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ABSTRACT

The basic idea of Soft-Commissioning (SoftCom) is to test
industrial control software by connecting a controller, e. g.
a PLC (Programmable Logic Controller) to a commercial
discrete event simulator (DES), which provides system
reactions and sensor signals similar to the behavior of real
hardware, e. g. an industrial manufacturing line. In order to
establish a connection between simulator and PLC, a
modular architecture was developed. The basis of this
modular system is a communication protocol common to
all members. The two basic modules are the I/O Devices
Driver (IODD), which is used to interface between the I/O
hardware and the SoftCom protocol, and the Simulator to
real World Interface (SWI). The SWI is used to link the
simulator to the SoftCom system.

1 INTRODUCTION

Testing the behavior of a PLC, which controls a device
being part of a more complex system, is usually done by
connecting the controller to a �stand-alone� version of the
device, a so called mock-up. This method of verifying and
validating the controller�s software is expensive, and test
conditions are hard to reproduce. The tester also has to put
up with the fact that such tests are incomplete since the
interaction of this device with the other parts of the system
is simply ignored. Therefore a large part of testing and
debugging is still carried out on-site. Both approaches rise
additional costs and might lead to the destruction of the
device or even endanger human life when testing the
controller�s reaction to critical situations.

Soft-Commissioning is a �hardware-in-the-loop�
(HIL)-based approach to solve such problems. HIL means
that the inputs and outputs of a controller are connected to
a simulation (emulation) of the part to be controlled. This
enables better reproduction of test conditions and even
allows the tester to reproduce the interaction of the various
parts of the complete system. Whorter et al. (1997) indicate
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that using the same simulation model for system
development and staff training can reduce costs and plant
set-up times.

The main difference between Soft-Commissioning and
other HIL systems are the required system reaction times:
Soft-Commissioning is intended to operate with round trip
times smaller than 100ms, while e. g. systems used in
automotive industry need reactions in less than 1ms
(Kiffmeier et al. 1997). Thus different hardware require-
ments apply: Soft-Commissioning shall execute on standard
office Workstations, while most other HIL systems use fast
�Digital Signal Processor� (DSP) � boards to achieve the re-
quired signal response time (for an example see Hanselmann
(1996)). Another difference is that Soft-Commissioning
interacts with �Discrete Event Simulators� (DES), while
many HIL systems are based on continuous real-time
simulation (an example is given by Boot et al. (1999)).

In section 2 this paper outlines the advantages and
disadvantages of using �off the shelf� I/O devices,
simulators and operating systems. Section 3 gives the
detailed description of the various elements of the SoftCom
architecture. The paper closes with conclusions and gives
an outlook on future research.

2 THE ENVIRONMENT

The SoftCom System was developed to interact with
commercial simulators and conventional I/O hardware.
Most of these programs and I/O devices run on �general-
purpose� operating systems such as Windows NT or
UNIX/Linux. It is well known that these operating systems
only provide soft-real-time capabilities, which means that
the time delay, until an event is serviced, is not as
deterministic as on hard real-time systems (Microsoft
1995). Overviews and tests of the NT real-time capabilities
can be found in Ramamritham (1998), Mattern (1998),
Cota-Robles (1999). Jones & Regehr (1999) depict that the
overall system reaction time becomes even worse when
certain hardware drivers are in use.
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Real-time extensions such as INtime for Windows NT
or RT-Linux are separate real-time operating systems
where the actual NT or Linux OS run in one of the
system�s threads (Obenland et al. 1999, Heursch &
Mächtel 2000). Thus a program like the simulator (or the
I/O hardware device driver), which runs on NT or Linux,
would not benefit from the real-time extension. (An
interesting approach, where RT-Linux is used for data
acquisition and repetition while the simulation runs on a
separate real-time simulation computer, is described by
(Ptak & Foundy 1998).)

Summing up, the simulator, being the most essential
part of the SoftCom system, runs on a �general purpose�
operating system. This leads to the fact that the overall
reaction time to PLC actions will be dominated by the
operating system�s latency time. This time not only
depends on the Computer�s hardware, but also on the
current load and system configuration. Windows NT
latency times on a single processor Pentium III 400MHz
machine typically vary between 1ms to 100ms with
runaways in the area of 3s coming up when the system
starts to swap. Recent measurements on a dual Pentium III
300MHz machine with Windows 2000 Professional
resulted in latency times of 1ms and below even under
heavy load.

3 THE ARCHITECTURE

The SoftCom system was developed with the intention to
provide a modular and scalable HIL architecture based on
commercial discrete event simulators. Thus a special
communication protocol was defined to make flexible
SoftCom internal data exchange possible.

With this protocol as basis the first two components
were developed. They are needed to establish the
connection between PLC and simulator (Figure 1):

• The I/O Devices Driver (IODD) provides an
interface to the I/O hardware to which the PLC is
connected.

• The Simulator to Real World Interface (SWI) is
used to enable communication between the
simulator and other components of the SoftCom
system.

Two additional programs were considered as useful as
shown in Figure 2:

• The Virtual I/O system (VIOS), which can be
switched into the signal path in order to provide
simple signal pre-processing.

• The SoftCom Manager (SCM), which is
responsible for system configuration and runtime
control.
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Figure 1:  The SoftCom System is
Based on Commercial Simulators
and widely available I/O hardware
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Figure 2:  The Complete SoftCom Architecture
with VIOS and SCM

The direct link between IODD and SWI in Figure 2
indicates that signals not being preprocessed may bypass
the VIOS. The SCM maintains a link to all elements of the
SoftCom system for configuration and runtime control.

3.1 The Communication Protocol

Data exchange between members of the SoftCom system is
based on a special protocol set on top of TCP/IP. Using the
TCP/IP standard allows the various parts of the SoftCom
system to run on different computers and even on different
operating systems such as Windows NT on computer A
and B, and Unix on computer C as shown in Figure 3. If
two programs run on the same computer (like on computer
A), memory pipes are used to speed up communication.

Inter program connections are called �Communication
Channels� and are used for message exchange. Appending
additional information to the messages enables the
channels� endpoints to carry out redundancy checks. These
94
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checks permit the detection of request-timeouts and
transmission failures. The channel endpoints also bundle
single messages to larger packages in order to reduce the
overall network traffic (Figure 4).

VIOS

UNIX

I/O HardwareSimulator
SWI IODD

Windows NT Windows NT

Communication Channel
(TCP/IP connection)

Communication Channel
(TCP/IP connection)

Communication Channel
(TCP/IP connection)
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Computer A Computer B
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Figure 3:  SoftCom is designed as Distributed Simulation
And Test Environment
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Figure 4:  Two Elements of the SoftCom System Exchange
Messages Bundled Together to Packages via TCP/IP

3.2 The I/O Devices Driver (IODD)

The inputs and outputs of the PLC-under-test are
connected to the computer using standard I/O cards like
�Parallel I/O� or �Field Bus I/O emulation�. These cards
usually provide only simple and non-standardized access
functions like read and write. Thus a hardware independent
I/O Devices Driver (IODD) was developed to provide
unified and versatile I/O access to the PLC.

The IODD internal link to the I/O cards is defined by a
library interface, e. g. a Dynamically Linked Library (DLL)
in the Windows world. The implementation of this interface
depends on the I/O hardware in use. Thus the IODD must
support connections to more than one library at the same time
to be able to establish links to different I/O cards. Figure 5 is
an example where two I/O cards (Parallel I/O card and Field
Bus I/O emulation card) are connected to the IODD.

The IODD internal representation of a PLC input or
output is called �Pin�. A �Pin Object� permits the definition
of more complex access functions like triggered reading/
writing, sequence writing and active readout (Figure 6).
Sequence writing means that a signal sequence is first
stored in a buffer from which one sequence element after
the other is triggered to the input line of the PLC. Active
readout means that a Pin monitors its state and informs
enlisted programs whenever changes are detected.
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Figure 5:  IODD connecting to two different I/O devices by
making use of two Different Implementations of the
Library Interface
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Figure 6:  The IODD uses Pin Objects for the Internal
Representation of PLC Input or Output Lines

3.3 The Simulator To Real World Interface (SWI)

The purpose of the SWI is to provide a communication
interface between the simulator and the SoftCom system.
The implementation of the SWI depends on the simulator�s
approach of providing access to its variables and objects
(Straßburger 1999). Our prototype is based on the
simulation environment Arena from Systems Modeling.

3.3.1 The Arena SWI

Arena provides two mechanisms for external programs to
interact with the simulation. These mechanisms are the
Visual Basic for Applications (VBA) module on the one
hand, and a Dynamically Linked Library (DLL) interface
on the other hand. Although the VBA module provides
closer coupling to Arena, the DLL interface was chosen as
the link between the SWI and the simulator. The reason for
this decision is that the DLL can be implement in C++,
which provides more flexibility in programming.

The DLL interface defines routines to interact with the
simulation: One type gives access to simulator variables and
the event calendar. The other type enables the simulation to
execute user code when appropriate events are triggered. By
forcing the simulation to call into the �user event� DLL-
routine periodically, a certain �update� time step is achieved.
This time step is needed to synchronize both simulation data
and simulation time with the SoftCom system.

Simulation data is stored in two arrays, the input array
(holding data sent from the SWI to the simulator) and the
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output array (holding data to be sent from the simulator to
the SWI at the next time step). SWI data is stored in
objects called �output pins� (for holding the data sent by
the simulator) and �input pins� (for the data to be sent to
the simulator at the next time step).

Simulation

DLL (SWI) - 'user event'
function 1: Stop simulation and call into

the 'user event' function

Output array

'old' Output array

2: Search the output array for
state changes and report them
to the output pins

Ouput pins

3:3: Copy the output array to
the 'old output' array

8: Return from the 'user event'
function and resume
simulation

4: Time synchronize the
simulation to the Soft Com
system time

Input array

'old' Input array

Input pins
5: Update the Input array

7: Generate an entity for
every input pin, whose value
has changed entity

7

entity
23

entity
3

6:6: Copy the input array to the
'old input' array

Figure 7:  Order of events for Data And Time
Synchronization between the Simulator and the SWI

The synchronization of data and time between
SoftCom system and the simulator has the following order
of events: Arena stops the simulation and jumps into the
�user event� function. This user-coded routine starts with
searching the output array for state changes in order to
report them to the �output pins�. Next, the data of  the
output array is copied to the �old output� storage to give the
simulation access to values valid one time step before the
actual one. Now the simulator is time-synchronized to the
SoftCom system-time. This is done by forcing the
simulator to sleep for the remaining time of this simulation
time-step. After synchronization, the input array is copied
to the �old input� storage. Then, to relieve Arena from
additional work, the SWI generates a simulation entity for
every element of the input array that has changed. At the
next simulation time step these entities will trigger
elements of the Arena logic, and thus the evaluation of the
new values. Finally the simulation run is resumed.

3.4 The Virtual I/O System (VIOS)

The VIOS was developed to provide a module which is
capable of signal pre-processing. This adds a tool to the
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SoftCom family which relieves the simulation of doing
low-level tasks like the logical or mathematical evaluation
of signals.

Signal processing is defined within calculation units
called macros (Figures 8 and 9). Such a macro consists of
one or more objects, defined by their inputs, their mathema-
tical operation, and their output. An input to this kind of
object may be any external signal, the output of another ma-
cro, or the output of another operation object. The operation
defined for such an object may either be one of Boolean
nature (�AND�, �OR�, �XOR�, �NOT�) or of �mathematical�
origin (�addition� �subtraction�, �division�, and �multipli-
cation�). A macro is restricted to contain either objects of the
Boolean operator type, or objects of the �mathematical� type.
The interaction of the Boolean or �mathematical� objects
leads to the overall behavior of a macro.

AND

OR

XOR

Boolean Macro

I1 = 1

I2 = 1

1

1

0

Inputs

Output

I3 = 1
I4 = 0
I5 = 0

Figure 8:  Example of a Boolean Macro

'/'

'+'

'*'

Mathematical Macro

I1 = 9.0

I2 = 2.0

4.5

6.5

29.25

Inputs

Output

I3 = 2.6

I4 = 3.9

Figure 9:  Example of a Mathematical Macro

Figure 8 gives an an example of a Boolean macro,
which calculates the logical equation: Output = (I1 AND
I2) XOR (I3 OR I4 OR I5). The example shows the result
and the in-between states of the calculation.

In Figure 8 an example of a mathematical macro is
given. This macro calculates the equation: Output =
(I1/I2)*(I3+I4). The example also shows the result and
intermediate values of the calculation.

3.5 The SoftCom Manager (SCM)

Tasks such as �system update�, �system configuration� and
�runtime control� are usually quite simple as long as the
system is restricted to a single computer. But they rapidly
6
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grow in complexity with the number of computers
involved. Thus configuration and maintenance of bigger
systems can become a time-consuming job.

The strategy to simplify this job is to update and con-
figure the system on a single computer, which then forwards
this information to all other computers of the system. Based
on this strategy, the SoftCom Manager was developed as a
centralizing tool for configuration and runtime control.

3.5.1 System Configuration and Update

The configuration of the distributed system consists of four
stages (Figure 10):

• In the first stage, the SCM connects to the remote
computers, which are part of an actual SoftCom
session. Using these connections the SCM then
copies the required program files (including
missing system files) to the target devices.

• In the second stage, the SCM starts all local and
remote programs needed for the project. Each
program sets up a direct link to the SCM (such a
link is called �manager channel�). After all links are
established, the SCM time synchronizes the remote
computers to the local time.

• In the third stage configuration data is exchanged
between SCM and the other programs. This process
also includes the registration of the communication
objects (such as the IODD pins or some SWI pins)
to ensure the uniqueness of their names. These
names are used to identify the location of an object.
The location information is needed when another
object wants to set up a link to this object.

• In the fourth and last stage all communication links
are analyzed and established. This is followed by a
system wide �start� signal.

Figure 10 is a small example for this configuration process.
Elements of this sample-project are one SWI and one
IODD, both running on a different computer (B) than the
SCM (A).

The whole configuration with all active programs and
their communication objects is visualized within a treelike
structure inside the SCM. This makes reconfiguration
simple and gives a structural overview of the system.

3.5.2 Runtime Control

The SCM gives the user the opportunity to display error
messages and warnings reported by the various parts of a
SoftCom project. It also enables the user to send
commands like �System Stop� or �System Start� and
reconfiguration messages throughout the system. The
messages needed to fulfill these tasks are transferred via
the connections originally set up for configuration.
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Terminal program

2: Copy files to the remote computer

3: Start Soft Com programs

SWI IODD

4: Start SWI

5: Start IODD

6: Create Manager channel

7: Create Manager channel

8: Time synchronize all elements of the system

9: Do dynamic configuration

10: Do dynamic configuration

11: Send 'start' signal

Figure 10:  Timing diagram showing how the SCM Sets
Up a Small SoftCom Project

4 CONCLUSIONS AND FUTURE WORK

Soft-Commissioning provides a modularized hardware-in-
the-loop architecture, which runs on �general purpose�
operating systems. The TCP/IP based communication
protocol used provides platform and location independence
of the various parts. The following system members have
been developed up to now:

• The IODD, which is used to establish a link
between the I/O hardware and the SoftCom system

• The SWI, which is used to enable data exchange
between the simulator and the system

• The VIOS, which can be switched into the signal
path to provide fast signal pre-processing

• The SCM, which centralizes system configuration
and runtime control

Future research might include the development of a �High
Level Architecture� (HLA) � module to gain access to the
HLA�s capabilities in the area of distributed simulation.

It is also intended to add communication channels
based on �high speed data transmission� protocols like
ATM or ADSL. This would make greater distances be-
tween the various elements of the system possible without
increasing the reaction time.
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