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ABSTRACT

We propose solving continuous parametric simulation op
mizations using a deterministic nonlinear optimization a
gorithm and sample-path simulations. The optimizatio
problem is written in a modeling language with a simula
tion module accessed with an external function call. Sin
we allow no changes to the simulation code at all, w
propose using a quadratic approximation of the simulati
function to obtain derivatives. Results on three differe
queueing models are presented that show our method to
effective on a variety of practical problems.

1 INTRODUCTION

Simulation is a standard computational tool for understan
ing or predicting the behaviour of a complex system wh
exposed to a variety of realistic, stochastic input scenar
(Shannon, 1998). Analytic investigations of these syste
are typically impossible due to the complexity of the un
derlying models. The simulation code can be very larg
complicated, and difficult to understand, while in som
cases, the source code might even be unavailable.

In many practical contexts, the simulation affords
few design parameters that can be modified to improve
performance of the system being modeled. Typically, the
design parameters are constrained by other relationsh
for example, budgetary or feasibility restrictions. Thus, a
optimization model arises for which some of the definin
relationships are the result of simulations. From the persp
tive of the optimization problem, the simulation is simpl
a function that takes the aforementioned input paramet
and derives one or more output values from a simulati
run.

This paper addresses a practical approach for solv
such problems, allowing the optimization model to be fo
mulated in the GAMS modeling system (Brooke et al., 198
and the simulation to be provided essentially as a black-b
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routine. Our examples are drawn from problems who
parameters vary continuously, rather that discretely. T
approach exploits state-of-the-art (gradient based) optimi
tion approaches, rather than the stochastic neighbourh
search algorithms that are commonplace in the literat
(Andradóttir, 1996; Andradóttir, 1995; Haddock and Mi
tenthal, 1992).

Two classes of methods have been commonly used
solve the continuous parametric simulation optimizatio
namely stochastic and deterministic optimization. Stoch
tic approaches estimate the optimal solution by generat
a sequences{xn} where

xn+1 = cθ (xn + ang(xn, θ))
for all n ≥ 1, whereg(xn, θ) is an estimate of the

Jacobian of the simulation function atxn. The sequence
an has infinite sum with a finite second moment. Exam
ples include (Robbins and Monro, 1951) and (Keifer a
Wolfowitz, 1952).

Another technique uses deterministic optimization
exploit a gradient evaluation in a sample-path method (Pla
beck et al., 1993; Plambeck et al., 1996; Robinson, 199
The gradient evaluation of the simulation function can
estimated using finite differences, infinitesimal perturbati
analysis (Glasserman, 1991) or the derivative of a sim
polynomial fitting model, as in this paper.

The first method, finite differences, is very general a
easy to implement. It relies on the simulation computati
of at least two proximal points. To increase the numeric
accuracy of the derivative, both computed simulation poin
must be within a very small distance of each other. Th
closeness leads to difficulty of handling derivatives wh
the function is noisy (as can be the case for simulati
runs).

The second method, infinitesimal perturbation analy
(IPA), uses one sample-path simulation run to collect g
5
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dient information and the simulation value. This metho
requires a modification of the simulation source code
incorporate the gradient computation during a simulatio
run. For this reason, and the difficulty of computing th
actual gradient for each new simulation, we do not consid
this approach here. Similar approaches based on autom
differentiation (AD) of the simulation code are also no
used here, mainly due to the fact that source code of t
simulation is required. Furthermore, in many cases, the A
codes do not provide meaningful derivatives since man
simulation codes involve at least some integer variable
which are not differentiated, and complex logic.

Unlike approaches that require access to the sour
code, our method relies solely on executing the simulatio
repeatedly and building up a (small-scale) model that is fe
into a standard (nonlinear) optimization code. While thi
approach may be inefficient from the standpoint of requirin
many (potentially costly) simulation runs, we believe it is
(in general) more reliable and efficient than other competin
methods. Reliability derives from the fact that building th
model does not require changes to the simulation code, a
is carried out entirely automatically (and hence does n
introduce programming error). Efficiency stems from th
fact that the time to update a simulation for our approac
is vastly shorter than, for example, IPA approaches, a
affords the potential for parallelism in building the loca
model. For example, the local model can be built in parall
by executing the simulations on entirely separate processo

This paper documents and explains our approach. W
first describe the type of optimization model that we wil
address and explain how the simulation is incorporated in
the optimization model. We then outline our procedure t
generate a model of the simulation that can be used
an optimization code to solve the optimization problem
We pay particular attention to the treatment of noise i
the simulation and introduce a statistical testing mechanis
to determine when our model has captured the underlyi
simulation function excluding the noise. We detail how
simulations are automatically reused in model building an
justify several choices made in our experimentation. Th
strength of this work is to allow standard modeling an
optimization tools to be easily and conveniently used t
optimize existing simulation systems.

2 SIMULATION OPTIMIZATION

The aim of our work is to use pre-existing algorithms
available from within a modeling language to determin
an optimal system design. In this section, we discuss t
mechanisms used within GAMS to communicate informa
tion about the system being considered to the solver.

We will think of the (simulated) system as a function
S : Rn→ Rm, mapping design choices,x ∈ Rn, to outputs,
796
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y ∈ Rm. We are then interested in solving the optimizatio
problem:

min f (x, y)

s.t. y = S(x)
(x, y) ∈ B

(1)

wheref : Rn+m → R models the design quality andB
specifies additional constraints on the problem variable
As a simple motivating example, consider an M/M/1 queu
with exponentially distributed inter-arrival and service times
We might want to improve the service rate by providin
additional training to an employee, resulting in a decrea
in the amount of time customers spend waiting in the queu
An optimization problem might be to determine the amou
of training to provide that minimizes total costs; that is th
fixed cost for training and an additional penalty for los
customer goodwill.

We will assume thatS is not available analytically;
the system function is provided as an oracle that is giv
the design choices and produces some outputs. In orde
write the optimization problem in GAMS, we need to us
the external function syntax as illustrated in the followin
example.

Variables obj,
mu ’sim. input, service rate’,
w ’sim. output, waiting time’;

Equations cost,
extcall ’external function’;

Scalar c ’constant’ /4.0/;

cost.. obj =e= sqr(mu-c) + w;

* declare external equation : w - S(mu) = 0
extcall.. 1*mu + 2*w =x= 1;

* Select CONOPTX as the solver
option nlp = conoptx;

* Set a lower bound on service rate
mu.lo = 3.0;

* Construct the model and solve
Model mm1 /expect,cost/;
Solve mm1 using nlp minimizing obj;

Most of the model consists of standard GAMS synta
The key to our approach is the exploitation of the extern
function interface of the modeling language that is signifie
by the=x= notation. The optimization model identifies tha
equation,extcall, as a special nonlinear constraint to b
implemented by the modeler. Some explanation is requir
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concerning the format of the external function definition
in this case,

extcall.. 1*mu + 2*w =x= 1;

The coefficients on the variables,mu andw, determine the
mapping of the GAMS variables to the order required for th
external function. In this case,muis passed as the first input
variable andwas the second. The right hand side is a uniqu
identifier for the function, as any model can have many e
ternal functions. For complete details of how to interfac
to external functions see the GAMS documentation ava
able at <http://webster.gams.com/extfunc/
extfunc.html> .

We have now informed GAMS that there is an exte
nal function. The modeling language then calls a nonline
optimizer, such as CONOPT (Drud, 1985) that requires ev
uations for each constraint and objective function. When t
solver requests an evaluation of an external function, cont
is passed to a user defined function with the appropria
arguments. This function knows how to call the simulatio
with the correct input arguments. For the example above
simulation is called withmu as input, producing an output
S(µ). The external function returns the valuew − S(µ),
that the solver will subsequently attempt to drive to zer
by modifying w andmu.

The diagram in Figure 1 shows how the various piec
of our optimization model are joined together. Note tha
each time the nonlinear programming solver requires
function evaluation, the simulation oracle is called at th
given point. The nonlinear programming solvers we use al
require gradient information about each of the constrain
including the externally defined ones. The algebraical
defined functions have gradients that are generated by
modeling system using automatic differentiation. For th
simulation function, we construct a quadratic model of th
function and use this model to produce gradient informatio
as detailed in the next section.

3 APPROXIMATING THE SIMULATION

Standard nonlinear programming software typically requir
that a user provide at least first order derivatives for each
the functions appearing in the model (1). Automatic diffe
entiation is used to construct the derivatives for constrain
defined analytically in the GAMS model. However, the
system functionS, is not defined analytically, but is only
available as an oracle. We must therefore construct a me
ingful derivative using only function evaluations. Instea
of using finite differences, we advocate fitting a low orde
polynomial to observed simulation output.

The nonlinear programming software makes a reque
for the derivative of the simulation function at a particula
point,x0. Our implementation evaluates the simulation at
797
r
-

l

a

,

e

f

n-

t

User model in modeling system

Nonlinear program solver

Simulation
generator

Quadratic
approximation
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Function Derivative

Figure 1: Overview of Simulation Opti-
mization System

number of random points chosen in a neighbourhood ofx0,
and then fits a quadratic model,A(x) := xTQx+ cT x+ d,
in the least squares sense, to the observed function valu
The derivative passed back to the nonlinear programmin
software, isdA

dx
:= 2xTQ+cT . Clearly, the appropriateness

of the model depends on the error in the simulation and th
size of the neighbourhood. We use a variety of statistic
tests to check the validity of the model, while allowing
some white noise. If the approximation is deemed poo
we reduce the size of the neighbourhood and construct
new model.

Note that while the evaluation ofS(x0) may be noisy,
we always return this as the function value of the simulation
rather than the value of the quadratic model atx0. The
principal reason is that regardless of the path of the algorithm
this value will always be the same (if we use the sam
sample-path). However, if we were to choose differen
random points in the neighbourhood ofx0, the quadratic
model could change. Thus,A(x0) might have a different
value depending upon this choice of points.

One problem with this approach is that, by assumption
the simulation evaluations are expensive. Therefore, th
code collects (and stores) all previously computed value
for points in the neighborhood ofx0 to reduce the number
of simulation evaluations performed. If the total number o
points is not enough to fit the quadratic function, then a
appropriate number of uniformly distributed random point
in the neighborhood ofx0 within a radiusr are generated.
The simulation is called to compute each of the functio
values at the newly generated points.

3.1 Least Squares Problem

Once all of the simulation evaluations have been collecte
we fit the quadratic model in a least squares sense. LetS
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be the simulation function fromRn→ Rm. The quadratic
approximation ofS for each componentl = 1, . . . , m is

Sl(x) ≈ Al(x) := xTQlx + clT x + dl.

Let x1, x2, x3, . . . , xnp be the sampling points used to ap-
proximateSl , wherenp ≥ n(n+1)

2 +n+1. The least squares
problem we solve is

min
Q,c,d

np∑
k=1

(
(xk)T Qxk + cT xk + d − sl(xk)

)2
,

The coefficients,Q, c andd, are the variables of the problem
and thatxk is given data. SinceQ is symmetric, only the
upper triangular elements ofQ are needed. Therefore, we
minimize

np∑
k=1

( n∑
i=1

(
Qi,i(x

k
i )

2+ 2
n∑
j>i

Qi,j x
k
i x
k
j + cixki )

)

+ d − bk
)2

,

wherebk = sl(xk) for k = 1, . . . , np.
Let z = (Q11,Q12, . . . ,Qnn, c1, . . . , cn, d) with p =

n(n+1)
2 + n+ 1 and defineCT by
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The optimality conditions of the least squares problem ar
the normal equations

CT Cz = CT b. (2)

We use the LAPACK library (Anderson et al., 1995) to solve
this symmetric (positive-definite) system of linear equations
79
e

.

Whenm > 1, the system is repeatedly solved, once for each
different value ofb.

3.2 Statistical Tests

If R2, the coefficient of determination (Allen, 1990), is
small, then the approximation is poor. We then test a null
hypothesis using the Cramér-von Mises statistic (Stephens
1974; Stephens, 1976) (herein termed theW2 statistic) to
determine if the error is due to white noise, that is noise
with normal distribution and unknown mean and variance.

3.2.1 Cramér-von Mises Statistic

Givene1, . . . , en from a continuous population distribution
G(·), let Fn(·) be the empirical distribution function ofei .
The null hypothesis test is

H0 : G(e) = F(e; θ)

whereF(·; θ) is a given distribution (typically normal or
exponential) with the parameterθ .

To test this null hypothesis, we use the Cramér-von
Mises statistic computed as

W2 = n
+∞∫
−∞
{Fn(e)− F(e; θ)}2dF(e; θ).

For the normal distribution with unknown mean and vari-
ance, we haveF(·; θ) = N(·; ē, se) where ē is the sample
mean andse is the sample standard deviation. We test the
distribution of the difference between the simulation run
and the quadratic model to determine whether it is white
noise or not.

During the testing step we perform the following:

1. Sort the data (errors between simulation and
quadratic model prediction) ase1 ≤ e2 ≤ . . . ≤ en.

2. Compute the sample meanē and sample standard
deviationse.

3. Calculatewi = (ei − ē)/se.
4. Computezi = CDF(wi) whereCDF(·) is the

cumulative probability of a standard normal distri-
bution.

5. Calculate theW2 statistic from these (sorted)z-
values where

W2 =
n∑
i=1

(zi − 2i − 1

2n
)2+ 1

12n

6. UpdateW2 to reflect the assumption of unknown
mean and unknown variance,W2 = W2(1+ 0.5

n
).
8
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7. Compare this value against theT ∗ statistical table
(see (Stephens, 1974)). Note thatT ∗0.15 = 0.091,
T ∗0.10 = 0.104,T ∗0.05 = 0.126,T ∗0.025= 0.148, and
T ∗0.01 = 0.178.

If W2 is larger thanT ∗α , then we reject the null hypothesis
H0 at the significance levelα.

In our procedure, we fix the significance levelα = 0.05,
then computeW2 and compare it withT ∗0.05. If the null
hypothesis is accepted, that is the error is due to white noi
the trend in the approximation is deemed to coincide wi
the actual trend of the simulation function. The quadrat
approximation is then used.

If we reject this null hypothesis, i.e.W2 > T ∗0.05,
then we continue to remove any extreme values using t
coefficient of skewness.

3.2.2 Coefficient of Skewness

The coefficient of skewness (Allen, 1990) is a measure of t
lack of symmetry in data. If data is distributed symmetricall
from the left and the right of the center point, then th
skewness will have a zero value. For example, the norm
distribution and uniform distribution have skewness equ
to zero. When the skewness is negative, the distribution
data is more weighted to larger values than smaller valu
If the skewness is positive, then data with smaller values a
more prominent than data with larger values. The Chi-squa
distribution is one example that has positive skewness.

The skewnesssk is computed fromx0, . . . , xn by

sk =
∑n
i=1(xi − x̄)3
(n− 1)× σ 3

whereσ is the sample standard deviation andx̄ is the mean
of x0, . . . , xn.

We use the skewness to identify outliers or extrem
values and use a histogram to group data into small sepa
groups for removal. We will consider removing the extrem
values from our data set only when the skewness is outs
the range of [-0.5, 0.5]. If the skewness is less than -0
most of the data has larger values. We reduce the rad
of our problem to discard the smallest value block of ou
histogram which contains the extremely small values. W
do the same for the largest value block of our histogram
the skewness is greater than 0.5.

In the case thatx0 is one of the extreme points, the
algorithm uses the current quadratic function to compute t
derivative atx0 and returns. However, the point is marke
as a poor derivative value and we will attempt to constru
a better quadratic model the next time an evaluation
requested atx0.

We then repeat the procedure of approximating an
performing statistical tests using the smaller radius. W
7
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limit the number of times the radius can be reduced. If w
exceed the iteration limit, then we use the last quadrat
approximation to compute the derivative atx0.

3.3 Complete Derivative Computation

A detailed flow chart of the complete implementation of
a derivative evaluation is given as Figure 2. This char
summarizes the information contained in this section.

Derivative request

?
Collect points inB(x0, r)

?
��
�

HHH
HH

H
���

enough
for qp

-No

Yes

Generate points

�?
Compute coefficient of QP

?
��
�

HHH
HH

H
���

R2 or
W2 ok?

6

Remove
outliers

�Reducer

?

No

Yes

-��
�

HHH
HH

H
���

Iteration
Limit?

No

Yes

�∇f (x0) = 2xT Q+ cT

?
Return ∇f (x0)

Figure 2: A Flow Chart for Computing the
Derivative at a Pointx0

4 EXAMPLES AND RESULTS

The semantics for using external functions in GAMS dictate
that the user writes a function and compiles it in such
manner that the code can be linked dynamically with th
solver executable. We have implemented the quadrat
approximation code as outlined in the previous section fo
this purpose. The remaining piece is the simulation routin
which is incorporated into the quadratic approximation code
As the syntax for calling the simulation routine varies, we
only require that a user writes a small interfacing function
that calls their simulation for a given input and returns the
outputs. The function can simply call the simulation if it
is available in C or FORTRAN, or it can use system calls
to run an external program.

We have written such routines for three different sim-
ulations. We have incorporated these simulations into opt
mization problems that are formulated within GAMS. Since
this paper is illustrational, we have only used very simple
optimization models. However, the strength of our approac
is that sophisticated simulations can be linked into comple
optimization models very easily. The remainder of this
99
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section details the simulation optimizations and the resul
obtained on them.

4.1 M/M/1 Queue

The first problem optimizes a stable M/M/1 queue to min
imize average waiting time. This problem can be solve
analytically, providing us with a mechanism to check the
validity of our optimization approach. The exact simulation
optimization is as follows:

min (µ− 4)2+ w
s.t. w = S(µ)

µ ≥ λ

whereS(µ) returns the average waiting time for an M/M/1
queue with service rateµ. Analytically, the average waiting
time isw = 1

µ−λ for an inter-arrival rateλ. For our testing,
we fix the inter-arrival rate at 3. Thus, our M/M/1 simulation
optimization approaching the steady state is equivalent
the problem

min (µ− 4)2+ w
s.t. w = 1

µ−3
µ ≥ 3

The optimal solution is atµ = 4.297 with an objective
value of 0.859.

To test our optimization approach, we used simulation
with 10000, 100000, and 1000000 customers. The first 1%
of customers were ignored to avoid initial bias. Tables 1 an
2 show details of the output from the M/M/1 simulation
optimization problem based on the different number o
sampling points. For all of the runs, a starting value o
µ = 3.0 was used with an initial radius of 1.0 for the
quadratic model neighbourhood andR2 = 0.99999. We ran
these results on a Pentium III 600 MHz machine runnin
WINNT 4.0.

For the same simulation length, our algorithm achieve
the same optimal solution independent of the number of sam
pling points. As the length of the simulation increases, th
sample-path optimization solution obtained by our metho
converges to the correct solution as predicted by the theor
The overall solution time depends heavily on the length o
the simulation run. However, these tables give no indicatio
that the use of theW2 statistic is beneficial. The simulation
runs are long enough that the function values perceived b
the optimization code are not noisy and the overall sim
ulation functionS(µ) is smooth and well-behaved. The
remainder of the examples use more realistic simulatio
codes that indicate more benefits of theW2 statistic.
80
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Table 1: Comparison of M/M/1 Optimization Param-
eterized by Length of Simulation Run and Numbe
of Points Sampled in Quadratic Model without the
W2 Statistic

Simulation Sampling Runs Time Obj.
length pts. (np) (sim.) (sec.) value

10000 7 195 3 0.9015
8 194 3 0.9015
9 214 3 0.9015
14 211 3 0.9015
19 213 3 0.9015
24 411 6 0.9015

100000 7 186 25 0.8536
8 194 25 0.8536
9 205 26 0.8536
14 241 31 0.8536
19 324 42 0.8536
24 326 42 0.8536

1000000 7 134 170 0.8586
8 179 226 0.8586
9 208 263 0.8587
14 220 278 0.8586
19 237 507 0.8586
24 241 553 0.8586

Table 2: Comparison of M/M/1 Optimization Param-
eterized by Length of Simulation Run and Numbe
of Points Sampled in Quadratic Model with theW2

Statistic
Simulation Sampling Runs Time Obj.

length pts. (np) (sim.) (sec.) value

10000 7 175 3 0.9015
8 153 2 0.9015
9 81 1 0.9016
14 200 3 0.9015
19 205 3 0.9015
24 447 7 0.9015

100000 7 205 35 0.8536
8 165 41 0.8536
9 205 54 0.8536
14 212 53 0.8536
19 337 66 0.8536
24 335 81 0.8536

1000000 7 221 514 0.8586
8 180 405 0.8586
9 226 524 0.8586
14 305 702 0.8586
19 392 900 0.8586
24 466 1059 0.8586
0
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4.2 Telemarketing Example

A more interesting example comes from simulating a tele
marketing system where we have a fixed number of operato
answering calls. The number of customers on hold (waitin
for service) is fixed. If a customer is denied entry into the
queue, they are given a busy signal and there is a probabil
p that they will call back after waiting an exponentially
distributed amount of time. Those that do not call bac
result in a lost sale. We want to choose the service rate
the operators to minimize some weighted sum of operat
training costs and lost sales. A schematic overview of th
simulation is given in Figure 3.

-λ queue
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Figure 3: Telemarketing Simulation Structure

We will assume that we have 4 operators and a fixe
queue size ofM = 100. Initially, the operators have a service
rate ofµi = 0.5. The inter-arrival times of customers first
entering the system is exponentially distributed with an inte
arrival rate ofλ = 3. The probability that a user will call
back isp = 0.1 with an exponentially distributed waiting
time of 0.4. The variables in the optimization are the servic
rates which are bounded below by 0.5 and the outputs from
the simulation are the the percentage of customers lost a
the average waiting time.

This simulation model is very noisy due to the proba
bility of customers leaving the system without being served
Since the simulation is coded with a single random inpu
stream, this can lead to significant changes in simulatio
outputs for small variations in the input parameters. Fig
ure 4 shows how the percentage of calls lost change as
service rate for the first operator is increased. Note th
output varies dramatically for small variations in inputs
but the overall shape of the function is clear. We expec
theW2 statistic to be beneficial in solving the optimization
problem, since it attempts to reduce the effects of nois
by generating quadratic models of the overall trend in th
simulation functions.

The goal for optimizing this call-waiting simulation is
to achieve the minimum number of customers lost due
the busy signal of the servers. Since the servers beha
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Figure 4: Percentage of Calls Lost against Service
Rate for Telemarketing Simulation with 1 Million
Customers

identically in the system, there are many solutions that satis
our goal. To specify a reasonable optimization problem
we define an objective function as

obj =
4∑
i=1

wi(µi − l)+ 100× lost

wherel is the lower bound for all service rates,lost is the
percentage lost of customers in the system,µi is the service
rates ofith server andwi is the weight on theith server.
Different weights on each server correspond to differen
costs for training. For the runs presentedw1 = 1, w2 = 5,
w3 = 10 andw4 = 15, respectively.

Tables 3 and 4 show the details of our results base
on different numbers of sampling points. Again the benefi
of using additional sampling points to fit the quadratic
model is unclear - the results with small values ofnp are
similar to those with large values (except the smaller value
execute more quickly). It appears that the results usin
the W2 statistic are significantly more robust than those
without. This robustness comes at some cost in terms
computing and time. While the precise solution is unknown
the optimization of the longer length simulation appears t
give more accurate values for the objective value unde
independent simulation runs of even greater length.

4.3 Tandem Production Line

The final simulation we attempted to optimize is a tandem
production line composed ofm machines andm−1 buffers
which hold the excess product between two machines a
ranged in series. The product arrives from an external sour
to the first machine and is then processed by each machi
Progress is blocked when the number of products in a buff
exceeds the maximum buffer size. The machine then wa
until there is an available slot in the buffer. There is als
01
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Table 3: Comparison of Call-waiting Simulation Opti-
mization Parameterized by Length of Simulation Run
and Number of Points Sampled in Quadratic Mode
without theW2 Statistic

Simulation Sampling Runs Time Obj.
length pts. (np) (sim.) (sec.) value

10000 35 582 54 1.4663
50 887 45 1.0282
65 885 71 1.2933
80 1888 141 1.0277
95 2144 160 1.0280
110 1590 117 1.0279

100000 35 999 727 1.1303
50 744 536 1.4641
65 746 536 1.3358
80 1013 722 1.1172
95 1679 1181 1.1187
110 1673 1201 1.1249

1000000 35 343 2993 1.5324
50 533 4475 1.5331
65 785 5009 1.1783
80 501 2945 1.1707
95 735 3940 1.1809
110 1279 6337 1.2117

Table 4: Comparison of Call-waiting Simulation Opti-
mization Parameterized by Length of Simulation Run
and Number of Points Sampled in Quadratic Mode
with theW2 Statistic

Simulation Sampling Runs Time Obj.
length pts. (np) (sim.) (sec.) value

10000 35 556 45 1.0281
50 760 58 1.0280
65 1224 93 1.0278
80 1775 134 1.0277
95 2517 192 1.0276
110 1773 138 1.0278

100000 35 958 698 1.1191
50 978 705 1.1186
65 993 712 1.1354
80 1013 722 1.1431
95 1049 745 1.1214
110 2127 1524 1.1216

1000000 35 881 7168 1.1760
50 1696 12908 1.1655
65 848 4698 1.2480
80 1511 10478 1.1666
95 1031 5580 1.1636
110 2261 13293 1.2301
a probability that a machine may fail at an exponential
distributed time. The time to repair a failed machine i
also exponentially distributed. The input parameters to t
simulation are the machine processing rates, the probabi
of machine failure, and the rate of repair for each machin
The output parameter is the reciprocal of throughput whe
the throughput is the average processing rate for the en
line. Figure 5 gives an overview of the system.

-
�
�	S1

- Buffer ... Buffer -
�
�	Sm -λ

µ1 µm

'
&

$
%

Figure 5: Tandem Production Line Simu-
lation Structure

The actual simulation we use was provided by Eric
Plambeck and is based on the Tandem production proble
from (Plambeck et al., 1993). We use this paper as a basis
comparison here, and hence fix the probability of machin
failure and the rate of repair to the values given in th
paper. The paper contains 7 cases each with two differe
starting points for a total of 14 problems. Problems 1 and
involve 2 machines, problem 3 involves 4, problems 4 an
5 involve 6, problem 6 involves 5 machines and problem
involves 15. Two methods were used to obtain the resu
reported in the paper. The first method is Bundle-bas
stochastic optimization (BSO) which is applicable to all o
the problems. The second method, single run optimizati
(SRO), only applies to cases 1 through 5. We obtain
the simulation code from the author and used it with ou
optimization methodology. We use the label QSO to indica
our method.

Each simulation run uses 49500 units with 500 units
remove bias, except that 7a and 7b uses 90000 units. T
starting radius for fitting the quadratic was set to be equ
to the total number of machines andR2 was set to 0.99999.
Table 5 compares the optimal solutions found among thr
methods, BSO, SRO and QSO. We can see that the soluti
found by QSO with or without theW2 statistic are virtually
indistinguishable and are all comparable to those found
SRO and BSO. In fact, on problems 5a, 5b, 6a, 6b and 7
QSO seems to provide the best solutions of all codes. O
problem 7a, QSO had more difficulties and we terminate
it after it hit a time limit at a slightly worse objective value.
By adding an extra constraint that constrains the sum of
the machine rates, we were able to solve 7a to optimal
as well. Table 6 shows the total simulation runs and th
total time used by our algorithm, with and without theW2

statistic. These results seem to indicate that for the larg
dimension problems the use of theW2 statistic is preferable.
802
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Table 5: Objective Comparisons between the SRO,
BSO, and QSO Methods

Case SRO BSO QSO
withoutW2 with W2

1a 7.6899 7.6895 7.6899 7.6899
1b 7.7010 7.7008 7.7008 7.7008
2a 0.9638 0.9638 0.9637 0.9637
2b 1.0070 1.0070 1.0070 1.0070
3a 0.7404 0.7404 0.7404 0.7404
3b 0.7358 0.7404 0.7356 0.7357
4a 0.3956 0.3957 0.3955 0.3955
4b 0.3960 0.3960 0.3960 0.3960
5a 0.3485 0.3482 0.3465 0.3465
5b 0.3450 0.3446 0.3413 0.3413
6a 3.3956 3.3950 3.3951
6b 3.3977 3.3928 3.3928
7a 3.4065 3.4107 3.4107
7b 3.4061 3.4043 3.4054

Table 6: Tandem Production Line Comparison for the
QSO Method with and without theW2 Statistic

Case WithoutW2 statistics WithW2 statistics
Runs Time Runs Time

(sim.) (sec.) (sim.) (sec.)

1a 223 87 235 91
1b 240 94 351 140
2a 129 5 130 5
2b 40 2 73 3
3a 570 411 495 361
3b 737 521 666 461
4a 3074 4476 2524 3641
4b 3322 4879 1870 2733
5a 2778 244 2151 184
5b 3481 304 1962 166
6a 1827 106 2430 140
6b 1610 92 906 53
7a **** 50000 **** 50000
7b 24210 28468 14443 17636

5 CONCLUSIONS

We have shown how to perform sample-path simulation op
timization from within a modeling language. We have de
veloped a mechanism to automatically compute a quadra
approximation (a local model) to an existing simulation
using only function evaluations. The derivatives passe
to the nonlinear programming software are based on th
quadratic approximation. We have tested this approac
on several problems and the results show this approach
useful in determining an optimal system design. We hav
also shown how to determine reasonable choices for th
algorithmic parameters.

Furthermore, we have experimented with the use o
theW2 statistic to reduce the effects of noise in the sim
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ulation values on the optimization. The statistic is used to
accept local models that are inaccurate only due to nois
simulations. This appears to give more robustness in th
optimization at the cost of some computing time. Since the
modeling framework also allows additional constraints to
be specified, this can also be used to increase robustness
the overall procedure.

Any existing simulation can be optimized easily and
effectively using the strategy developed in this paper. Com
plex optimization problems can be set up within existing
modeling languages that incorporate simulations as an in
tegral part of the model. The only requirement on a user i
that a very small function be written that interfaces betwee
our approximation code and the simulation. This interface
routine can directly invoke the simulation if it is available
in source code, or can use system calls to run the simulatio
as an external program.
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