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ABSTRACT 
 
Analysis of large, complex systems requires simulations of 
hybrid-system dynamics, i.e., dynamics which are best 
described by a combination of continuous-time and 
discrete-event models, and their interactions.  To serve as  
valuable research tools, such simulations need also be 
computationally efficient, readily modifiable, and open to a 
wide range of component modules.  This paper describes 
the development of a simulation architecture meeting these 
criteria.  The issues with its development are described 
conceptually, and its application to the task of safety 
analysis of the national airspace system is discussed.  In 
particular, an object-oriented approach to hybrid-system 
simulation is detailed, and computationally efficient 
methods of updating the simulation are described and 
compared. 
 
1 INTRODUCTION 
 
The behavior of many large, complex systems is hybrid in 
nature; i.e., it includes both continuous-time and discrete-
event models, and the behaviors these models represent are 
not separable, but instead can interact in significant ways.  
A simulation capable of recreating these hybrid-system 
dynamics provides an analysis tool that can dramatically 
change the design process.  In electronics, for example, 
integrated circuits were purposefully designed to have 
components spaced far apart until simulations capable of 
predicting electromagnetic interference could be used to 
analyze and re-design smaller chips (Saleh, Jou, and 
Newton 1994).  Many aerospace systems are best captured 
by hybrid-system simulations, ranging from aircraft with 
flight control systems that change modes, to on-board 
systems with discontinuous behaviors such as open-closed 
mechanisms.   
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Take, for instance, the task of performing safety 
analysis on the National Airspace System (NAS).  Merely 
simulating the trajectories of the aircraft would not capture 
the discrete actions of controllers; likewise, continuous-
time simulation architectures would not be well suited for 
the tasks of inserting aircraft into the airspace being 
simulated at random rates, or for the stochastic injection of 
disturbances.  Elements of NAS dynamics have been 
simulated using purely discrete-event models (Odoni, et al. 
1997); however, such models do not have the resolution to 
capture safety issues.  Similarly, hybrid-system simulations 
have been made of the NAS, but have been limited to 
specific applications or parts of the NAS (Odoni, et al. 
1997, Jim and Chang 1998). 

In order to serve as an effective design tool, simulation 
of large-scale systems must also meet a number of practical 
considerations.  Most obviously, the simulation should be 
sufficiently computationally efficient that it can provide a 
time-effective analysis tool, even when large numbers of 
runs are required.  In addition, the simulation should be 
rapidly reconfigurable, so that the development time of the 
simulation is not prohibitive, and so that the simulation can 
be applied to a range of applications and can accommodate 
models of varying fidelity. 

This paper discusses issues involving hybrid-
simulation, with the thesis that many of these issues can be 
solved by an object-oriented software architecture.  This 
architecture handles the communication between objects 
without needing to treat objects differently based on the 
type of their underlying model.  Likewise, this architecture 
can be constructed to control the timing and updating of 
the elements in a computationally efficient manner. 

First, a comparison of fundamental differences and 
similarities between continuous-time and discrete-event 
models is made. Then we describe the test case used in this 
paper � the safety analysis of the NAS. Conceptual issues 
in, and requirements of, hybrid-system simulations are 
2
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discussed, and then we present an example simulation 
software architecture.  Methods of controlling simulator 
timing are also described, illustrated by comparisons from 
the test case. 

 
2 BACKGROUND:  DISCRETE-EVENT AND 

CONTINUOUS-TIME MODELS 
 
Important, fundamental differences exist between discrete-
event and continuous-time models. These differences are 
shown in Table 1. 

Discrete-event models typically attempt to define the 
state of a system by categorizing whether conditions exist, 
or by quantifying the number of entities within a category.  
As such, they can describe the system without attempting 
to explain internal dynamics.  Their defining parameters 
stipulate how and how often states will transition from one 
to another.  These parameters are set by experimental 
observation of existing systems, and can capture the 
stochastic nature of the system.  Discrete events are well 
suited for modeling systems made of multiple entities with 
no internal dynamics of relevance � and discrete-event 
models usually require study of an established system to 
ascertain their parameters.  

Continuous-time models, on the other hand, typically 
attempt to model the internal dynamics within the system.  
The state is usually defined as a measure of energy within 
the system, such as measures of position and velocity.  
These models are often physics-based; i.e., they can be 
developed before the system can be measured as a form of 
analysis.  However, these models are described by 
differential equations, which can be numerically complex 
to propagate forward through time.  (A related model type, 
that of discrete-time systems, is modeled in similar ways, 
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e.g., via the use of difference equations, and can treated as 
a special class of continuous-time models; see Kheir 1996.) 

These two types of models, applied to the same 
problem, tend to have very different rates at which the 
states need to be updated.  Continuous-time models are 
solved through numerical integration (or transition) 
algorithms that approximate the continuous variations by 
updates at discrete intervals.  These intervals (or time 
steps), at the very least, must be at twice the rate that 
dynamics of interest occur in order to capture their basic 
properties (Beltrami 1987) � but in most applications, the 
time step is set much smaller to reduce error in the 
numerical solutions (Press, et al. 1992).  Discrete events, 
on the other hand, typically capture fairly large changes in 
dynamics, and need to occur less often.  In some cases, the 
update rates for the two types of models may be separated 
by several orders of magnitude. 

Comparisons of these two types of models are 
conceptual distinctions only.  It has been proven possible 
to incorporate models of either type into simulation 
software intended for the other.  For example, continuous-
time models have been merged into discrete-event 
simulations by fitting updates in their state values into 
mechanisms for discrete transitions with fixed, small 
transition times.  However, it has also been noted that such 
cross-implementation often requires restrictive 
assumptions on the models, limits their accuracy, increases 
the complexity of the software, and does not result in a 
computationally efficient simulation (Fahrland 1970). 
Thus, these differences are of dramatic import to the 
simulation designer, as the simulation architecture is 
typically tailored to the type of model implicit in the 
simulation. 
 
Table 1:  Comparison of Continuous-Time and Discrete-Event Models 

 Continuous-Time Models Discrete-Event Models 

System Being Simulated Specific mechanical unit with complex 
functioning Multiple, often simple, entities 

Definition of System 
State Distribution of energy within system Categorization of current system 

properties 

Typical Measures of 
System State 

Position, attitude, velocity 
(Deterministic) 

Queue size, incidence 
(Statistical properties thereof) 

Typical Factor Driving 
Updates Time Transitions from state to state 

Capability of 
Simulation 

Analyze deterministic dynamic 
behavior of a mechanical unit 

Analyze stochastic nature of 
interactions between entities 

Common Uses Design and analysis of unit, 
(real-time) training 

Analysis and planning of operations 
with multiple entities 
3
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3 TEST CASE: SAFETY ANALYSIS OF THE 
NATIONAL AIRSPACE SYSTEM 

 
At its full extent, the NAS is a system of overwhelming 
complexity.  Thousands of aircraft may be aloft at one 
time; hundreds of controllers are monitoring and directing 
them with the assistance of many communication and 
surveillance technologies. 

Complexity of the NAS is also due to the large number 
of different entities involved in its operation.  Only at a 
high-level can the NAS be modeled as consisting of 
controllers, pilots, and aircraft.  When more resolution is 
required, distinctions must be made between the different 
types of controllers (ground, tower, terminal area, en-route, 
etc.) and their hierarchies; likewise, aircraft can be of many 
different types with different performance, and their pilots 
may have widely different goals and levels of experience. 

The behavior of the NAS, to a great extent, is defined 
by the interaction of these different elements.  The NAS 
can not be modeled as a collection of independent aircraft 
flying simultaneously; instead, controllers (and pilots) are 
constantly changing direction of flight in response to the 
actions of others.  These interactions may meet a number 
of goals, ranging from time-critical collision avoidance 
maneuvers, to strategic plans for air traffic flow 
management. 

In order to meet increasing capacity demands and 
stricter safety demands, the NAS is being updated.  These 
updates range in scale from near-term equipment upgrades, 
to longer-term calls to change the manner in which 
controllers and pilots interact.   

These upgrades create a design problem of vast scale.  
For both cost and safety, as much analysis should occur 
before implementation as possible.  The worth of this 
analysis will be measured by its ability to predict problems, 
allowing for their correction, before implementation.  
Simulation and modeling have been recognized as a critical 
part of this analysis (National Research Council 1997). 

The NAS has been simulated before (Odoni, et al. 
1997, Jim and Chang 1998).  However, most of these 
simulations have not been suitable for large-scale safety 
analysis.  Many NAS simulations have been motivated by 
studies of efficiency.  These simulations have been 
concerned with values such as airport inter-arrival times or 
flight delays.  These concerns are best abstracted by 
discrete events, and hence have largely been covered by 
discrete-event simulations.   

Safety, on the other hand, is largely determined by 
continuously evolving interactions which discrete-event 
simulations can not capture.  For example, a discrete-event 
simulation may model the times at which two aircraft 
arrive at an airport; but without monitoring their 
continuous trajectories, it is nearly impossible to measure 
with certainty whether these two aircraft come 
unacceptably close during their flights.  Therefore, 
11
 
simulation suitable for safety analysis needs better 
resolution of some parts of the system than can be readily 
provided by discrete events alone. 

The most notable element requiring adequate 
resolution is the trajectory of the aircraft itself.  Typically 
represented by differential equations, aircraft trajectories 
are usually best modeled as continuous-time objects.  
Fortunately, many excellent models are currently available 
at all levels of fidelity, ranging from outer-loop models of 
the aircraft�s guidance, to detailed inner-loop models of the 
aircraft�s flight dynamics (Hanke 1971, Johnson and 
Hansman 1994, Stevens and Lewis 1992). These models 
are physics-based, which allows their parameters to be 
estimated (if not exactly known), and brings predictive 
power to the simulation where novel NAS changes are to 
be simulated before measurements of actual dynamics can 
be observed. 

Other elements remain best modeled as discrete 
events, for a variety of reasons.  Some elements of NAS 
behavior can be predicted to occur discretely; for example, 
the generation of a cue of aircraft waiting for taxi clearance 
to the take-off runway is discrete in nature.  Other elements 
of the NAS are not needed at a fine resolution, so 
computational effort can be saved by reducing them to a 
notable state � for example, a detailed, computationally 
expensive continuous-time model of an aircraft waiting for 
take-off can be temporarily replaced by a notation in the 
take-off cue.  Finally, discrete events can be used to 
interject stochastic elements into the simulation, including 
the dramatic conditions caused by errors and failures, as 
well as disturbances into aircraft model parameters 
representing variations in aircraft behavior. 

Of critical importance in NAS safety simulation is 
inclusion of human performance models, for their behavior 
drives system dynamics.  Their behavior should not be 
typecast into either continuous or discrete forms.  For 
example, many human performance models can be based 
on procedures or expert systems that call for isolated 
actions to be triggered by conditions in the environment 
(discretely) while also maintaining a continuously evolving 
valuation of workload or working memory content.   

Measurements of NAS safety can also be treated as 
discrete events that occur when conditions in the 
environment are met, such as loss of separation between 
two aircraft.  Unlike �normal� discrete events, these 
measurements do not need to trigger subsequent events in 
the simulation, beyond recording the event to an output 
file.  However, these measurements can share in the 
computational structures that are used for other discrete 
events. 
 
4 HYBRID-SYSTEM SIMULATION CONCEPTS 
 
In cases where an elegant, analytic solution can not be 
found to analyze a system represented by discrete-event 
34
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and continuous-time models, a hybrid-system simulation is 
required to calculate system dynamics through time.  
Several approaches have been suggested to the design of 
hybrid-system simulations.  Some create larger �meta-
model� frameworks in which each �type� of simulation 
functions separately (Saleh, Jou, and Newton 1994, 
Friedman 1996).  Other solutions have adapted existing 
simulations of one type to include the other (Wieting 1996, 
Cellier 1986). 

A third approach, sometimes called the �fully-
integrated approach� (Saleh, Joe, and Newton 1994), seeks 
to create new software that inherently accepts the two 
model types.  Such approaches have been undertaken with 
special modeling languages (Kettenis 1997).  The current 
paper will instead focus on software architectures (not 
necessarily written in special languages) that can accept 
models of any type, control their timing in computationally 
efficient mechanisms, and handle communication between 
the objects. 

Previous sections have highlighted the differences 
between the models used in hybrid-system simulation.  A 
simulation architecture can capitalize upon the various 
abilities these models share: to update themselves when 
required; to report when their next update is required; and 
to report interactions with other objects that warrant a joint 
update. 

At a high-level, a simulation architecture can require 
components to meet these three interface requirements.  All 
other dynamics of the components can remain internal to 
their models, without requiring intervention by the larger 
simulation architecture.  This internalism can be 
considered a feature.  It prevents fundamental restrictions 
on the type of model allowed in the simulation � and it 
allows for the simulation to include components of various 
resolutions as required by the task at hand (Bezdek, Halley, 
and Hummel 1997, Davis and Bigelow 1998). 

Without placing restrictions on components� models, 
the simulation architecture also needs to support their 
interactions.  These interactions may take on several forms.  
Traditional to continuous-time simulation is coupling 
between different continuous-time objects, such as two 
aircraft flying in formation (or executing avoidance 
maneuvers) reacting to the movements of each other.  A 
discrete event may also impact a continuous-time object in 
several ways: it may enact a discrete change in the 
variables maintained by the continuous-time object (such 
as a sudden change in acceleration due to the application of 
brakes or engine failure); it may change a parameter�s 
value within the continuous-time object (such as a change 
in stability derivatives in response to a discrete change in 
aircraft configuration); or it may �swap in� a whole new 
continuous-time model better suited to the situation (such 
as inclusion of a higher fidelity aircraft model at the start of 
an avoidance maneuver, or a switch to a �taxiing� aircraft 
model after landing).  Continuous-time objects can interact 
113
with discrete events when their values are the events� 
triggers.  

Within a simulation framework that supports such 
interactions, the simulation designer is given the ability to 
make components work efficiently on their own.  For 
example, in modeling an aircraft with on-board systems 
that have discrete dynamics, the simulation designer has 
choices beyond the usual requirement that these two 
behaviors be kept common in one model, despite their two 
different time scales.  Instead, the designer would have the 
option of making the on-board systems into a separate 
discrete-event model that communicates appropriately with 
the continuous-time model of the aircraft dynamics.  Such 
an approach allows the simulation designer to separate 
behaviors according to the times at which they will need to 
be updated without substantial re-workings within 
individual components (Kettenis 1997). 

While a simulation�s operation does not depend on 
measurements, the desire for accurate measurements is 
typically the motivation for the simulation.  In many cases, 
the measurements are temporal in nature and hence it is 
important that a measurement be taken exactly when it 
occurs.  One approach is to make measurements an active 
element by treating them as discrete events that must report 
when they must next be updated.  This projected update 
time can be a conservative estimate of when the conditions 
wanting recording may next occur.  While this process 
requires measurements to have a prediction power, it also 
reduces the need for unnecessary measurements.  This also 
mirrors a duality between measurements and conditionally 
based discrete events � while the former have no lasting 
impact on simulation dynamics, the latter are 
measurements with a consequence. 

Based on this discussion, we can summarize several 
requirements for a hybrid-system simulation architecture.  
First, the simulation architecture should not place 
unnecessary limits on the types of objects, but instead 
accommodate any components that can list their update 
times and update themselves upon command.  Second, the 
simulation architecture should facilitate communication 
between objects, so that it is easy for the simulation 
designer to break apart models according to their 
functionality and update rates, without requiring lengthy 
communication standards to be developed.  Finally, the 
simulation architecture should be capable of timing the 
updates of the individual components in a computationally 
efficient manner. 
 
5 SIMULATION ARCHITECTURE 
 
The previous sections discussed conceptual issues with 
hybrid-system simulation.  This section discusses a 
particular simulator architecture design.  This simulation is 
based on extensions to and adaptations of the 
Reconfigurable Flight Simulator (RFS), which was 
5
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originally designed for more traditional applications of 
flight simulation (Pritchett and Ippolito 2000). 

This simulation allows for the inclusion of several 
broad classes of objects, as shown schematically in Figure 
1.  An arbitrary number of vehicles can be added to the 
vehicle list.  These components must fit a base interface for 
vehicles, which was designed to support continuous-time 
models of vehicle dynamics.  For specific applications, 
base interfaces have also been defined for aircraft and for 
spacecraft. Further, several basic components, including 
6DOF and waypoint following aircraft, have been 
developed and can be used or extended by other 
developers. 

Beyond these capabilities as a �normal� flight 
simulator, an arbitrary number of controller and 
measurement objects can be added to a dedicated list.  The 
base interface standards for these objects are less specified, 
allowing flexibility in the objects� behaviors.  Components 
that have been added to date include: �Random Aircraft 
Generators� that place aircraft into airspace according to a 
given distribution of inter-arrival times; basic air traffic 
controllers that determine aircraft sequences in merging 
arrival streams and then command speeds to aircraft to 
maintain proper spacing within the traffic streams; and 
measurement objects that look for and record events 
specified in a text script.  The flexibility of this type of 
component allows for many other types of discrete-event 
and measurement components to be added as desired. 

Other types of components are also available in the 
simulation architecture as support for hybrid-system 
simulation needs.  Most of the components needed for this 
application are already established, but these components 
can be modified or added to as desired.  Input-output (IO) 
objects provide mechanisms for graphical output of the 
simulation (such as an �air traffic control screen� and text 
output of commands given by controllers), and for data 
recording of the measurements.  The environment 
controller and database (ECAD) provides a common 
simulation environment for all the components by giving 
common axis definitions and conversions, and by allowing 
for the inclusion of atmospheric and terrain models as 
desired.  Finally, a networking object handles 
communications between simulations run on multiple 
machines over a network; this networking is transparent to 
the rest of the simulation and therefore does not require re-
compilation of components to use or access networking. 

To function as a hybrid-system simulation, each 
continuous-time, discrete-event, and measurement object is 
required to meet the minimal standards of a standard 
interface. In particular, each of these components must 
update its state on command, report the time of its next 
update (or, in the case of some discrete-event and 
measurement objects, the next time at which an update 
might occur conditionally upon other events), and identify 
whether any other objects must also be updated. 
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For the continuous-time objects, a standard input that 
needs to be provided is an upper bound on the numerical 
error allowable in each time step.  With this input, the next 
update time is calculated based upon knowledge of the 
interior dynamics; algorithms for such flexible time step 
calculations are well established (Beltrami 1987). 

Communications between objects are handled by the 
high-level simulation object.  It follows that the designer of 
a hybrid-system simulation using this architecture does not 
need to develop communication standards beyond giving 
individual components the ability to send and receive 
messages.  Many standard messages can be passed through 
the base interface standards of vehicle and controller / 
measurement objects.   

Those messages that do not fit within the base 
interface standards can be sent through the simulator object 
via the Object Data / Methods Extensions (OD/ME) 
protocol, which requires sending a message to the 
simulator object along with a request for its destination 

(Pritchett and Ippolito 2000).  This mechanism also allows 
for objects to request the addition or destruction of other 
objects; for example, a random aircraft generator can 
request the addition of a new aircraft to the vehicle list, 
with subsequent messages to that new aircraft that provide 
it with initialization data. 

To facilitate efficient timing of the objects� updates, a 
�state updater� object within the controller list maintains a 
list of the vehicle and controller objects, sorted by the 
times of their next desired updates (see Figure 2).  This 
state updater object can identify the object next to be 
updated, regardless of type, can query that object as to 
whether it requires other objects to also be updated, and 
can command the appropriate objects to update.  Once 
objects have been updated, they each are asked for their 
new update time, and are sorted accordingly.  

 
6 EFFICIENCY AND TIMING METHODS 
 
In large-scale simulation, concerns with computational 
efficiency extend past standard efforts to make each 
component individually efficient.  Overall efficiency is 
achieved when each object updates only when needed to 
meet several criteria: accurate modeling of its interior 
dynamics; correct interaction with other objects; and timely 
measurements.   

Any unnecessary updates of objects may be 
considered wasted use of the processor.  However, 
methods of deciding when an update may be required for 
correct interactions or measurements is usually non-exact 
once the simulation at hand is non-trivial in size.  
Likewise, the overhead computation to enable the most 
sophisticated timing methods may be non-trivial and can 
slow down the simulation by itself. 
6
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Figure 1:  Schematic of Component Classes within the Simulation Architecture 
Figure 2:  Schematic of Sorting of Simulation Components by Update Time, with Access by a State Updater Component 
 
Even measuring the computational efficiency of a 

simulation can be non-trivial.  Once the simulation 
includes stochastic elements, it can be difficult to compare 
with certainty the relative speed of different update timing 
methods, which may take the simulation though different 
1137
system dynamics due to the inclusion of disturbances or 
anomalies. 

This section will compare different timing methods, 
and illustrate their effect on a representative NAS 
simulation using the architecture described in the previous 
section.  Then tradeoffs in the fundamental characteristics 
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of these methods are discussed, and alternative methods are 
commented on. 
 
6.1 Timing Methods 
 
Two major variables define the variety of methods for 
determining the timing of simulation components. First is 
the selection of how the time step is set (next-event time 
advance or fixed-increment time advance) (see Law and 
Kelton 2000).  Second is the choice whether the simulation 
will be entirely synchronous (i.e., all components update at 
the same time), partially synchronous and partially 
asynchronous, or entirely asynchronous (i.e., all 
components update individually).  Several timing methods 
can be defined by these two variables, as follows. 
 
6.1.1  Fixed Time-Step Synchronous 
 
This timing method has all objects update at the same time, 
and this update time is based upon a fixed time step.  This 
method is commonly used in current flight simulation 
techniques, where the time-step may be fixed by 
conservative analysis of the fastest dynamics in the system, 
or by the system clock in real-time simulation.  This 
method is very basic and is often the first step in the 
development of a hybrid-system simulation.  It also 
provides conservative results that can be guaranteed to not 
miss any measurements or interactions by the setting of an 
arbitrarily small time step, without requiring predictions 
from discrete-event or measurement objects.  However, it 
also forces all objects to update at a rate governed by the 
worst-case dynamics of the component with the fastest 
response, which is computationally inefficient. 
 
6.1.2  Variable Time-Step, Synchronous 
 
This timing method has all the objects update at the same 
time, but varies the update time from one time step to the 
next to meet the needs of the simulation.  For instance, the 
update time may be chosen by polling all objects for their 
desired time step, and then selecting the worst-case 
(smallest).  This method still forces some objects to update 
more times than normally required, but can relax the time 
step when conditions allow. 
 
6.1.3  Asynchronous With Resynchronization 
 
This timing method allows for components to be updated 
independently following their own update times.  This is 
shown schematically in Figure 3 for a simulation with four 
aircraft, a random aircraft generator (RAG) and a 
measurement object; the aircraft and RAG update at their 
own rates until a measurement requires a complete 
synchronization.  This will allow for objects with fast 
11
dynamics to update frequently without requiring other 
objects to be bound by such small time steps.  However, 
this method also allows for objects which interact, or 
which measure interactions, to require all objects (or some 
objects) to resynchronize when it is time for their update, 
with the result that interactions and measurements can be 
based on values from temporally co-located objects. 
 
6.2 Case Study: Simulation of a Standard  

Terminal Arrival Route 
 
To demonstrate the computational efficiency of these 
methods, a numerical simulation was conducted using the 
simulation architecture described in the previous section.  
The simulation modeled the stream of arriving aircraft 
flying the Macey Two Standard Terminal Arrival Route 
(STAR) into Atlanta-Hartsfield airport.  Aircraft were 
injected into the simulation stochastically with a specified 
inter-arrival rate.  A controller scheduled the aircraft from 
the multiple entry streams into one arrival flow by 
selecting the appropriate order of the aircraft, and 
commanding speeds to the aircraft that created this desired 
traffic pattern. The aircraft were removed from the 
simulation when they reached the runway.   

Figure 4 illustrates the results of the simulation.  
Efficiency is measured by the average number of times the 
aircraft objects are called to update during the course of the 
run.  We use this efficiency measure since aircraft are the 
most computationally intensive objects � due both to their 
underlying update rate as well as to forced 
resynchronizations. 

We present data for two timing methods.  The �Fast 
Time� method used the variable time step synchronous 
method.  The �Asynchronous� method used the 
asynchronous with resynchronization method; the 
controller and measurement objects commanded a 
complete resynchronization at times when they predicted a 
conflict might occur or the next command might be 
warranted.  

The inter-arrival rate of aircraft into the arrival route 
was also varied.  The highest inter-arrival mean (500 
seconds) created a fairly low traffic intensity, with 
commensurately few interactions.  At this inter-arrival 
mean, the benefits of asynchronous simulation are 
noticeable, but not dramatic. 
 The lowest inter-arrival mean (100 seconds) created a 
high traffic intensity, in which controller commands and 
potential conflicts were possible.  The aircraft often needed 
to maneuver, and conflicts indeed manifested themselves.  
In the �Fast-Time� method, this had the effect of requiring 
many more updates for all aircraft on average.  In the 
�Asynchronous� method, fewer updates were required 
overall as the aircraft needing updates at small intervals 
were able to work independently. 
38
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Figure 3 Schematic of Asynchronous Simulation With Resynchronization 
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Figure 4: Experimental Results from a STAR Simulation Showing Computational Efficiency (avg. number 
of calls to aircraft) for Synchronous, Variable Time Step and for Asynchronous with Resynchronization 
Timing Mechanisms 
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6.3 Tradeoffs Between Resynchronization  
Intervals and Efficiency 

 
In applications such as just shown in the case study, there 
appear to be benefits with allowing simulation objects to 
run, at least for intervals, asynchronously.  At first glance, 
this seems to imply that the best efficiency will arise with 
the largest resynchronization intervals.  However, two 
main issues limit the size of resynchronization intervals. 

First, larger resynchronization intervals require better 
(and more computationally expensive) predictions by the 
individual components about when a resynchronization 
may occur.  Better predictions require more extensive 
calculations � at an extreme, the predictor would need to 
internally simulate other objects in order to accurately 
predict when a problem might occur!  As such, the value of 
better predictions can reach a point of diminishing returns, 
where the additional computations in the predictions offset 
any savings in computations by other objects. 

Second, larger resynchronization intervals require 
better (and model specific) predictions by the individual 
components about when a resynchronization may occur.  
Simple predictions about a potential aircraft collision, for 
example, can be made based on commonly available 
aircraft position and velocity; more accurate predictions 
require knowledge of the aircraft�s internal dynamics and 
likely future actions.  This imposes an obvious 
development cost on the simulation.  It also makes such 
�smart� predictors difficult to use in simulations where a 
large variety of objects may be involved in the prediction, 
and limits the use of the predictors to specific cases. 

 
6.4 Alternatives to Resynchronization 
 
So far, this discussion on simulation timing has assumed 
that accurate measurements and interactions can only occur 
when the objects involved are temporally co-located, with 
the implication that occasional resynchronization is always 
required.  It is also possible for measurements and 
interactions to be calculated from temporally disjoint 
objects.  Of course, such calculations tend to be more 
complex, but with such a capability fewer 
resynchronizations are needed solely to make 
measurements or predictions about the future.  However, at 
least partial resynchronizations will still be needed when 
predicted interactions require other objects to jointly 
manifest a new behavior at a certain time (e.g., a predicted 
collision avoidance alert requiring two aircraft to 
synchronize and communicate at the start of the alert).  
Likewise, in a simulation with stochastic elements, such 
predictions can not be made with certainty and hence 
remain susceptible to inaccuracies. 

Similarly, we have assumed that the simulation always 
runs �forward� in time.  This assumption generates 
conservative timing intervals to avoid �missing� any 
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important interactions.  For some applications, simulations 
capable of running �backwards� to a potential missed 
interaction are possible, with the benefit of relaxing timing 
intervals (Mirtich 2000, Jefferson 1985).  However, these 
�rollback� or �timewarp� simulations can fit better in some 
domains than others � some types of models are simply 
easier to either �run� backwards or store their recent state 
space so that the simulator can be backed up to before the 
missed problem (such methods have most commonly been 
applied to systems with purely discrete dynamics or very 
simple continuous-time models).  Likewise, these methods 
incur a computational hit, and so should be used wisely. 
 
7 CONCLUSION 
 
This paper has discussed issues related to simulating large, 
complex systems as an analysis method during their 
design.  Hybrid-system simulation is an emerging field of 
interest with the potential to provide such an analysis tool. 

Simulation of the NAS for safety analysis was used as 
an example and a test case throughout the paper.  This 
application shares many of the qualities (and requirements) 
of other aerospace systems.  For example, large-scale 
simulations of many operational systems are now being 
proposed, including military mission planning and 
spacecraft Launch and Range Operations.  Further, details 
of a single vehicle�s avionics systems now present a 
complex analysis task of both aircraft dynamics and 
discrete transitions in mechanical, electronic, and software 
on-board systems. 

Several open issues remain with hybrid-system 
simulation.  Some can be addressed by a software 
architecture specifically designed to allow this purpose.  
This paper suggested that such an architecture should place 
few restrictions on the types of models allowed, so that it 
can be used for a variety of purposes and with components 
of varying fidelity and resolution.   

The behavior and performance metrics of hybrid 
systems both rely on interactions between individual 
components.  As such, a simulation architecture also needs 
to accurately capture and/or create these interactions. 

Methods of making the simulation as computationally 
efficient as possible are important.  Rather than reducing 
the need for computational efficiency, recent 
improvements in computational power have, for the first 
time, allowed the research community to hope that very 
large, very complex systems can be simulated.  As these 
simulations become more widely used, there may be 
increasing demand for more fidelity, more accuracy, and 
for more simulation runs in an analysis for wider or more 
statistically verifiable results. 

This paper discussed the use of timing the updates of 
individual objects within a large-scale simulation.  We 
considered two specific mechanisms: variable time steps, 
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and asynchronous simulation with occasional 
synchronization to capture measurements and interactions. 

As a test case, we discussed a simulation architecture 
which met the requirements and mechanisms described in 
the paper.  This simulation architecture uses an object-
oriented framework to accept objects of a wide variety of 
types, easily incorporating both continuous-time and 
discrete-event models.  This simulation architecture was 
used to simulate the dynamics of the NAS.  Even the 
simple methods of improved simulation timing were found 
to have significant benefits in this application. 
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