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ABSTRACT  
 
Once a simulation model is developed, designed 
experiments may be employed to efficiently optimize the 
system. Designed experiments are used on �real� 
production systems as well. The first step is to screen for 
important independent variables. Several screening 
methods are compared and contrasted in terms of 
efficiency, effectiveness, and robustness. These screening 
methods range from the classical factorial designs and two-
stage group screening to new, more novel designs 
including sequential bifurcation (SB) and iterated 
fractional factorial designs (IFFD). Conditions for the use 
of the methods are provided along with references on how 
to use them. 
 
1 INTRODUCTION 
 
The first step in finding the important independent 
variables in a simulation model or production system is to 
conduct a screening experiment. These important variables 
can later be used to optimize the model. Simulation models 
typically represent complex and stochastic systems. 
Experimentation on these systems is assumed to be time 
consuming and can be expensive in terms of computation. 
Minimizing the number of experiments while maximizing 
information is the ultimate goal. 

The parsimony principle says that some of the factors 
are important while others are not (Myers and Montgomery 
1995, Kleijnen 1987). In other circles, this principle is 
known as the Pareto principle or the �80-20� rule. Said 
another way, a few variables are responsible for most of 
the effect on the response while most variables contribute 
little. Screening experiments aim to find these few 
variables that affect the response the most. 
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2 AVAILABLE METHODS 
 
Response Surface Methodology: Process and Product 
Optimization Using Designed Experiments by Myers and 
Montgomery (1995) is a leading text on the design of 
experiments (DOE) and response surface methodology 
(RSM). The screening experiments emphasized are 
classical factorial designs and fractional factorial designs. 
These designs work well for screening a small number of 
variables (i.e., fewer than 20). Using them can detect main 
effects and some interaction effects depending on the 
resolution. They have many desirable features and can be 
augmented easily to optimize the response in subsequent 
experimentation.  

One current method for screening large numbers of 
variables is group screening (Kleijnen, 1987). The analyst 
makes educated choices in grouping variables together and 
then performs a fractional factorial experiment on the 
groups. If a group is significant, subgroups or individual 
variables within the group are further screened in the same 
way. This can work well if the variables within a group 
have the same sign of effects and if there is no cancellation 
of effects due to interaction. 

Myers and Montgomery (1995) also mention one-at-a 
time designs, fold-over designs, Plackett-Burman, and 
orthogonal designs. These designs are not as efficient nor 
as effective as the classical designs and will not be 
discussed here. 

A more recent technique is the edge design discussed 
in Elster and Neumaier (1996). Edge designs look for 
significant differences in pairs of experimental runs where 
the settings differ for only one factor. An illustration of an 
edge design in three dimensions is shown in Figure 1 along 
with its design in Table 1. It appears from their discussion 
that exactly 2K runs are needed. Unfortunately they do not 
describe how to generate the designs easily.  
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Table 1: Edge Design in Three Variables 
 

Run A B C 
1 + + - 
2 + - + 
3 - - + 
4 - + - 
5 + + + 
6 - - - 

 
Elster and Neumaier discuss that the difference in the 

responses for the pairs is due to noise unless there is a 
significant factor involved. They claim that these designs 
can detect nonlinearity (in the probability plots) better than 
classical designs. In other words, the significant factors are 
more obvious.  
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Figure 1:  Edges of Three Dimension Design 

 
Recently, Bettonvil and Kleijnen (1996) extended a 

novel approach introduced by Jacoby and Harrison (1962) 
known as sequential bifurcation that efficiently and 
effectively screens large numbers of variables in a 
restricted setting. In one deterministic example 128 
variables were screened and the three most important 
variables were found in 16 observations. Another example 
given was a stochastic ecology model where in 144 
observations, 15 important effects, main and 2-way, were 
found from 281 variables. However, the use of sequential 
bifurcation is limited to quantitative variables, same-sign 
effects and a monotone response function. These latter two 
limitations are very restrictive when little is known about 
the system under study. 

Andres and Hajas (1993) introduced another novel 
approach for screening large numbers of variables called 
iterated fractional factorial designs (IFFD). Campolongo, 
Kleijnen, and Andres (2000) describe it as a type of group 
screening where the variables and their signs are assigned 
randomly to groups; this is repeated over several iterations. 
The number of groups is usually either 8 or 16 (some 
power of 2) and should be slightly larger than the number 
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of important factors. The sign (+1 or �1) is assigned with 
equal probability (0.5). The total number of experimental 
runs is dependent on the budget available but is typically 
100 to 500 simulation runs. IFFD is insensitive to the total 
number of initial factors considered, K, so long as K is a 
large number (1000 or more). It was unclear what the 
incremental improvement of this algorithm is for each 
additional iteration completed. 

IFFD can estimate certain interaction and quadratic 
effects as well (Campolongo, Kleijnen, and Andres, 2000). 
IFFD requires that very few factors dominate. In a nuclear 
waste disposal case, 18 significant effects were found from 
over 3000 variables; this is less than 1% of the total, very 
few indeed (Andres, 1997). Software is available called 
SAMPLE2. The software generates the design. 

 
2.1 Issues with Screening 

 
Factorial designs require a large number of experimental 
runs to screen a small number of variables. A 2k factorial 
design requires 2k experimental points to estimate linear 
effects of k variables and their interactions. For example, if 
k=5, then 32 experiments are conducted. All five main 
effects, all ten 2-way interactions, all ten 3-way 
interactions, all five 4-way interactions and the 5-way 
interaction can all be estimated. Practitioners may opt for a 
fractional factorial design and focus just on finding 
important main effects and 2-way interactions (resolution 
V), or just main effects (resolution III) or main and 
selected 2-way interactions (resolution IV). With k=5, a 
resolution V design requires 16 experimental points (Myers 
and Montgomery 1995). The number of runs required for 
fractional factorial designs is much more realistic but the 
ability to estimate interaction effects is reduced.  

If k=15, a full factorial design would require over 
32,000 experiments, impossible to carry out. Instead a 215-8 
fraction requires 128 experiments, still a large number. 
This fraction can estimate main effects and some 2 way 
interactions (resolution IV).  

Another important issue with screening experiments is 
the possibility of failing to retain significant effects as 
important (Trocine, 2000). For example, a two-way 
interaction is shown in Figure 2. This interaction should be 
included in further analysis because the combination of the 
settings of the two variables dramatically affects the 
response. Two possible situations exist where this 
interaction may be overlooked. First, the design may 
confound this particular interaction with other effects (such 
as in a fractional factorial design). The results are 
combined with other interactions and nothing can be 
determined about individual interactions within the alias 
structure. The second situation is where the choice of low 
and high values effectively cancels the interaction. This is 
depicted in Figure 3. The upper chart shows how the 
interaction would appear given a 2k design while the lower 
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chart shows a strong interaction when another level of 
factor A is included. This is a dangerous situation because 
these interactions may significantly affect the response in 
the optimum region and if they are excluded during 
screening, the model will be misleading.  
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Figure 2:  Interaction Example 

 
In the case of group screening, the interaction might be 

missed because another factor within the group cancels the 
interaction by having equal and opposing effect on the 
response. Although this is a violation of the main 
assumption in group screening that the sign of all effects in 
a group is the same, many times we may not know enough 
about the system at the screening stage to be able to assign 
variables to groups correctly (i.e. satisfying the underlying 
assumptions for group screening). In general, if the sum of 
the effects within a group is close to zero, important effects 
within that group will be missed.  
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Figure 3:  Missed Interaction Effect 
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An issue with two-stage group screening is that 
interactions between variables that are in different groups 
are not measured. Ivanova, Malone and Mollaghasemi 
(1999) showed that the results of a group screening 
experiment and a fractional factorial experiment on 17 
variables can result in two different sets of important 
variables. No conclusions could be made in this 
semiconductor manufacturing process example about what 
variables were truly important. 

 
2.2 Desirable Screening Design Features 
 
Screening experiments can be evaluated on a number of 
criteria to more adequately assess these issues. Efficiency 
is necessary to screen large numbers of variables in a 
reasonable number of experiments. As shown earlier, 
classical factorial designs are exponential in the number of 
variables and are thus inefficient for more than a few 
variables. Effectiveness is defined as the ability to find the 
important independent variables regardless of the 
interactions among the variables. Screening designs should 
cover both deterministic and stochastic systems, both 
monotonic and non-monotonic response surfaces, and both 
small or large numbers of variables. All of this together is 
referred to as robustness and provides versatility in the 
application of a design. 

Table 2 summarizes the effectiveness of the screening 
methods discussed here. The first column, �main effects 
estimated� shows that all methods can be used to estimate 
main effects. The next column shows whether the method 
can be used for 2-way interactions. The third column 
shows whether the method can easily be adapted to 
measure curvature (by introducing a third level of a 
variable). The next column, �interactions without main 
effects�, shows that some methods are only able to 
measure interactions if there is a significant main effect. 
Finally, the last of the columns shows whether the method 
is robust to canceling of effects by two effects having 
opposite signs and making the combined effect appear to 
be negligible. The note �1� indicates that factorial designs 
may easily be augmented with middle levels or center 
points to detect curvature. Table 3 summarizes the 
efficiency, robustness and issues with the screening 
methods. The column for number of experiments shows 
known values in terms of �K� the total number of variables 
in the original problem. The columns under �robustness� 
show whether the method can be used for large numbers of 
variables and whether monotonicity is required. A 
monotone function is either non-decreasing or non-
increasing. That is, an increase in the level of a significant 
effect will always result in an increase in the response in 
the case of a non-decreasing function. A rough guideline is 
provided to show the intended number of variables that the 
method operates upon. Small is usually less than 10 and 
certainly less than 20. Large is certainly 20 or more but can 
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include 15 or more. The last column under �issue� shows
the requirement for like signs-of-effects. This is not always
known in advance. All of the methods discussed here result
in unbiased estimators and operate on stochastic systems.

Table 2:  Effectiveness of Screening Methods
Existing 

Screening Experiment  
Methods 
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Effectiveness in finding significant 
effects 

 
 
 
 
 
 
 M

ai
n 

Ef
fe

ct
 

Es
tim

at
ed

s 

In
te

ra
ct

io
n 

Ef
fe

ct
s 

Es
tim

at
ed

 

Q
ua

dr
at

ic
 E

ff
ec

ts
 

Es
tim

at
ed

 

N
o 

In
te

ra
ct

io
ns

  
w

ith
ou

t m
ai

n 
ef

fe
ct

s  

R
ob

us
t t

o 
C

an
ce

lle
d 

Ef
fe

ct
s 

Desired Yes Yes Yes Yes Yes 
One-at-a-time Yes No No No Yes 
Full Factorial Yes Yes 1 Yes Yes 
Fractional Factorial Yes Yes 1 Yes Yes 
Edge Designs Yes No No No Yes 
Two-Stage Group Screening Yes Some No Some No 
Sequential Bifurcation Yes Some No No No 
IFFD Yes Some Yes No Yes 
 

Table 3:  Efficiency and Robustness of Screening Methods
Existing 

Screening Experiment  
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Efficiency 
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Desired Small No Large No 
One-at-a-time K No Small No 
Full Factorial 2k Large No Small No 
Fractional Factorial 2k-p Large No Small No 
Edge Designs 2K No Small No 
Two-Stage Group Screening Varies Yes Medium Yes 
Sequential Bifurcation O(k log K) Yes Large Yes 
IFFD 100-500 No Large No 
 

3 CONDITIONS FOR USE

The choice of which screening plan to use depends on the
number of variables in the model. Other considerations
include how much the practitioner knows about the
underlying model (e.g. polynomial model of linear
function, exponential model, other nonlinear model)
whether the sign of the effects are known or not, how many
experiments may be run (the budget) and how much is
known about the system or model under study. For very
general circumstances, the following decision tree may be
used to guide the practitioner in choosing the best design.
75
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Figure 4:  Decision Tree for Selecting a Screening Design

For a few variables, the classical factorial designs are
best. For thousands of variables, the only choice is IFFD.
For fewer than 20 variables, the fractional factorial is
probably the best design. To screen more than 15 or 20
variables, either two-stage group screening or sequential
bifurcation can be used cautiously. These are the best
screening alternatives for each category.

For more information about sequential bifurcation see
Campolongo, Kleijnen, and Andres (2000), Bettonvil and
Kleijnen (1996), or Kleijnen (1995). For more information
on IFFD see Campolongo, Kleijnen, and Andres (2000),
Andres and Hajas (1993), Andres (1997), and Saltelli et al
(1995). Elster and Neumaier (1996) is the source for
information on edge designs. Both IFFD and edge designs
are based on Hadamard matrices. For practical information
about group screening see Kleijnen (1987). Other sources
for group screening are Mauro (1984), Mauro and Smith
(1984) and Watson (1961). For a case study comparing
fractional factorial designs to two-stage group screening,
see Ivanova, Malone and Mollaghasemi (1999). For all
others see Myers and Montgomery (1995).

4 ANALYSIS

Once the screening experiments are completed an analysis
to find the functional form and ultimately to optimize the
response must be completed. These analyses include
techniques discussed in Myers and Montgomery (1995) for
response surface methodology: normality and interaction
plots, construction of confidence intervals, hypothesizing
and fitting regression models. Other techniques include
nonlinear regression, training neural networks in place of a
regression equation, using stepwise regression, and
multinomial analysis of variance. See Myers and
Montgomery (1995), Kleijnen (1987), or  Ratkowsky
(1990) for material on these analyses. Smith (1996) and
Christodoulou and Georgiopoulos (2000) discuss neural
networks and how they may be used to fit a nonlinear
model in place of regression.
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5 CONCLUSIONS 
 
There are several methods available for screening. 
However, each method is limited in one aspect or another 
and the analyst should make informed decisions about 
which method to apply. Tradeoffs must be made by the 
analyst when choosing a screening method according to the 
criteria outlined above and the circumstances of the 
simulation model. 

Table 4 lists the same screening methods yet again 
along with their relative ease of use in building the design, 
conducting the analysis, and whether software is available 
to assist in the use of the method.  
 

Table 4:  Relative Ease of Screening Designs 
Existing 
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Desired Easy Yes Easy Easy 
One-at-a-time Easy No Easy Easy 
Full Factorial Easy Yes Easy Moderate 
Fractional Factorial Easy Yes Moderate Moderate 
Edge Designs Moderate No Difficult Moderate 
Two-Stage Group Screening Moderate Yes Difficult Moderate 
Sequential Bifurcation Moderate No Easy Moderate 
IFFD Moderate Yes Easy Difficult 
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