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ABSTRACT  
 
Micro-robots will soon be available for deployment by the 
thousands.  Consequently, controlling and coordinating a 
force this large to accomplish a prescribed task is of great 
interest.  This paper describes a flexible architecture for 
modeling thousands of autonomous agents simultaneously.  
The agents� behavior is based on a subsumption architecture 
in which individual behaviors are prioritized with respect to 
all others.  The primary behavior explored in this work is a 
group formation behavior based on social potential fields 
(Reif and Wang 1999).  This paper extends the social 
potential field model by introducing a neutral zone within 
which other behaviors may exhibit themselves. Previous 
work with social potential fields has been restricted to 
models of �perfect� autonomous agents. The paper evaluates 
the effect of social potential fields in the presence of agent 
death (failure) and imperfect sensory input. 
 
1 INTRODUCTION 
 
This paper examines multi-agent modeling and simulation 
for a large-scale number of autonomous agents.  
Specifically, the paper examines the development of a 
simulation program to model the interaction and collective 
behavior of micro-robotic task forces consisting of 1000 or 
more entities.  The objective of the research presented in 
this paper is twofold.  The first objective is to develop a 
viable simulation tool for studying autonomous agent 
behavior and collective interaction.  The second is to 
examine behavioral models for group formation and 
coordinated motion. 

Technology will soon make possible the practical 
deployment of micro-robots on the size order of 2.5cm square.  
The dispersion of thousands of these micro-robots represents a 
tremendous capability for application in surveillance and 
remote sampling.  However, many issues, beyond technical 
feasibility still need to be examined.  Notable research papers 
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by Reynolds (1987), Gage (1992), Hodgins and Brogan 
(1994), Kennedy and Eberhart (1998), Reif and Wang (1999), 
and Suzuki and Yamashita (1999), examine one of these 
issues, namely that of interaction and coordinated motion 
among autonomous agents.  This paper extends and advances 
previous research efforts by examining the issues of imperfect 
perception and entity death.  The simulation framework 
developed for this project encapsulates the robots as 
autonomous entities in which capability is added or 
reconfigured by the addition of objects (behaviors, sensors, 
physical characteristics, etc.).  The simulation described in this 
paper was developed using Extend. 

The paper begins by presenting a vision for future 
micro-robotic deployments.  Some of the issues involved in 
coordinating the group�s behavior are also identified.  Next 
the paper discusses the development of the agent model 
and construction of the simulation.  Thirdly, movement 
coordination is demonstrated using a force function 
between neighboring entities.  Finally, experimental results 
and future work are discussed. 

 
1.1 Research Motivation 
 
Technological advances in micro-robotics, remote sensors, 
and artificial intelligence continue to increase the capabilities 
of micro-robots while decreasing the size of such units.  It is 
easy to imagine producing and deploying thousands of 
inexpensive, essentially disposable micro-robots in the near 
future.  Although possibly limited in individual capability, 
deployed in large numbers their cumulative ability represents 
a tremendous force.  Given the proper social behavior set, the 
agents form a collective; much like a colony of ants or swarm 
of bees.  Importance shifts from the actions of individual 
agents to the collective behavior.  A complex system 
develops.  A complex system is defined as 
 

�one whose component parts interact with 
sufficient intricacy that they cannot be predicted 
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by standard linear equations; so many variables 
are at work in the system that its overall 
behavior can only be understood as an emergent 
consequence of the holistic sum of all the 
myriad behaviors embedded within.�  (Levy 
1992). 
 

The autonomy, social interaction and system complexity 
elevate the robots from mere mechanical agents to a point 
where they approach a semblance of artificial life (AL).  

A key element of micro-robot deployment is the 
construction of behavior sets that facilitate group formation 
and coordinated motion of micro-robotic forces.  This 
paper examines the utility of Social Potential Forces in 
maintaining spatial relationships in the face of micro-robot 
deaths and sensor imperfections.  Additionally, this paper 
introduces an adaptation, which promotes preferential 
expansion of the collective in a specific direction. 

 
1.2 Application Scenario 
 
To understand the complexities of micro-robot deployment 
and the need for coordinated control, consider the 
following scenario.  A train with several cars containing 
hazardous material (HAZMAT) has derailed.  A 
subsequent explosion has scattered debris around the crash 
site.  The extent of the area contamination and the status of 
the cars carrying the HAZMAT are not known.  Due to the 
dangerous nature of the scattered material, a task force of 
micro-robots is selected for site evaluation prior to human 
entry into the area.  An Unmanned Aerial Vehicle (UAV) 
drops a group of 2000 micro-robots equipped with 
chemical sensors over the debris field and in the vicinity of 
the overturned cars.  As the robotics coordinator, your 
mission is to utilize the micro- robots to map the 
contamination levels in the area and assess the hazards 
before humans enter.  

This scenario represents a practical and seemingly 
simple application of micro-robots.  However, it reveals 
many of the technical challenges involved in deploying 
large numbers of micro-robots.  These challenges include 
the following questions. 
 

1. Given a random or batch distribution of the 2000 
micro-robots, how do you organize them into a 
nearly equidistant formation to maximize sensor 
coverage of the suspect area? 

2. Once, the pattern is formed, how do you direct the 
masses in coordinated motion in the direction of 
interest?  

3. During the formation and sensor sweep, how do 
you identify and then adjust for the inevitable 
�deaths� (unit failures) in order to ensure 
complete coverage?  
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This example illustrates the nature of some of the 
collective tasking and coordinated motion issues that still 
face large-scale micro-robot force deployments.  These 
issues of autonomous behavior and command and control 
are also faced when using larger robots, but the problem is 
much more complex for several reasons.  First, the 
diminutive size of the units severely restricts their 
capability in terms of computational power, memory 
storage, sensor coverage, etc.  Second, the sheer size of the 
collective, one thousand or more, makes individual control 
of the units by an operator unfeasible. 

This project draws inspiration from observations of 
social communities in nature, i.e. bees, ants, birds, fish.  
The approach taken is to assign each unit a simple set of 
individual behaviors.  Within this framework, each unit 
senses and reacts to its environment and other units within 
the group.  The units together form a collective behavior.  
The model presented in this paper encapsulates a behavior 
set that promotes group formation building and coordinated 
motion.  These capabilities address some of the 
deployment issues illustrated in the HAZMAT scenario by 
giving the individuals some autonomous behavior that 
helps accomplish the prescribed mission. 

 
2 PROJECT DEVELOPMENT 

 
�Simulation unfortunately is a necessary evil.�  

(Arkin 1995) 
 
Simulation, although accepted in many disciplines as an 
essential tool for gaining insight into system operation, has 
many skeptics among researchers in the robotics field.  The 
prevailing thought is that the only true test of a new system 
design is to implement that system on an actual robot and 
evaluate the robot in a real world environment.  No one can 
deny that this is indeed the ideal method for complete 
evaluation.  However, costs, resources, time and even 
technology often limit the feasibility of conducting real 
world testing.  In these instances, simulation plays a 
valuable role in evaluating advanced concepts and designs.  
Likewise, when resources become available for field-
testing, maximum benefit can be achieved by focusing tests 
on the critical elements identified through prior simulation. 
 
2.1 Simulation of Micro-Robots 
 
Many concerns of the robotics community are the result of 
prior simulations that have unrealistically represented the 
challenges of real world robotic system deployment.  Many 
of these concerns are valid and have reduced the usefulness 
of simulation as a development tool.  The following list 
details some of the specific concerns raised regarding 
previous robotics modeling and simulation.  The list was  
3
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compiled from the literature and personal discussions with 
several prominent roboticists. 
 

1. Simulated robots live forever. (immortality) 
2. Simulated robots see everything. (perfect sensing) 
3. Simulated robots possess unlimited computational 

ability. 
4. The computer code used to drive the simulation 

does not resemble the same program code used to 
drive the actual robot. (Arkin 1995) 

 
A simulation should take into account the realistic 

performance of sensors and the effects of environmental 
conditions.  The level of realism should be related to the 
focus area and goals of the experiment.  Concept exploration 
may not require a complete world model in terms of exact 
duplication of the environment, but it should adequately 
reflect the capabilities of the components in question.  
Micro-robotic production is not to a point where full-scale 
deployment is possible, but the simulation described later 
tries to address the above issues in terms of estimated 
capabilities.  The capabilities of the simulated micro-robots 
are easily adjusted within the simulation to increase realism 
as more accurate information becomes available.  

 
2.2 Foundations of Micro-Robotic Agent Modeling  
 
The modeling and simulation of large-scale forces (1000 or 
more units) of autonomous agents is a relatively new area 
of research.  The roots of such simulation can be traced 
back to the concept of cellular autonoma (CA) first 
conceived by John von Neumann and his colleague 
Stanislaw Ulam when they were exploring the realm of 
Artificial Life and self-reproducing automaton.  According 
to Levy (1992), Arthur Burks actually coined the phrase 
�Cellular Autonoma� while editing von Neumann�s papers 
on the subject. 

In the late 1960s, a University of Cambridge 
mathematician, John Horton Conway, took the concept of 
CA and developed the game of Life.  This game inspired 
and influenced generations of researchers in the realm of 
AL and autonomous agent research.  The game of Life 
consists of a two dimensional grid on which entities exists 
within individual cells.  The entities have one of two states, 
alive or dead.  The game traces the generations of entities 
as they are born, live and die.  The state of an entity in the 
next generation is based solely on the number and states of 
the neighboring entities in the eight cells adjacent to the 
entity in question (Levy 1992).  

The game of Life illustrates some of the key concepts 
used for autonomous robot modeling and multi-agent 
simulation.  These core concepts include:  

 
1. Identification of and focus on individual entities. 
2. A defined rule set governs individual behavior. 
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3. Individual entities are directly affected by 
neighboring entities. 

 
These concepts establish the principles for multi-agent 

model development and they serve as the basis for the 
design of our micro-robot simulation. 

Throughout the remainder of the paper the terms 
�agent� and �micro-robot� are used interchangeably.  The 
reason for this is twofold.  First, we wish to shift focus 
away from any preconceived mental models and the 
associated limitations that arise when picturing a robot.  
The main focus is on the agent�s behavior or psyche.  
Second, we want to avoid limiting the simulation principles 
discussed to just micro-robotic applications.  The 
principles and method discussed in this paper can be 
adapted easily to other modeling applications.  For 
example, an automated highway system might employ 
autonomous automobiles that implement similar group 
spacing behavior. 

 
3 SIMULATION MODEL CONSTRUCTION 
 
The multi-agent simulation was developed using Extend 
by Imagine That, Inc.  Extend is primarily known as a 
process simulation language and has not been used to a 
great degree for multi-agent simulation.  However, 
Extend offered a means to develop a prototype system 
without the overhead of developing a complete simulation 
environment.  The C-like nature of Extend�s MODL 
language also supports the project goal of developing 
simulation code that could be ported rather than re-written 
when programming real robots for evaluation. 
 
3.1 Environment Model 
 
The simulation is similar to the game of Life discussed 
earlier.  The simulation runs in a two dimensional plane 
represented by a global grid (x, y coordinate system).  
Additional grids may be layered with the global grid to 
represent obstacles, terrain, sensory objects, weather, and 
other environmentally significant elements.  The grids may 
be static or dynamic and reflect changing elements in the 
environment.  This layering of grids allows rapid 
manipulation of scenarios for elaborate �What if?� 
analysis.  The current work does not include any additional 
environmental grids. 

Agents within the model move within the spaces 
defined by the global grid.  At each simulation step, an 
agent may move no further than a single block away from 
its present position.  Thus, it may remain in position or 
move to one of the eight adjacent (horizontal, vertical and 
diagonal) spaces. 

A master status table contains agent position and state 
information.  This table, coupled with information from the 
global grid, is used to simulate sensing of neighboring 
4
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entities.  The individual sensors modeled on a particular 
agent can determine the range and direction of other entities 
within their prescribed sensor range.  A more detailed 
discussion of the sensor model is described in section 3.3. 

 
3.2 Agent Model 
 
In addition to the concepts from the game of Life, the 
principles of complex reactive systems influenced the agent 
model�s construction.  Arkin (1998) defines a reactive 
system as one that �tightly couples perception to action 
without the use of intervening abstract representation or time 
history.�  Reactive systems place little emphasis on planning 
and utilize agent behavior sets as their core building blocks.  
Simply speaking, reactive system and behavior based 
systems sense the world and react. 
 
3.2.1 Agent Model Principles 
 
The agent simulation model is based on the premise that in 
the near future technology will allow the production and 
deployment of large-scale masses of micro-robots.  The 
robots will be small.  They will likely possess only basic 
capabilities and mission specific sensors.  Direct 
communication between agents may or may not exist.  The 
maturity of this technology does not yet exist.  As a basis 
for modeling the capabilities of these future agents, the 
academic experimental robot GrowBot by Parallax, Inc. 
was used.  The GrowBot provides a good test platform in 
that it was capable, but not too capable in terms of 
computational power and sensor configuration.  Specific 
assumptions about individual capabilities will be described 
in the corresponding discussion of those capabilities. 

The simulation design is very  �object oriented� in its 
approach to agent construction.  Sensors and behaviors are 
encapsulated when possible.  This approach allows individual 
components to be added and removed from the model as if the 
corresponding physical component were being added to or 
removed from a real agent.  This modular design permits rapid 
capability reconfiguration during concept exploration.  
Additionally, a very conscious effort was made to separate the 
�simulation artifacts� from the logic code being evaluated.  
For example, we attempted to account for the real-time 
parallel nature of individual entity behavior while running in a 
sequential simulation environment.  Furthermore, the bound-
aries between the true state of the environment and that which 
can be perceived by an agent are clearly maintained.  The goal 
was to create simulation code that could be ported rather than 
re-written when programming real robots for evaluation. 

 
3.2.2 Basic Agent Model 
 
The model of an autonomous micro-robot is constructed by 
building upon a base autonomous agent object.  The basic 
model of the agent can be thought of as simply a physical 
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shell.  In abstract programming terms it may also be 
thought of as an object with general capabilities.  The basic 
agent possesses only locomotion as an innate capability.  
The agent exists in one of three states: dead, alive or 
dormant.  The only core capability possessed by the agent 
is motion, which is further restricted by speed and 
endurance limitations.  We make a distinction between the 
agent�s motion capability and a behavior designed to direct 
or use that capability of motion. 

This basic agent serves as the platform on which 
additional capabilities (i.e., sensors) and individual 
behaviors are layered.  Sensors are added to the agent 
model by �plugging in� sensor models.  The sensors query 
the environment model to perceive objects or conditions of 
interest.  The agent receives input from these sensors to 
increase its basic capabilities. 

Similarly, new behaviors may be added to take 
advantage of additional sensory capability.  However, it 
should be noted that sensors and behaviors are not the 
same thing nor is it necessary to have a one-to-one 
correspondence between sensors and behaviors.  Sensors 
provide a means for perceiving environmental states or 
conditions while behaviors are the actions the agent takes 
based on the perceptions it makes. 

Behaviors may rely on multiple sensory input (stimuli).  
For example, a robot�s next move may be based on the input 
it receives from multiple neighbor detection sensors.  
Similarly an individual stimulus is not necessarily unique to 
one behavior.  Neighbor position information may be used in 
both a group formation behavior and a collision avoidance 
behavior.  When behaviors conflict or compete for 
resources, an arbitrating mechanism usually dictates the 
agent�s reaction.  In this way behaviors are layered.  Section 
3.4.1 describes the behavior arbitration model. 

 
3.3 Sensor Model 
 
Sensors are modeled as encapsulated object classes.  The 
agent uses a fixed set of input and output parameters to 
communicate with each sensor.  Consequently, multiple 
types and qualities of sensors may be evaluated with 
complete transparency to the agent model.  The agents 
presented in this model possess two types of sensors, a 
Nearest Neighbor sensor and an Object Detection sensor. 

This project distinguishes itself from much of the past 
research in this area by the attention dedicated to modeling 
realistic sensor capabilities.  The premise behind agent 
interaction is that one agent can �see� his neighbor.  The 
ability to detect and identify neighboring agents cannot be 
taken for granted.  Adjacent agents can be identified via 
two methods.  The first method consists of an active 
broadcast in which agents broadcast position information.  
Neighbor position may be derived from a relative 
coordinate system or by strength and direction of the 
signal.  Omni-directional position data is possible. 
5
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The second method involves passive detection without 
open communication between agents.  Neighboring agents 
are detected through passive sensors.  Infrared sensors are 
an example of this type of sensor.  Sensor coverage is 
directly tied to the number and arrangement of sensors.  
Detection is further dependent on the sensor�s accuracy. 

The agent model uses passive detection.  Each agent 
possesses an array of five sensors for detecting neighboring 
agents.  Each sensor has a coverage spread of 45 degrees. 
Figure 1 illustrates the sensor configuration used in the 
model.  Three additional sensors could have been added for 
complete 360-degree coverage.  This was not done to 
conserve the resources that would have been consumed by 
each additional sensor.  These resources include power 
consumption, physical space, and computing (CPU) time.  
For this study�s purposes, 360-degree coverage was not 
necessary because an agent does not care who is behind it. 

The sensors detect the nearest agent within the 
sensor�s coverage area.  The sensor returns the relative 
bearing, range and type of the neighbor agent detected.  
Neighbor type is important because neighbor type will 
determine the agent�s reaction to the detection.  Figure 1 
represents the neighborhood of the agent.  The perceived 
neighborhood, represented by the black dots, consists of 
only those neighbors correctly detected by the agents.  
Note that only the nearest neighbor is detected if multiple 
neighbors exist within the same sector. 

Two types of errors are modeled for each sensor, an 
inherent offset error and a detection error.  The offset error 
accounts for the imperfect angular alignment of a sensor 
with respect to the intended relative positioning. This error 
is constant.  The detection error represents the imperfection 
of the sensor and the degradation of the detection 
probability as a function of the detection range.  The 
detection function is based on an exponential distribution 
with a mean detection range of forty inches. 

Figure 1:  Agent Sensor Arrangement and Neighborhood 
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The Object Detection sensor determines whether an 
obstruction exists along the intended path of the agent.  
Specifically, an obstruction is detected only if it is 
immediately in front of the agent.  This sensor returns a 
signal indicating an obstacle was detected.  Within the 
model, no errors are associated with this sensor. 

 
3.4 Behavior Model 
 
The most important element of agent construction is the 
behavior set.  In developing concepts and models for 
individual agent and collective behavior schemas, 
biological entities and examples from nature were 
examined for insight.  Important to this research project 
were the relationship that birds and fish exhibited in 
flocking and schooling behaviors.  Birds and fish have the 
ability to form and maintain collective patterns.  These 
patterns are formed by the animal�s ability to balance the 
desire to remain close to the flock (or school) and also to 
avoid collision (Shaw 1975).  Within the flock, the bird 
does not possess universal knowledge (i.e., knowledge of 
the position of all others in the flock), but it adjusts its 
position based on the perception on its immediate 
neighbors.  Reynolds used this framework to develop his 
ground breaking animation work on Boids (Reynolds 
1987).  These two principles of flocking and local 
perception provide the basis for the development of the 
agent�s behavior. 
 
3.4.1 Subsumption Architecture 
 
Once a set of individual behaviors has been developed, a 
framework or architecture must be constructed to initiate 
behavioral responses and coordinate multiple behaviors. 
The subsumption architecture (Brooks 1986) provides the 
basis for behavioral coordination within the micro-robot 
agent model.   

In simplistic terms, the subsumption architecture is 
based on layering reactive behavior sets on top of each 
other.  These behaviors concurrently react to the perceived 
environment.  A key tenet is that reaction is based on 
perception and not on planning.  Coordination among 
behaviors involves a hierarchical scheme where higher 
level behaviors suppress or inhibit lower level behaviors.  
In this same way, successively more complex behaviors 
can seamlessly be layered onto the existing behavior set 
(Arkin 1998). 

Figure 2 illustrates the micro-robot agent�s behaviors 
in order of their priority.  The priority goes from Collision 
Avoidance (highest) to Wandering (lowest).  

 
3.4.2 Wandering Behavior 
 
The Wandering Behavior reflects the agent�s desire to 
move about when not under other influences.  The 
6



Dudenhoeffer and Jones 
wandering may be a random walk or motion in a 
predetermined direction.  In the experimental results 
presented in Section 4, the Wandering Behavior has a 
predefined preference to direct the agent toward the east 
(i.e. right).  
 

Figure 2:  Behavior Architecture 
 
3.4.3 Group Formation Behavior  
 
The Group Formation Behavior seeks to establish a 
specific spatial relationship between adjacent neighbors.  
The work by Reif and Wang� (1999) on Social Potential 
Fields provides the basis for establishing and maintaining 
this spatial relationship between agents within the model.  
In addition to the work by Reif and Wang, this paper 
introduces the concept of a neutral zone within the social 
potential field.  The neutral zone permits the Wandering 
Behavior to activate and promotes expansion of the 
collective in a specific direction. 

 Social Potential Fields have as an underlying concept 
that an agent is influenced by his immediate neighbors.  A 
force vector is used to represent the influence exerted by an 
agent�s neighbors.  The nature of the force can be attracting 
or repelling depending on the distance between agents.  
The sign and magnitude of the force is represented by the 
force function (Reif and Wang 1999). 

Equation (1) is the force function used in the Group 
Formation Behavior model 

 
 
 (1) 
 

where c1, c2 ≥0 ,  α1 > α2 > 0.   
This function creates a repelling force if a neighbor is 

close and an attracting force if the neighbor is far away.  If 
a neighbor is too close, the agent tends to move away and 
gain further separation.  If the neighbor is too far away, the 
agent moves toward the neighbor to close the distance 
between them.  The definitions of what is too close and too 
far away are arbitrary and represent flexibility in 
configuring the behavior depending on the mission and 
desired sensor coverage. 

In Equation (1), d represents the range between 
neighboring agents.  The constants, c1, c2, α1 and α2 

d
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determine the slope and equilibrium point of the force 
function.  The equilibrium point is defined as the distance 
in which the combined effect of the repelling and attracting 
forces is zero. 

This force function has the following characteristics: 
 
1. Attraction is controlled by the c2 /dα2 term. 
2. Repulsion is controlled by the c1 /dα1 term. 
3. The equilibrium point where the combined effect 

is zero is given by d=(c1/c2) (1/(α1 - α2)). 
 
Note that this function represents the force applied by 

a single neighboring agent.  In practice, all perceived 
neighbors apply forces.  The resulting force is the vector 
summation of all the forces applied by all neighbors.  
Another model parameter that may be set is to have 
neighbors of different types that exert forces using 
different force functions.  However, the simulation results 
presented in the next section use a homogenous set of 
agent types and hence, a single force function. 

To understand the effect of multiple force vectors on a 
single agent, consider agent A with perceived neighbors 
N1, N2, ..., Nk with distances d1, d2, ..., dk.  The individual 
forces applied by the neighbors is given by: 

 
 
 (2) 
 
The combined force applied to agent A denoted by 

F(A) is: 
 
 
 (3) 
 
Equation (3) represents the force magnitude.  It does 

not represent behavior.  Behavior is the reaction to the 
forces applied and is realized in the agent by either the 
desire for motion in a certain direction or the desire to 
remain in place.   
 As stated earlier, this paper introduces an adaptation to 
Reif and Wang�s presentation of Social Potential Fields.  
The adaptation is the introduction of a critical force.  The 
critical force is defined as the magnitude of force below 
which the agent feels no effect.  As an example, a critical 
force set at 5 implies that a cumulative force, F(A), would 
require a magnitude greater than 5 to cause a reaction by 
the agent.  By careful selection of the force function f(x) 
and the critical force, a neutral zone between repelling and 
attracting forces is created.  Within this neutral zone, no 
force effect exists.  

This neutral zone accomplishes two purposes.  First, it 
minimizes movement oscillations around the equilibrium 
point where the sign of the force changes.  Second, it 
provides an opportunity for additional behaviors previously 
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subsumed by the force effect and Group Formation 
Behavior to have an effect on the agent. 

In the agent model, during periods the agent resides 
within the neutral zone, the Wandering Behavior dictates 
the desired motion of the agent.  In our model, the 
Wandering Behavior directs the agent to head east.  The 
agent wanders east until the critical force is again reached.  
At this point, the Group Formation Behavior is activated.  
This combination of both behaviors working in conjunction 
not only promotes a uniform spatial relationship between 
neighbors, but it also causes the entire formation to 
preferentially expand and move in an easterly direction. 

This type of behavior readily supports a scenario in 
which the agents are batch dropped or are dispensed from a 
canister and are tasked with establishing a uniform sensor 
net across a specified area. 

 
3.4.4 Collision Avoidance  
 
Prior to repositioning, an agent will look ahead at the 
position of his next intended move.  If another agent or 
obstruction is detected, the agent will evaluate a position 
90 degrees  to  the  right  of  the  intended  position.  Again 
the agent evaluates this position.  If occupied, the agent 
will turn 90 degrees right and repeat the process.  If after 
turning in a circle, no move is evaluated as �safe,� the 
agent will remain in place for that simulation step.  On the 
next simulation step, the process begins again. 
 
4 SIMULATION RESULTS 
 
This paper presents the initial development and research 
into behavior-based command and control for autonomous 
micro-robots.  A primary goal of the project was to develop 
a simulation framework that permitted us to explore 
autonomous agent design and the emergence of collective 
behaviors.  A simulation framework was developed using 
Extend.  At the time of this paper, the simulation is 
capable of modeling the interactions of over one thousand 
autonomous agents.  

Figure 3 shows the simulation model and the basic 
screen.  The dots displayed represent 350 randomly 
dispersed agents.  Animation is not a project focus at this 
time and the agents are simply represented as an oval icon 
occupying a pixel on the screen.  The simulated world 
represents each pixel as an inch.  Thus the distance 
represented between consecutive grid lines is 100 inches or 
just over eight feet.  The individual agents are drawn a 
little larger than they would be if drawn exactly to scale so 
that they can be seen in the display. 

 
4.1 Model Assumptions 
 
One of the important aspects of this simulation project was 
to create a credible model of agent performance.  In reality, 
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technology has not reached the point of developing micro-
robots capable of field deployment.  Performance 
capabilities are therefore based on miniature robot 
capabilities and on reasonable approximations of expected 
future performance.  The model facilitates capability 
modification to incorporate new performance data, as it 
becomes available. 

The following assumptions are made about agent and 
sensor capability:  

 
• Agent Size � one inch in length. 
• Agent Speed � one inch per second (maximum). 
• Agent Failure � failure equated with agent death, 

follows an exponential distribution with an 
average agent life span of 17 minutes. 

• Mean range of neighbor detector � 40 inches. 
• Maximum offset error of neighbor detector � two 

degrees. 
 
4.2 Force Function and Critical Force Selection 
 
The force function, f(d), used for the examples in this paper 
is given by Equation 4. 
 
 

 (4) 
 
 

Selection of c1 = 30000, implies that the equilibrium 
point is located at a distance of 30 inches. Figure 4 is a 
graph of the function.  Note the slope of the function.  The 
shape or slope of the function has a large effect on the 
transition between repulsing and attracting force, 
particularly in the combination of competing forces exerted 
by multiple neighbors.  The repulsion force (represented by 
the portion of the graph below the x-axis) is larger than the 
attraction force.  Also, the attraction force flattens out 
quickly such that its effects do not get too large as the 
distance between agents increases. 
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Figure 3:  Initial Dispersion � 350 Agents 
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 The critical force used in the simulation run is set at 5.  
This implies that a force magnitude, F(A), of at least 5 is 
required to initiate a reaction by the agent.  While F(A) is 
less than the critical force, the Wandering Behavior 
dominates motion direction (subject to the Collision 
Avoidance Behavior).  When the critical force is exceeded, 
the Group Formation Behavior takes over.  Selection of the 
force function parameters and the critical force is based on 
the neighbor detection capability and desired spacing  
between agents.  In the model, desired average spacing is 
set at 30 inches with a +/- six-inch tolerance. 
 
4.3 Simulation Runs 
 
The major thrust of this project was to evaluate the 
robustness of Social Potential Fields in maintaining spatial 
relationships between agents when confronted with 
imperfect sensing and agent failure.  Additionally, the 
project introduced the concept of a critical force which, 
when coupled with a Wandering Behavior, promotes 
coordinated motion.  The following discussions illustrate 
the project findings.  All simulation runs are initiated from 
the random dispersion illustrated in Figure 3.  The 
simulation time step is set at one second.  Each illustration 
shows the collective after 500 time steps or 8.3 minutes 
(simulated time). 
 
4.3.1 The Perfect World 
 
Figure 5 represents the dispersion pattern for the case in 
which sensing is perfect and agents do not fail.  Note the 
nearly uniform spatial relationship between agents.  
Additionally, note the preferential expansion of the 
collective in an easterly direction.  This �perfect world� 
represents a performance baseline for comparison.  Note 
that the rightmost agents have moved about 500 units 
(inches).  The trailing agents have also progressed though a 
little more slowly as they are concerned about also 
providing complete coverage of the area being �swept.� 
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Figure 4:  Social Potential Force Function 
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4.3.2 Agent Death 
 
In this run (shown in Figure 6) sensors work perfectly, but 
the agents are subject to death.  Death includes hard 
mechanical failures of the agent and destruction by 
environmental factors (i.e. falling in a hole or being 
crushed by an animal).  The death follows and exponential 
distribution with an average agent life span of 1000 time 
units (seconds).  The agents that have died are no longer 
displayed in the figure so the density of the collection has 
decreased. 

4.3.3 Imperfect Sensing 
 
This simulation run (Figure 7) represents the case in which 
a sensor offset error and a sensor detection probability are 
incorporated into the agent model.  Agent failure is not 
modeled in this execution of the simulation.  The sensor 
offset error is randomly distributed between +/- two 
degrees from the sensor�s intended main axis alignment.  
The sensor detection probability is exponential distribution 
with and average neighbor detection range of 40 inches. 
 

Figure 5:  Model of a �Perfect� Environment 

Figure 6:  Model of Agent Death (Failure) 
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4.3.4 Combined Death and Imperfect Sensing 
 
The combined effects of both agent death and imperfect 
sensors are illustrated in the simulation run presented in 
Figure 8. 
 

4.3.5 Discussion 
 
These simulation runs demonstrate three important results.  
First, the social potential field method is robust for 
maintaining spatial relationships when used in the presence 
of agent death and imperfect sensors.  The dispersion 
patterns are similar for both perfect sensor and imperfect 
ones.  When agents fail, the collective adjusts its shape to 
fill in the gaps.  This behavior produces a fairly uniform 
coverage of the area being swept by the agents. 

Second, the introduction of the critical force permits 
the collective to wander.  That is, without the critical force, 
the group formation behavior always dominates the 
wandering behavior and the collective does little more than 
simply space itself out.  When the wandering behavior is 
allowed to have an effect, the collective can be moved in a 
predefined direction.  This result is particularly apparent in 
Figures 5 and 6.   

Figure 7:  Model Using Imperfect Sensors 

Figure 8:  Model of Agent Failure and Imperfect Sensors 
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The final conclusion is that motion efficiency under 

social potential force control is highly dependent on 
accurate neighbor detection.  Motion efficiency is defined 
as the ratio of net distance traveled to total motion.  The 
introduction of imperfect sensing reduces motion 
efficiency.   For example, the average easterly distance 
traveled in the imperfect sensors case is only 53.22 inches 
as compared to 392.07 inches achieved with perfect 
sensing (see Table 1).  Intuitively, one would assume that 
the Wandering Behavior would dominate with imperfect 
sensor performance.  The simulation showed, however, 
that the agents oscillated between positions significantly 
more in the case of imperfect sensors. The agents were 
constantly readjusting their position depending on neighbor 
detection, lost detection and regained detection. 

Table 1 illustrates average agent motion. Easterly 
motion is the total motion east.  X motion is the total 
movement, east and west, along the x coordinate.  The ratio 
of Easterly motion and X motion is equal to motion 
efficiency.  The lower efficiency of the two simulations 
with imperfect sensor configurations indicates movement 
oscillations back and forth with minimal advancement. 

 
Table 1:  Average Agent Motion 
Agent Motion (Average distances in inches) Agent 

Config. Easterly 
Motion 

X 
Dist. 

X 
Motion 

Y 
Dist. 

Y 
Motion 

Total 
Dist. 

Perfect 392.07 392.07 465.07 11.94 90.25 392.41 

Death 364.95 364.95 448.06 25.36 134.52 366.45 

Imperfect 
Sensors 

53.22 53.95 367.27 22.83 310.55 60.69 

Death  & 
Imp. 
Sensors 

61.51 61.74 366.35 17.67 306.38 70.46 

 
4.3.6 Future Research 
 
This paper represents part of a continuing effort to develop 
behavior and control concepts for micro-robots, but also 
for autonomous agent constructs.  Social potential fields 
are shown to provide robust coordinated behavior for 
dealing with agent death and sensor imperfections in a 
simulated environment.  The next step is to conduct and 
evaluation on actual robotic platforms. 

This paper and Reif�s research explore social potential 
fields in terms of a force function that is uniform and not 
affected by the relative position of the neighboring agent.  
Further research is planned to examine the effect of sector 
dependent force functions which not only depend on the 
distance from the neighboring agent, but also on the 
relative angle of the neighbor�s position.  The use of a 
sector-based force function may have potential in the 
formation of intricate patterns with the agents.  
 The concept of residual forces that decay over time 
may be a way to address the inefficiencies and reduce 
0
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motion oscillations.  In this manner, the agent possesses a 
decaying memory of previous forces.  The residual force 
would dampen the oscillation effect by creating some 
�memory� of a previously detected agent that was not 
detected during the current detection cycle. 

Another interesting concept that must be explored 
further is the effect of the agents� initial distribution on 
their subsequent behavior and group formation.  This paper 
examines the case of a batch distribution in which all 
agents are initially bunched in a small area.  Future study 
involves reviewing the relationship between initial 
dispersion and the force function in constructing the 
desired spatial relationship and coordinated motion. 

 
5 CONCLUSIONS 
 
In this paper, we have described a flexible architecture for 
modeling thousands of autonomous agents.  The agents� 
behavior is based on a subsumption architecture in which 
individual behaviors are prioritized with respect to all 
others.  The architecture used to model individual agents 
permits specific capabilities to be quickly �plugged in� and 
tested.  Of primary interest in this research was the use of 
social potential fields as a mechanism for coordinated 
group behavior.  This paper introduced the concept of a 
neutral zone in the social potential field and demonstrated 
its effect on the agents� dispersion.  Furthermore, the 
dispersion patterns illustrate the interaction between the 
social potential field and a wandering behavior operating 
within a subsumption architecture. 

Simulation has been criticized frequently by members 
of the robotics community due to the too common use of 
models that assume perfect performance of agent and 
sensors.  We presented the results of modeling and testing 
some of the real-world limitations of small-scale micro-
robots.  The research described here specifically 
investigated the effects of agent death and imprecise 
sensors.  Initial simulation results suggests that group 
coordination based on social potential fields is robust to 
these types of real-world imperfections, but motion 
efficiency is relies on sensor performance. 

Future efforts will explore coordinated behaviors for 
other mission objectives such as those outlined in the initial 
HAZMAT scenario.  These objectives include forming a 
perimeter around a region and periodic, operator-induced 
modifications to the mission. 
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