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ABSTRACT

Simulating rare events in telecommunication networks such
as estimation for cell loss probability in Asynchronous
Transfer Mode (ATM) networks requires a major simulation
effort due to the slight chance of buffer overflow.
Importance Sampling (IS) is applied to accelerate the
occurrence of rare events.   Importance Sampling depends
on a biasing scheme to make the estimator from IS unbiased.
Adaptive Importance Sampling (AIS) employs an estimated
sampling distribution of IS to the system of interest during
the course of simulation. In this study, we propose a
Nonparametric Adaptive Importance Sampling (NAIS)
technique, a non-parametrically modified version of AIS,
and estimate the probability of rare event occurrence in an
M/M/1 queueing model.  Compared with classical Monte
Carlo simulation and AIS, the computational efficiency and
variance reductions gained via NAIS are reasonable.  A
possible extension of NAIS with regards to random number
generation is also discussed.

1 INTRODUCTION

Simulation is a powerful tool that is used to assess the
performance evaluation of ATM networks.  The desired
cell loss probability for ATM networks is within the range
of 10-6 to 10-12 which makes it relatively costly to use
classical simulation techniques to estimate the loss
probability.  This limitation has been reported in several
previous simulation studies of ATM networks.  The
problems caused by this limitation can be classified in two
ways.  First, the random number generator may exhaust its
cycle. Second, the excessive simulation time required to
generate even a few cell losses may tempt the analyst to
settle for estimators with large variance.

There are however, several fast simulation techniques
that can be used to remedy these limitations, including:
Importance Sampling, Parallel Simulation, Regenerative
Method, and Hybrid Simulation. Smith (1997) and Glynn
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and Iglehart (1989), provide thorough surveys on these fast
simulation techniques.

In rare-event simulation, the simulation software may
not be able to provide a large enough sequence of random
numbers without degeneration occurring (i.e., the same ran-
dom numbers are repeated within a single simulation run).

IS is a powerful technique that is used for rare event
simulation and the success of IS has been reported in
several papers. The fundamental concept of IS is to modify
the probabilities for rare event occurrences that govern the
outcomes of the simulation in a way that allows for low-
probability events to occur more frequently. To estimate
the probability of rare events, we simulate with a biased
sampling distribution that makes rare events more likely.
The sample values from a biased sampling distribution are
then adjusted to make the final estimates unbiased.
However, selecting an optimal sampling distribution in
order to make the events occur more frequently is not easy;
how to make this happen is a very important issue. For
example, an arbitrarily selected sample distribution can
produce estimators with inflated variance. Hence the most
crucial problem in IS is the selection of an optimal
sampling distribution (often system specific) that
guarantees variance reduction. How to select an optimal
sampling distribution properly is still unresolved.

The main idea behind AIS is to recognizing that the
distribution of the samples of error events is identical to the
optimal sampling distribution of IS.  Therefore, the
distribution of the samples of error events may be used to
estimate the properties of an optimal sampling distribution
in an iterative way in order to close the gaps between the
actual optimal sampling distribution and the estimate of the
optimal sampling distribution.

Most of the works in IS focus on the calculation of an
estimate for a sampling distribution using IS in a parametric
way: see for instance Glynn and Iglehart (1989), Oh and
Berger (1992, 1993), and West (1992, 1993).  The
nonparametric way has been studied by Givens and Raftery
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(1996), and it can provide a significant improvement in the
selection of an optimal sampling distribution.

Zhang (1996) proposes a nonparametric method to
estimate an IS sampling distribution for any given system
that uses an estimated sampling distribution to generate
random variates rather than simply estimating the
parameters of the optimal sampling distribution. He
extends Nonparametric Importance Sampling (NIS) to
Nonparametric Adaptive Importance Sampling (NAIS),
which is just an iteration of NIS that requires more
computation. Our NAIS is based on AIS, uses the initial
sampling distribution under the conditions that the samples
of rare enents occurred during the initial simulation run and
adopts Zhang�s nonparametric approach to estimate the
optimal sampling distribution.

The rest of this paper is organized as follows.  In
Section 2, we introduce the basic idea of the IS method and
the AIS method.  Section 3 is devoted to the NAIS method.
In Section 4, we test NAIS in an M/M/1 queueing model.
Conclusions and ideas for future research are discussed in
Section 5.

2 IMPORTANCE SAMPLING AND
ADAPTIVE IMPORTANT SAMPLING

2.1 Importance Sampling (IS)

Let a random variable X  be defined on the probability
space ( Ω, Γ, Ρ ), where Ω, Γ, and Ρ are sample space,
event space, and probability measure, respectively. The
occurrence of a rare event, Ε, is defined as Ε∈Γ. The
indicator function φ(x) can be defined as follows:





=
,0
,1

)(xφ

Consider the problem of estimating the probability of
the rare event E :

)()]([ xP xE φµφ = , (1)

where P is a measure with respect to the expectation is
taken.

In classical simulation, (1) can be estimated with N
independent samples as follows:
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According to the Strong Law of Large Numbers, )(� xφµ
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 if  X∈E

 if otherwise.
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a confidence interval of )(� xφµ can be constructed using the
Central Limit Theorem(CLT) as

,]/)([� 2/)( Nxvarz Px φµ αφ −

]/)([� 2/)( Nxvarz Px φµ αφ + ), where zα/2 is the 100(1-

α/2)% quantile for a standard normal distribution.  Since
the variance varP )]([ xφ is not known beforehand, it must
be replaced with the sample variance.

Let X be defined for the probability space (Ω, Γ, IP );

where IP  is the IS probability measure, and )(xdPI is
absolutely continuous with respect to )(xdP , and is
different from )(xdP (the rare event occurs more
frequently). This condition implies that if the old
probability measure is positive, then the new probability
measure will also positive.  Then
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where )(/)()( xdPxdPxL I=  is the likelihood ratio.
Using the  samples
{ ))(),((,)),(),(( 11 NN xLxxLx φφ ! } generated from

IP , an unbiased estimator ( Iµ� ) is given by
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To obtain the variance reduction in IS, selecting )(xdPI  as
the likelihood ratio 1)( <xL  when 1)( =xφ  is important

)]()([])()([ 222 xLxExLxE
II PP ⋅<⋅ φφ

])([ 2xEP φ= .

If ∞<])()([ 22 xLxE IP φ , then a new confidence interval
can be calculated as

,/)]()([�( 2/ NxLxvarz
IPI ⋅− φµ α

)./)]()([var� 2/ NxLxz
IPI ⋅+ φµ α  Shahabudin (1994)

reports that there exists probability measure ( IP ), that gives a
8



Kim, Roh, and Lee
variance of 0, but it requires a knowledge of the probability of
the rare event.  The most important task in IS is to find an
easily tractable measure that guarantees variance reduction.
Therefore, it is necessary to select a sampling distribution that
reflects the rare event (E) well. The theoretical optimal
sampling distribution of IS can be given by

)(/)()()( xI xdPxxdP φµφ ⋅= . (4)

Using equation (4), the original estimator can be calculated
as follows:

)(xφµ  = )()( ii xLxφ

)(/)()(
)()(

xi
i xdPx

xdPx
φµφ

φ
⋅

= . (5)

Since the optimal sampling distribution is dependent on the
unknown estimator, )( xφµ , the random variates, xi�s cannot
be generated directly from the theoretical optimal sampling
distribution formula used in (4).  The incorrect selection of
a sampling distribution for IS done in a parametric way
may provide an imprecise estimator.  Much of the research
on IS is focused on choosing a reasonable approximation
of optimal sampling distribution. In classical IS approach,
one assumes that sampling distribution belongs to a
parametric family dPI (•, θ), θ ⊂ Θ. Choosing a parameter
value θ that satisfies certain optimality criterion is
problematic. Sigmund (1976) assumed the sampling
distribution belongs to an exponential family, whereas Oh
and Berger (1993) assumed that the sampling distribution
is a mixture distribution. Adaptive Important Sampling
(AIS) was thus developed to overcome this problem.

2.2 Adaptive Important Sampling (AIS)

It is obvious that if we use the optimal sampling
distribution then the variance of the estimator becomes
zero as Shahabudin (1994) has noted. This implies that a
perfect estimate of )(xφµ  can be obtained in a single
simulation run.  AIS basically assumes that the distribution
of the samples of observations conditional on the rare event
occurring area and the optimal sampling distribution for IS
are the same. This can be expressed as,

)(/)()()X|( )( xdPxdPxExdP Ix =⋅=∈ φµφ . (6)

AIS uses the simulation results to estimate the parameters of
the unknown optimal sampling distribution.  AIS can
minimize computational efforts by using the probability
density function (pdf) of the simulation output to estimate the
parameters of the unknown optimal sampling distribution and
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the probability of rare event occurrence simultaneously.
Several short simulation runs are performed in an AIS
algorithm. For each run, )(xφµ  and )(xdPI are estimated.
Then the sampling distribution of IS is modified such that its
properties match the estimated properties of optimal sampling
distribution to be used in the subsequent simulation runs. In
this way, the sampling distribution of IS becomes more like
the optimal sampling distribution and the estimate of

)(xφµ becomes more accurate as the simulation runs are
performed successively (For a more detailed algorithm of
AIS, see Stadler and Roy (1993)).  AIS is a simulation
technique that estiamtes every unknown quantities during the
course of simulation. AIS has advantage over calssical IS for
estimating both θ* and )(xφµ using the same set of samples,
hence reduce the computation time.

3 NON-PARAMETRIC ADAPTIVE
IMPORTANCE SAMPLING (NAIS)

An improperly selected IS distribution may bring variance
inflation instead of reduction. The proper selection of an
initial distribution remains problematic in AIS. If prior
information about the sampling distribution of IS is not
available for a given system, a nonparametric approach
may be more helpful.

Based on equation (6) of AIS, our NAIS method uses
the initial sampling distribution based on the samples of rare
events that occurred during the initial run, but it also and
uses Zhang�s nonparametric idea to estimate the optimal
sampling distribution. NAIS is estimating the optimal
sampling distribution itself for a given system rather than
estimating the parameter of the optimal sampling
distribution. We then use this estimated optimal sampling
distribution to generate random variates directly. NAIS use
the samples conditioned on the rare event occurring area,
which requies less samples compared to NIS.

Silverman (1986) introduces four nonparametric methods
to estimate a density function: histogram, kernel estimation,
nearest neighbor, and variable kernel.  We have focused on
the kernel estimation method for the ease of use and accuracy.

We propose the NAIS algorithm as follows:

Step 1: Initialize a simulation run to collect the rare
events occurring samples yi i=1,�., p., yi is
the ith sample (inter-arrival time or service
time)that caused an error

Step 2:  Esitmate the optimal sampling distribution
)(* xfopt  using the kernel function estimation

method.
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where h is a smoothing parameter and K( �) is
a simple rectangular kernel function such as
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Step 3: Run a simulation where )(� * xfopt  is the optimal
sampling distribution of IS, and calculate

)(� xφµ as follows:
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where n is the number of replications or the
number of regeneration cycles.

4 NUMERICAL RESULTS

We tested the proposed NAIS algorithm in an M/M/1 model.
Let λ and µ  be the mean arrival rate and the mean service
rate in an M/M/1 queueing model, respectively. Consider the
problem of estimating the probability, )(xφµ , that the
number of customers reaches a certain queue level (A)
during a busy period. Assume that the sample path (ω )
reaches queue level (A) during a busy period and that this
occurrs at timeτ before the system becomes empty. If the
number of departures is m, then there are A+m-1 arrivals
during any given busy period.

Now the NAIS algorithm can be described as follows:

Step 1: Initialize a short simulation run to collect the
samples of inter-arrival and service times
when the number of customers reaches the
queue level A during a busy period. Collect

it 1,.,1 −+= mAi  and mjs j ,..,1, = .
Step 2: Use the kernel function estimation method

with the samples collected from Step 1 to
estimate the optimal sampling distributions of
inte-rarrival and service times to be used later
in the simulation. Estimate )(* xf  and

)(* xg  using equation (8).
Step 3: Proceed in the simulation with the estimated

optimal sampling distributions, )(* xf  and

)(* xg obtained from Step 2.
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The sampling distributions of IS can be determined by
modifying the samples� inter-arrival and service times
during a busy period. It follows that for any busy period, if
a sample path (ω ) represents the arrivals and departures
from the queue, then the likelihood function L(ω ) can be
defined as follows:

L(ω ) = ∏∏
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where

it   :  inter-arrival time for the ith customer

js   :  service time for the jth customer

)(xf :  pdf for inter-arrival times

)(* xf :  sampling pdf of NAIS for inter-arrival times
)(xg   :  pdf for service times

)(* xg   :  sampling pdf of NAIS for service times.

For N busy periods (it can be obtained through either
N independent replications or N regenerative periods), the
probability )(xφµ  can be calculated as follows :
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We then run the Monte Carlo, AIS, and NAIS
simulation varying the queue level (A) for 10,000 busy
periods at 10 different times.

Table 1 shows the results of the AIS, NAIS, and the
Monte Carlo simulation: first column, )(� xφµ , is the
probability that the number of customers reaches the queue
level (A), the second column is the standard deviation (SD)
of )(� xφµ , and the third column is the half-width of a 90%

confidence interval for )(� xφµ .
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Table 1:  NAIS, AIS and Monte Carlo Results of an M/M/1 Queueing Model (with 10,000 Busy Periods)

)(� xφµ SD Half-widthQueue
level
(A) Monte

Carlo
AIS NAIS Monte

Carlo
AIS NAIS Monte

Carlo
AIS NAIS

10 2.53E-03 2.43E-03 2.36E-03 2.96E-04 3.86E-04 1.02E-04 3.36E-04 2.24E-04 1.16E-04
15 1.40E-04 1.90E-04 1.25E-04 9.66E-05 6.66E-06 4.88E-06 1.10E-04 3.86E-06 5.54E-06
20 3.00E-05 1.45E-05 7.37E-06 4.83E-05 2.20E-07 2.25E-07 5.49E-05 1.28E-07 2.56E-07
25 1.15E-06 6.61E-07 2.37E-08 3.10E-08 1.37E-08 3.52E-08
30 8.69E-08 6.41E-08 4.40E-09 4.82E-09 2.55E-09 5.48E-09
35 6.90E-09 3.27E-09 2.54E-10 1.46E-10 1.47E-10 1.66E-10
40 4.94E-10 5.38E-11 6.99E-11 4.78E-11 4.05E-11 5.23E-11

( λ = 0.3, µ = 0.5)
In Table 1, the probability, )(� xφµ , decreases as the
queue level (A) increases. The probability below 10-5

cannot be estimated for the Monte Carlo simulation since
the num ber of rare events is not sufficient.  The curves
illustrated in Figure 1 are the AIS, NAIS and Monte Carlo
(MC) simulation results of )(� xφµ .
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Figure 1: Probability of Customer Reaches the Level A
During Busy Period

Figure 2 shows the half-widths of the 90% confidence
intervals of the MC, AIS, and NAIS simulations. We can
see that a variance reduction is obtained with the AIS and
NAIS. Since variance in theses cases is reduced, the
confidence intervals become tighter, which implies these
the estimates are more accurate. In an M/M/1 queueing
model, the asymptotical optimal sampling distribution of
AIS is found by swapping λ  and µ . This explains the
medicore performance of NAIS. However, if the optimal
sampling distribution is not known (such as in an  ATM
network simulation ), the performance of NAIS will be
better than AIS.

5 CONCLUSION

This paper proposed a modified fast simulation technique,
NAIS, and demonstrated its performance in the estimation
77
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Figure 2: Half-widths of 90% Confidence Intervals
for )(� xφµ

of rare event probabilities (when the queue level exceeds a
certain level) in an M/M/1 queueing model. The
experiments done using NAIS show substantial gains
regarding computational efficiency and the variance
reduction when compared to classical Monte Carlo
simulation and AIS. The difficulty of choosing a proper
optimal sampling distribution for IS and AIS can be eased
by applying NAIS, since we can use data that is collected
during the simulation run directly to modify the optimal
sampling distribution estimate regardless of the
characteristics of the system.  To improve efficiency when
modifying the estimate for an optimal sample distribution a
more complicated kernel function, such as Gaussian
density, is worth of investigation.  We noted that the time
taken for random number generation could be decreased if
a more efficient random variate generation technique is
used. A method that guarantees an optimal sampling
distribution, which is invertible regardless of the density
estimation methods also needs to be developed.  Therefore,
NAIS should be used for the simulation of highly reliable
systems whose general characteristics are not known
beforehand.  We will applied NAIS in estimating the cell
loss probability in ATM networks.
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