
Reduction 1069 1559

Table 6: Detailed Sample Sizes forP ∗ = 0.95 and
n0 = 20 of Experiment 3

Design Rinott ETSS Reduction R%
1 690 686 4 0.58%
2 565 369 196 34.69%
3 463 216 247 53.35%
4 376 102 274 72.87%
5 298 44 254 85.23%
6 231 24 207 89.61%
7 169 20 149 88.17%
8 117 20 97 82.91%
9 76 20 56 73.68%
10 43 20 23 53.49%
2
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4.4 Experiment 4: Dependent Data and EqualVariances

This is another variation of experiment 1 and is designed
check the robustness of both procedures when the assump
of independence is violated. All settings are preserved exce
that data are correlated. Thefirst-order auto-regressive
(AR(1)) process, generated by the recurrence relation

Xij = µi + ϕ(Xij−1− µi)+ εj for j = 1,2, . . . ,

where

E(εj ) = 0, E(εj εk) =
{
σ 2 if j = k ,

0 otherwise

0< ϕ < 1,

andXi0 is specified to some random variatexi0 drawn from
the steady-state distribution. TheAR(1) process shares ma
characteristics observed in simulation output processes,
cluding first- and second-order nonstationarity and autoco
relations that decline exponentially with increasing lag.
we make the additional assumption that theεj ’s are nor-
mally distributed, since we have already assumed that th
are uncorrelated, they will now be independent as well, i.e
the εj ’s are i.i.d. N (0, σ 2). It can be shown thatXij has

asymptotically aN (µi, σ2

1−ϕ2 ) distribution.

If we set µi = i, ϕ = 0.5, and σ = 52, then
Xij ∼ N (i,100/3), i = 1,2, . . . ,10. Table 7 contains
the simulation results for the two selection procedures. W
can see that the relative performances of different procedu
are very similar with what we saw in previous experiment
except that, in general, smaller sample sizes are used in t
experiment. This is due to a smaller variance (100/3< 62)
of the input sequenceXij ’s and most probably dependence
within alternatives. Both procedures underestimated t
variance when data are not independent, so the simulat
replications are not large enough and the P(CS) is not
good as that in previous experiments. However, ETSS
still more efficient than Rinott’s procedure in term of sim
ulation replications. Table 8 lists the detailed simulatio
replications used for each design under different selecti
procedures withP ∗ = 0.95 andn0 = 20.

5 CONCLUDING REMARKS

Many two-stage indifference-selection procedures ignore
large amount of first-stage sampling information. We hav
presented a simulation-replication-allocation algorithm th
utilizes both the means and variances from the first stag
Even though the approach of OCBA and ETSS are differen
the computing budget allocation strategy are very simila
However, OCBA is a fixed-sample-size procedure and th
733
n
t

y
-

s

s

.

Table 7: P(CS) and Sample Sizes for Experiment 4
P ∗ = 0.90 P ∗ = 0.95

Procedure P(CS) avg s.r. P(CS) avg s.r.
Rinott(20) 92.06% 4568 94.43% 5804
ETSS(20) 90.49% 1499 92.75% 1858
Reduction 3069 3946
Rinott(30) 91.39% 4342 93.83% 5474
ETSS(30) 89.50% 1429 92.29% 1759
Reduction 2913 3715

Table 8: Detailed Sample Sizes forP ∗ = 0.95 and
n0 = 20 of Experiment 4

Design Rinott ETSS Reduction R%
1 591 593 -2 -0.34%
2 577 366 211 36.57%
3 580 289 291 50.17%
4 580 209 371 63.97%
5 580 137 443 76.38%
6 578 93 485 83.91%
7 581 59 522 89.85%
8 577 42 535 92.72%
9 577 34 543 94.11%
10 578 31 547 94.64%

achieved P(CS) cannot be computed until the end of th
procedure. On the other hand, ETSS attempts to minimiz
the computing budget with a given minimal probability
of correct selectionP ∗. Moreover, ETSS provides some
insight into the computing budget allocation strategy o
OCBA.

At the end of the first stage of the ETSS, inferior design
are excluded from further consideration. Therefore, little
effort is expended on simulating inferior designs. Instead
most effort will be allocated to achieve higher accuracy o
more promising designs. The second stage of our ETSS
a straightforward enhancement to Rinott’s procedure and
very easy to implement. The required number of replication
at the second stage for each design is computed based
both the variances of sample means among the same des
and the differences of sample means between alternat
designs. The marginal computation effort required for ou
ETSS is minimal, yet the achieved efficiency improvement i
significant. This simulation-replication-allocation technique
can also be applied to other ranking-and-selection criter
such as selecting them best ofk designs, see Koenig and
Law (1985), or multiple comparison with the best, see
Matejcik and Nelson (1995).

The results from our empirical experiments show tha
the ETSS procedure is a powerful tool for selecting th
best design out ofk alternatives. The main advantage of
the ETSS is that the algorithm determines the number
additional simulation replications based on both the mean
and variances and thus significantly improves the efficienc
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of R&S procedures. The simplicity of this method shoul
make it attractive to simulation practitioners or softwar
developers.

We are not able to give a definitive recommendation o
the choice of the number of initial replicationsn0 at the first
stage. The “optimal” choice ofn0 depends on the variances
of Xij ’s, which are unknown. Ifn0 is chosen too small,
overestimated variances from the first stage might res
in excessively large second-stage replications. Moreov
inaccurate mean estimates in the first stage may cause
final P(CS) to be smaller than desired. Because the ET
procedure relies heavily on the accuracy of the varian
estimates and the mean estimates from the first stage
compute the required simulation replications. In gener
we would recommend thatn0 be large enough to obtain
reasonable variance estimates. Especially whenNi is much
larger thann0, there is little to lose with a largern0.

To avoid the risk of relying too much on the variance
estimates from only one stage, multistage and sequen
selection procedures have been developed, see Law and K
ton (2000). Because the value ofh in equation (8) depends
on the number of replications, which will be different for
different designs at the end of the second-stage, it may n
be easy to modify the ETSS into a sequential procedure
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