
Proceedings of the 2000 Winter Simulation Conference
J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, eds.

HYBRID-SYSTEM SIMULATION FOR NATIONAL
AIRSPACE SYSTEM SAFETY ANALYSIS

Amy R. Pritchett
Seungman Lee
David Huang

David Goldsman

School of Industrial and Systems Engineering
Georgia Institute of Technology

Atlanta, GA 30332-0205, U.S.A.

ABSTRACT

Analysis of large, complex systems requires simulations of
hybrid-system dynamics, i.e., dynamics which are best
described by a combination of continuous-time and
discrete-event models, and their interactions. To serve as
valuable research tools, such simulations need also be
computationally efficient, readily modifiable, and open to a
wide range of component modules. This paper describes
the development of a simulation architecture meeting these
criteria. The issues with its development are described
conceptually, and its application to the task of safety
analysis of the national airspace system is discussed. In
particular, an object-oriented approach to hybrid-system
simulation is detailed, and computationally efficient
methods of updating the simulation are described and
compared.

1 INTRODUCTION

The behavior of many large, complex systems is hybrid in
nature; i.e., it includes both continuous-time and discrete-
event models, and the behaviors these models represent are
not separable, but instead can interact in significant ways.
A simulation capable of recreating these hybrid-system
dynamics provides an analysis tool that can dramatically
change the design process. In electronics, for example,
integrated circuits were purposefully designed to have
components spaced far apart until simulations capable of
predicting electromagnetic interference could be used to
analyze and re-design smaller chips (Saleh, Jou, and
Newton 1994). Many aerospace systems are best captured
by hybrid-system simulations, ranging from aircraft with
flight control systems that change modes, to on-board
systems with discontinuous behaviors such as open-closed
mechanisms.
113
Take, for instance, the task of performing safety
analysis on the National Airspace System (NAS). Merely
simulating the trajectories of the aircraft would not capture
the discrete actions of controllers; likewise, continuous-
time simulation architectures would not be well suited for
the tasks of inserting aircraft into the airspace being
simulated at random rates, or for the stochastic injection of
disturbances. Elements of NAS dynamics have been
simulated using purely discrete-event models (Odoni, et al.
1997); however, such models do not have the resolution to
capture safety issues. Similarly, hybrid-system simulations
have been made of the NAS, but have been limited to
specific applications or parts of the NAS (Odoni, et al.
1997, Jim and Chang 1998).

In order to serve as an effective design tool, simulation
of large-scale systems must also meet a number of practical
considerations. Most obviously, the simulation should be
sufficiently computationally efficient that it can provide a
time-effective analysis tool, even when large numbers of
runs are required. In addition, the simulation should be
rapidly reconfigurable, so that the development time of the
simulation is not prohibitive, and so that the simulation can
be applied to a range of applications and can accommodate
models of varying fidelity.

This paper discusses issues involving hybrid-
simulation, with the thesis that many of these issues can be
solved by an object-oriented software architecture. This
architecture handles the communication between objects
without needing to treat objects differently based on the
type of their underlying model. Likewise, this architecture
can be constructed to control the timing and updating of
the elements in a computationally efficient manner.

First, a comparison of fundamental differences and
similarities between continuous-time and discrete-event
models is made. Then we describe the test case used in this
paper � the safety analysis of the NAS. Conceptual issues
in, and requirements of, hybrid-system simulations are
2

Pritchett, Lee, Huang, and Goldsman

discussed, and then we present an example simulation
software architecture. Methods of controlling simulator
timing are also described, illustrated by comparisons from
the test case.

2 BACKGROUND: DISCRETE-EVENT AND

CONTINUOUS-TIME MODELS

Important, fundamental differences exist between discrete-
event and continuous-time models. These differences are
shown in Table 1.

Discrete-event models typically attempt to define the
state of a system by categorizing whether conditions exist,
or by quantifying the number of entities within a category.
As such, they can describe the system without attempting
to explain internal dynamics. Their defining parameters
stipulate how and how often states will transition from one
to another. These parameters are set by experimental
observation of existing systems, and can capture the
stochastic nature of the system. Discrete events are well
suited for modeling systems made of multiple entities with
no internal dynamics of relevance � and discrete-event
models usually require study of an established system to
ascertain their parameters.

Continuous-time models, on the other hand, typically
attempt to model the internal dynamics within the system.
The state is usually defined as a measure of energy within
the system, such as measures of position and velocity.
These models are often physics-based; i.e., they can be
developed before the system can be measured as a form of
analysis. However, these models are described by
differential equations, which can be numerically complex
to propagate forward through time. (A related model type,
that of discrete-time systems, is modeled in similar ways,

113
e.g., via the use of difference equations, and can treated as
a special class of continuous-time models; see Kheir 1996.)

These two types of models, applied to the same
problem, tend to have very different rates at which the
states need to be updated. Continuous-time models are
solved through numerical integration (or transition)
algorithms that approximate the continuous variations by
updates at discrete intervals. These intervals (or time
steps), at the very least, must be at twice the rate that
dynamics of interest occur in order to capture their basic
properties (Beltrami 1987) � but in most applications, the
time step is set much smaller to reduce error in the
numerical solutions (Press, et al. 1992). Discrete events,
on the other hand, typically capture fairly large changes in
dynamics, and need to occur less often. In some cases, the
update rates for the two types of models may be separated
by several orders of magnitude.

Comparisons of these two types of models are
conceptual distinctions only. It has been proven possible
to incorporate models of either type into simulation
software intended for the other. For example, continuous-
time models have been merged into discrete-event
simulations by fitting updates in their state values into
mechanisms for discrete transitions with fixed, small
transition times. However, it has also been noted that such
cross-implementation often requires restrictive
assumptions on the models, limits their accuracy, increases
the complexity of the software, and does not result in a
computationally efficient simulation (Fahrland 1970).
Thus, these differences are of dramatic import to the
simulation designer, as the simulation architecture is
typically tailored to the type of model implicit in the
simulation.

Table 1: Comparison of Continuous-Time and Discrete-Event Models

 Continuous-Time Models Discrete-Event Models

System Being Simulated Specific mechanical unit with complex
functioning Multiple, often simple, entities

Definition of System
State Distribution of energy within system Categorization of current system

properties

Typical Measures of
System State

Position, attitude, velocity
(Deterministic)

Queue size, incidence
(Statistical properties thereof)

Typical Factor Driving
Updates Time Transitions from state to state

Capability of
Simulation

Analyze deterministic dynamic
behavior of a mechanical unit

Analyze stochastic nature of
interactions between entities

Common Uses Design and analysis of unit,
(real-time) training

Analysis and planning of operations
with multiple entities
3

Pritchett, Lee, Huang, and Goldsman
3 TEST CASE: SAFETY ANALYSIS OF THE
NATIONAL AIRSPACE SYSTEM

At its full extent, the NAS is a system of overwhelming
complexity. Thousands of aircraft may be aloft at one
time; hundreds of controllers are monitoring and directing
them with the assistance of many communication and
surveillance technologies.

Complexity of the NAS is also due to the large number
of different entities involved in its operation. Only at a
high-level can the NAS be modeled as consisting of
controllers, pilots, and aircraft. When more resolution is
required, distinctions must be made between the different
types of controllers (ground, tower, terminal area, en-route,
etc.) and their hierarchies; likewise, aircraft can be of many
different types with different performance, and their pilots
may have widely different goals and levels of experience.

The behavior of the NAS, to a great extent, is defined
by the interaction of these different elements. The NAS
can not be modeled as a collection of independent aircraft
flying simultaneously; instead, controllers (and pilots) are
constantly changing direction of flight in response to the
actions of others. These interactions may meet a number
of goals, ranging from time-critical collision avoidance
maneuvers, to strategic plans for air traffic flow
management.

In order to meet increasing capacity demands and
stricter safety demands, the NAS is being updated. These
updates range in scale from near-term equipment upgrades,
to longer-term calls to change the manner in which
controllers and pilots interact.

These upgrades create a design problem of vast scale.
For both cost and safety, as much analysis should occur
before implementation as possible. The worth of this
analysis will be measured by its ability to predict problems,
allowing for their correction, before implementation.
Simulation and modeling have been recognized as a critical
part of this analysis (National Research Council 1997).

The NAS has been simulated before (Odoni, et al.
1997, Jim and Chang 1998). However, most of these
simulations have not been suitable for large-scale safety
analysis. Many NAS simulations have been motivated by
studies of efficiency. These simulations have been
concerned with values such as airport inter-arrival times or
flight delays. These concerns are best abstracted by
discrete events, and hence have largely been covered by
discrete-event simulations.

Safety, on the other hand, is largely determined by
continuously evolving interactions which discrete-event
simulations can not capture. For example, a discrete-event
simulation may model the times at which two aircraft
arrive at an airport; but without monitoring their
continuous trajectories, it is nearly impossible to measure
with certainty whether these two aircraft come
unacceptably close during their flights. Therefore,
11

simulation suitable for safety analysis needs better
resolution of some parts of the system than can be readily
provided by discrete events alone.

The most notable element requiring adequate
resolution is the trajectory of the aircraft itself. Typically
represented by differential equations, aircraft trajectories
are usually best modeled as continuous-time objects.
Fortunately, many excellent models are currently available
at all levels of fidelity, ranging from outer-loop models of
the aircraft�s guidance, to detailed inner-loop models of the
aircraft�s flight dynamics (Hanke 1971, Johnson and
Hansman 1994, Stevens and Lewis 1992). These models
are physics-based, which allows their parameters to be
estimated (if not exactly known), and brings predictive
power to the simulation where novel NAS changes are to
be simulated before measurements of actual dynamics can
be observed.

Other elements remain best modeled as discrete
events, for a variety of reasons. Some elements of NAS
behavior can be predicted to occur discretely; for example,
the generation of a cue of aircraft waiting for taxi clearance
to the take-off runway is discrete in nature. Other elements
of the NAS are not needed at a fine resolution, so
computational effort can be saved by reducing them to a
notable state � for example, a detailed, computationally
expensive continuous-time model of an aircraft waiting for
take-off can be temporarily replaced by a notation in the
take-off cue. Finally, discrete events can be used to
interject stochastic elements into the simulation, including
the dramatic conditions caused by errors and failures, as
well as disturbances into aircraft model parameters
representing variations in aircraft behavior.

Of critical importance in NAS safety simulation is
inclusion of human performance models, for their behavior
drives system dynamics. Their behavior should not be
typecast into either continuous or discrete forms. For
example, many human performance models can be based
on procedures or expert systems that call for isolated
actions to be triggered by conditions in the environment
(discretely) while also maintaining a continuously evolving
valuation of workload or working memory content.

Measurements of NAS safety can also be treated as
discrete events that occur when conditions in the
environment are met, such as loss of separation between
two aircraft. Unlike �normal� discrete events, these
measurements do not need to trigger subsequent events in
the simulation, beyond recording the event to an output
file. However, these measurements can share in the
computational structures that are used for other discrete
events.

4 HYBRID-SYSTEM SIMULATION CONCEPTS

In cases where an elegant, analytic solution can not be
found to analyze a system represented by discrete-event
34

Pritchett, Lee, Huang, and Goldsman

and continuous-time models, a hybrid-system simulation is
required to calculate system dynamics through time.
Several approaches have been suggested to the design of
hybrid-system simulations. Some create larger �meta-
model� frameworks in which each �type� of simulation
functions separately (Saleh, Jou, and Newton 1994,
Friedman 1996). Other solutions have adapted existing
simulations of one type to include the other (Wieting 1996,
Cellier 1986).

A third approach, sometimes called the �fully-
integrated approach� (Saleh, Joe, and Newton 1994), seeks
to create new software that inherently accepts the two
model types. Such approaches have been undertaken with
special modeling languages (Kettenis 1997). The current
paper will instead focus on software architectures (not
necessarily written in special languages) that can accept
models of any type, control their timing in computationally
efficient mechanisms, and handle communication between
the objects.

Previous sections have highlighted the differences
between the models used in hybrid-system simulation. A
simulation architecture can capitalize upon the various
abilities these models share: to update themselves when
required; to report when their next update is required; and
to report interactions with other objects that warrant a joint
update.

At a high-level, a simulation architecture can require
components to meet these three interface requirements. All
other dynamics of the components can remain internal to
their models, without requiring intervention by the larger
simulation architecture. This internalism can be
considered a feature. It prevents fundamental restrictions
on the type of model allowed in the simulation � and it
allows for the simulation to include components of various
resolutions as required by the task at hand (Bezdek, Halley,
and Hummel 1997, Davis and Bigelow 1998).

Without placing restrictions on components� models,
the simulation architecture also needs to support their
interactions. These interactions may take on several forms.
Traditional to continuous-time simulation is coupling
between different continuous-time objects, such as two
aircraft flying in formation (or executing avoidance
maneuvers) reacting to the movements of each other. A
discrete event may also impact a continuous-time object in
several ways: it may enact a discrete change in the
variables maintained by the continuous-time object (such
as a sudden change in acceleration due to the application of
brakes or engine failure); it may change a parameter�s
value within the continuous-time object (such as a change
in stability derivatives in response to a discrete change in
aircraft configuration); or it may �swap in� a whole new
continuous-time model better suited to the situation (such
as inclusion of a higher fidelity aircraft model at the start of
an avoidance maneuver, or a switch to a �taxiing� aircraft
model after landing). Continuous-time objects can interact
113
with discrete events when their values are the events�
triggers.

Within a simulation framework that supports such
interactions, the simulation designer is given the ability to
make components work efficiently on their own. For
example, in modeling an aircraft with on-board systems
that have discrete dynamics, the simulation designer has
choices beyond the usual requirement that these two
behaviors be kept common in one model, despite their two
different time scales. Instead, the designer would have the
option of making the on-board systems into a separate
discrete-event model that communicates appropriately with
the continuous-time model of the aircraft dynamics. Such
an approach allows the simulation designer to separate
behaviors according to the times at which they will need to
be updated without substantial re-workings within
individual components (Kettenis 1997).

While a simulation�s operation does not depend on
measurements, the desire for accurate measurements is
typically the motivation for the simulation. In many cases,
the measurements are temporal in nature and hence it is
important that a measurement be taken exactly when it
occurs. One approach is to make measurements an active
element by treating them as discrete events that must report
when they must next be updated. This projected update
time can be a conservative estimate of when the conditions
wanting recording may next occur. While this process
requires measurements to have a prediction power, it also
reduces the need for unnecessary measurements. This also
mirrors a duality between measurements and conditionally
based discrete events � while the former have no lasting
impact on simulation dynamics, the latter are
measurements with a consequence.

Based on this discussion, we can summarize several
requirements for a hybrid-system simulation architecture.
First, the simulation architecture should not place
unnecessary limits on the types of objects, but instead
accommodate any components that can list their update
times and update themselves upon command. Second, the
simulation architecture should facilitate communication
between objects, so that it is easy for the simulation
designer to break apart models according to their
functionality and update rates, without requiring lengthy
communication standards to be developed. Finally, the
simulation architecture should be capable of timing the
updates of the individual components in a computationally
efficient manner.

5 SIMULATION ARCHITECTURE

The previous sections discussed conceptual issues with
hybrid-system simulation. This section discusses a
particular simulator architecture design. This simulation is
based on extensions to and adaptations of the
Reconfigurable Flight Simulator (RFS), which was
5

Pritchett, Lee, Huang, and Goldsman

originally designed for more traditional applications of
flight simulation (Pritchett and Ippolito 2000).

This simulation allows for the inclusion of several
broad classes of objects, as shown schematically in Figure
1. An arbitrary number of vehicles can be added to the
vehicle list. These components must fit a base interface for
vehicles, which was designed to support continuous-time
models of vehicle dynamics. For specific applications,
base interfaces have also been defined for aircraft and for
spacecraft. Further, several basic components, including
6DOF and waypoint following aircraft, have been
developed and can be used or extended by other
developers.

Beyond these capabilities as a �normal� flight
simulator, an arbitrary number of controller and
measurement objects can be added to a dedicated list. The
base interface standards for these objects are less specified,
allowing flexibility in the objects� behaviors. Components
that have been added to date include: �Random Aircraft
Generators� that place aircraft into airspace according to a
given distribution of inter-arrival times; basic air traffic
controllers that determine aircraft sequences in merging
arrival streams and then command speeds to aircraft to
maintain proper spacing within the traffic streams; and
measurement objects that look for and record events
specified in a text script. The flexibility of this type of
component allows for many other types of discrete-event
and measurement components to be added as desired.

Other types of components are also available in the
simulation architecture as support for hybrid-system
simulation needs. Most of the components needed for this
application are already established, but these components
can be modified or added to as desired. Input-output (IO)
objects provide mechanisms for graphical output of the
simulation (such as an �air traffic control screen� and text
output of commands given by controllers), and for data
recording of the measurements. The environment
controller and database (ECAD) provides a common
simulation environment for all the components by giving
common axis definitions and conversions, and by allowing
for the inclusion of atmospheric and terrain models as
desired. Finally, a networking object handles
communications between simulations run on multiple
machines over a network; this networking is transparent to
the rest of the simulation and therefore does not require re-
compilation of components to use or access networking.

To function as a hybrid-system simulation, each
continuous-time, discrete-event, and measurement object is
required to meet the minimal standards of a standard
interface. In particular, each of these components must
update its state on command, report the time of its next
update (or, in the case of some discrete-event and
measurement objects, the next time at which an update
might occur conditionally upon other events), and identify
whether any other objects must also be updated.
113
For the continuous-time objects, a standard input that
needs to be provided is an upper bound on the numerical
error allowable in each time step. With this input, the next
update time is calculated based upon knowledge of the
interior dynamics; algorithms for such flexible time step
calculations are well established (Beltrami 1987).

Communications between objects are handled by the
high-level simulation object. It follows that the designer of
a hybrid-system simulation using this architecture does not
need to develop communication standards beyond giving
individual components the ability to send and receive
messages. Many standard messages can be passed through
the base interface standards of vehicle and controller /
measurement objects.

Those messages that do not fit within the base
interface standards can be sent through the simulator object
via the Object Data / Methods Extensions (OD/ME)
protocol, which requires sending a message to the
simulator object along with a request for its destination

(Pritchett and Ippolito 2000). This mechanism also allows
for objects to request the addition or destruction of other
objects; for example, a random aircraft generator can
request the addition of a new aircraft to the vehicle list,
with subsequent messages to that new aircraft that provide
it with initialization data.

To facilitate efficient timing of the objects� updates, a
�state updater� object within the controller list maintains a
list of the vehicle and controller objects, sorted by the
times of their next desired updates (see Figure 2). This
state updater object can identify the object next to be
updated, regardless of type, can query that object as to
whether it requires other objects to also be updated, and
can command the appropriate objects to update. Once
objects have been updated, they each are asked for their
new update time, and are sorted accordingly.

6 EFFICIENCY AND TIMING METHODS

In large-scale simulation, concerns with computational
efficiency extend past standard efforts to make each
component individually efficient. Overall efficiency is
achieved when each object updates only when needed to
meet several criteria: accurate modeling of its interior
dynamics; correct interaction with other objects; and timely
measurements.

Any unnecessary updates of objects may be
considered wasted use of the processor. However,
methods of deciding when an update may be required for
correct interactions or measurements is usually non-exact
once the simulation at hand is non-trivial in size.
Likewise, the overhead computation to enable the most
sophisticated timing methods may be non-trivial and can
slow down the simulation by itself.
6

Pritchett, Lee, Huang, and Goldsman

Figure 1: Schematic of Component Classes within the Simulation Architecture
Figure 2: Schematic of Sorting of Simulation Components by Update Time, with Access by a State Updater Component

Even measuring the computational efficiency of a

simulation can be non-trivial. Once the simulation
includes stochastic elements, it can be difficult to compare
with certainty the relative speed of different update timing
methods, which may take the simulation though different
1137
system dynamics due to the inclusion of disturbances or
anomalies.

This section will compare different timing methods,
and illustrate their effect on a representative NAS
simulation using the architecture described in the previous
section. Then tradeoffs in the fundamental characteristics

Pritchett, Lee, Huang, and Goldsman

of these methods are discussed, and alternative methods are
commented on.

6.1 Timing Methods

Two major variables define the variety of methods for
determining the timing of simulation components. First is
the selection of how the time step is set (next-event time
advance or fixed-increment time advance) (see Law and
Kelton 2000). Second is the choice whether the simulation
will be entirely synchronous (i.e., all components update at
the same time), partially synchronous and partially
asynchronous, or entirely asynchronous (i.e., all
components update individually). Several timing methods
can be defined by these two variables, as follows.

6.1.1 Fixed Time-Step Synchronous

This timing method has all objects update at the same time,
and this update time is based upon a fixed time step. This
method is commonly used in current flight simulation
techniques, where the time-step may be fixed by
conservative analysis of the fastest dynamics in the system,
or by the system clock in real-time simulation. This
method is very basic and is often the first step in the
development of a hybrid-system simulation. It also
provides conservative results that can be guaranteed to not
miss any measurements or interactions by the setting of an
arbitrarily small time step, without requiring predictions
from discrete-event or measurement objects. However, it
also forces all objects to update at a rate governed by the
worst-case dynamics of the component with the fastest
response, which is computationally inefficient.

6.1.2 Variable Time-Step, Synchronous

This timing method has all the objects update at the same
time, but varies the update time from one time step to the
next to meet the needs of the simulation. For instance, the
update time may be chosen by polling all objects for their
desired time step, and then selecting the worst-case
(smallest). This method still forces some objects to update
more times than normally required, but can relax the time
step when conditions allow.

6.1.3 Asynchronous With Resynchronization

This timing method allows for components to be updated
independently following their own update times. This is
shown schematically in Figure 3 for a simulation with four
aircraft, a random aircraft generator (RAG) and a
measurement object; the aircraft and RAG update at their
own rates until a measurement requires a complete
synchronization. This will allow for objects with fast
11
dynamics to update frequently without requiring other
objects to be bound by such small time steps. However,
this method also allows for objects which interact, or
which measure interactions, to require all objects (or some
objects) to resynchronize when it is time for their update,
with the result that interactions and measurements can be
based on values from temporally co-located objects.

6.2 Case Study: Simulation of a Standard

Terminal Arrival Route

To demonstrate the computational efficiency of these
methods, a numerical simulation was conducted using the
simulation architecture described in the previous section.
The simulation modeled the stream of arriving aircraft
flying the Macey Two Standard Terminal Arrival Route
(STAR) into Atlanta-Hartsfield airport. Aircraft were
injected into the simulation stochastically with a specified
inter-arrival rate. A controller scheduled the aircraft from
the multiple entry streams into one arrival flow by
selecting the appropriate order of the aircraft, and
commanding speeds to the aircraft that created this desired
traffic pattern. The aircraft were removed from the
simulation when they reached the runway.

Figure 4 illustrates the results of the simulation.
Efficiency is measured by the average number of times the
aircraft objects are called to update during the course of the
run. We use this efficiency measure since aircraft are the
most computationally intensive objects � due both to their
underlying update rate as well as to forced
resynchronizations.

We present data for two timing methods. The �Fast
Time� method used the variable time step synchronous
method. The �Asynchronous� method used the
asynchronous with resynchronization method; the
controller and measurement objects commanded a
complete resynchronization at times when they predicted a
conflict might occur or the next command might be
warranted.

The inter-arrival rate of aircraft into the arrival route
was also varied. The highest inter-arrival mean (500
seconds) created a fairly low traffic intensity, with
commensurately few interactions. At this inter-arrival
mean, the benefits of asynchronous simulation are
noticeable, but not dramatic.
 The lowest inter-arrival mean (100 seconds) created a
high traffic intensity, in which controller commands and
potential conflicts were possible. The aircraft often needed
to maneuver, and conflicts indeed manifested themselves.
In the �Fast-Time� method, this had the effect of requiring
many more updates for all aircraft on average. In the
�Asynchronous� method, fewer updates were required
overall as the aircraft needing updates at small intervals
were able to work independently.
38

Pritchett, Lee, Huang, and Goldsman

Figure 3 Schematic of Asynchronous Simulation With Resynchronization

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 200 400 600 800 1000

Number of Arrived Aircraft

A
ve

ra
ge

 N
um

be
r o

f U
pd

at
es

 p
er

 A
irc

ra
ft

Fasttime 100

Fasttime 300

Fasttime 500

Asychronous 100

Asychronous 300

Asychronous 500

Aircraft Inter-Arrival
 Mean (sec)

Figure 4: Experimental Results from a STAR Simulation Showing Computational Efficiency (avg. number
of calls to aircraft) for Synchronous, Variable Time Step and for Asynchronous with Resynchronization
Timing Mechanisms
1139

Pritchett, Lee, Huang, and Goldsman

6.3 Tradeoffs Between Resynchronization
Intervals and Efficiency

In applications such as just shown in the case study, there
appear to be benefits with allowing simulation objects to
run, at least for intervals, asynchronously. At first glance,
this seems to imply that the best efficiency will arise with
the largest resynchronization intervals. However, two
main issues limit the size of resynchronization intervals.

First, larger resynchronization intervals require better
(and more computationally expensive) predictions by the
individual components about when a resynchronization
may occur. Better predictions require more extensive
calculations � at an extreme, the predictor would need to
internally simulate other objects in order to accurately
predict when a problem might occur! As such, the value of
better predictions can reach a point of diminishing returns,
where the additional computations in the predictions offset
any savings in computations by other objects.

Second, larger resynchronization intervals require
better (and model specific) predictions by the individual
components about when a resynchronization may occur.
Simple predictions about a potential aircraft collision, for
example, can be made based on commonly available
aircraft position and velocity; more accurate predictions
require knowledge of the aircraft�s internal dynamics and
likely future actions. This imposes an obvious
development cost on the simulation. It also makes such
�smart� predictors difficult to use in simulations where a
large variety of objects may be involved in the prediction,
and limits the use of the predictors to specific cases.

6.4 Alternatives to Resynchronization

So far, this discussion on simulation timing has assumed
that accurate measurements and interactions can only occur
when the objects involved are temporally co-located, with
the implication that occasional resynchronization is always
required. It is also possible for measurements and
interactions to be calculated from temporally disjoint
objects. Of course, such calculations tend to be more
complex, but with such a capability fewer
resynchronizations are needed solely to make
measurements or predictions about the future. However, at
least partial resynchronizations will still be needed when
predicted interactions require other objects to jointly
manifest a new behavior at a certain time (e.g., a predicted
collision avoidance alert requiring two aircraft to
synchronize and communicate at the start of the alert).
Likewise, in a simulation with stochastic elements, such
predictions can not be made with certainty and hence
remain susceptible to inaccuracies.

Similarly, we have assumed that the simulation always
runs �forward� in time. This assumption generates
conservative timing intervals to avoid �missing� any
11

important interactions. For some applications, simulations
capable of running �backwards� to a potential missed
interaction are possible, with the benefit of relaxing timing
intervals (Mirtich 2000, Jefferson 1985). However, these
�rollback� or �timewarp� simulations can fit better in some
domains than others � some types of models are simply
easier to either �run� backwards or store their recent state
space so that the simulator can be backed up to before the
missed problem (such methods have most commonly been
applied to systems with purely discrete dynamics or very
simple continuous-time models). Likewise, these methods
incur a computational hit, and so should be used wisely.

7 CONCLUSION

This paper has discussed issues related to simulating large,
complex systems as an analysis method during their
design. Hybrid-system simulation is an emerging field of
interest with the potential to provide such an analysis tool.

Simulation of the NAS for safety analysis was used as
an example and a test case throughout the paper. This
application shares many of the qualities (and requirements)
of other aerospace systems. For example, large-scale
simulations of many operational systems are now being
proposed, including military mission planning and
spacecraft Launch and Range Operations. Further, details
of a single vehicle�s avionics systems now present a
complex analysis task of both aircraft dynamics and
discrete transitions in mechanical, electronic, and software
on-board systems.

Several open issues remain with hybrid-system
simulation. Some can be addressed by a software
architecture specifically designed to allow this purpose.
This paper suggested that such an architecture should place
few restrictions on the types of models allowed, so that it
can be used for a variety of purposes and with components
of varying fidelity and resolution.

The behavior and performance metrics of hybrid
systems both rely on interactions between individual
components. As such, a simulation architecture also needs
to accurately capture and/or create these interactions.

Methods of making the simulation as computationally
efficient as possible are important. Rather than reducing
the need for computational efficiency, recent
improvements in computational power have, for the first
time, allowed the research community to hope that very
large, very complex systems can be simulated. As these
simulations become more widely used, there may be
increasing demand for more fidelity, more accuracy, and
for more simulation runs in an analysis for wider or more
statistically verifiable results.

This paper discussed the use of timing the updates of
individual objects within a large-scale simulation. We
considered two specific mechanisms: variable time steps,
40

Pritchett, Lee, Huang, and Goldsman

and asynchronous simulation with occasional
synchronization to capture measurements and interactions.

As a test case, we discussed a simulation architecture
which met the requirements and mechanisms described in
the paper. This simulation architecture uses an object-
oriented framework to accept objects of a wide variety of
types, easily incorporating both continuous-time and
discrete-event models. This simulation architecture was
used to simulate the dynamics of the NAS. Even the
simple methods of improved simulation timing were found
to have significant benefits in this application.

ACKNOWLEDGMENTS

This work was funded by the NASA Ames Research
Center under Grant NAG 2-1291, with Irv Statler, Mary
Conners and Kevin Corker administering and serving as
technical points of contact. We also thank the people who
have contributed to the development of the simulation,
including Serhan Ziya, Corey Ippolito, and Ted Chen.

REFERENCES

Beltrami, E. 1987. Mathematics for Dynamic Modeling.

Boston: Academic Press.
Bezdek, W. J., T. A. Halley, and P. C. Hummel. 1997.

Model reuse for software development and testing:
The application of common interfaces to support
variable fidelity models. In Proceedings of the AIAA
Modeling and Simulation Technologies Conference,
New Orleans, Louisiana, 376�386.

Cellier, F. E. 1986. Combined continuous/discrete
simulation applications, techniques, and tools. In
Proceedings of the 1986 Winter Simulation
Conference, ed. J. R. Wilson, J. O. Henriksen, and S.
D. Roberts. Institute of Electrical and Electronics
Engineers, Piscataway, New Jersey.

Davis, P. K. and J. H. Bigelow. 1998. Experiments in
multiresolution modeling (MRM). Report MR-1004-
DARPA, Rand, Santa Monica, California.

Fahrland, D. A. 1970. Combined discrete event
continuous systems simulation. Simulation, 61�72.

Friedman, L. W. 1996. The Simulation Meta-Model.
Norwell, Massachusetts: Kluwer.

Hanke, C. R. 1971. The simulation of a large jet transport,
NASA Contractor Report CR-1756, Volumes 1 and 2.

Jefferson, D. R. 1985. Virtual time. ACM Transactions on
Programming Languages and Systems 7(3):404�425.

Jim, H. K. and Z. Y. Chang. 1998. An airport passenger
terminal simulator: A planning and design tool.
Simulation Practice and Theory, 387�396.

Johnson, E. N. and R. J. Hansman. 1994. Multi-agent
flight simulation with robust situation generation, MIT
Aeronautical Systems Laboratory Report ASL-95-2,
MIT, Cambridge, Massachusetts.
114
Kettenis, D. L. 1997. An algorithm for parallel combined
continuous and discrete-event simulation. Simulation
Practice and Theory 5:167�184.

Kheir, N. A. 1996. Continuous-time and discrete-time
systems, In Systems Modeling and Computer
Simulation, ed. N. A. Kheir. New York: Marcel
Dekker.

.Law, A. M. and W. D. Kelton. 2000. Simulation
Modeling and Analysis, 3d Ed. New York: McGraw-
Hill.

Mirtich, B. 2000. Timewarp rigid body simulation,
SIGGRAPH 00.

National Research Council. 1997. Flight to the Future:
Human Factors in Air Traffic Control, ed. C. D.
Wickens, A. S. Mavor, and J. P. McGee, Washington,
DC: National Academic Press.

Odoni, A. R., et al. 1997. Existing and required modeling
capabilities for evaluating ATM systems and concepts,
Technical Report, MIT International Center for Air
Transportation, Cambridge, Massachusetts.

Press, W. H., B. P. Flannery, S. Teukolsky, and W. T.
Vetterling. 1992. Numerical Recipes in C � The Art
of Scientific Computing, 2d Ed. New York:
Cambridge University Press.

Pritchett, A. R. and C. Ippolito. 2000. Software
architecture for a reconfigurable flight simulator, AIAA
Modeling and Simulation Technologies Conference
Denver, Colorado.

Saleh,R., S. J. Jou, and A. R. Newton. 1994. Mixed-Mode
Simulation and Analog Multilevel Simulation. Boston:
Kluwer.

Stevens, B. and F. Lewis. 1992. Aircraft Control and
Simulation. New York: John Wiley.

Wieting, R. 1996. Hybrid high-level nets. In Proceedings
of the 1996 Winter Simulation Conference, ed. J. M.
Charnes, D. J. Morrice, D. T. Brunner, and J. J. Swain,
848�855. Institute of Electrical and Electronics
Engineers, Piscataway, New Jersey.

AUTHOR BIOGRAPHIES

AMY R. PRITCHETT is an Assistant Professor in the
Schools of Industrial and Systems Engineering and
Aerospace Engineering at the Georgia Institute of
Technology. She received S.B., S.M., and Sci.D. degrees
from the Department of Aeronautics and Astronautics at
the Massachusetts Institute of Technology. Her research
specialties include cockpit design, air traffic control, flight
simulation, and large-scale agent-based simulation of
hybrid systems. Her e-mail and web addresses are
<amyp@isye.gatech.edu and www.isye.
gatech.edu/~amyp>.

SEUNGMAN LEE is a Ph.D. student in the School of
Industrial and Systems Engineering at the Georgia Institute
1

Pritchett, Lee, Huang, and Goldsman

of Technology. He received a B.S. from Hanyang
University and M.S. degrees from Pohang University and
Carnegie Mellon University. His research interests include
air traffic control, flight simulation, and large-scale agent-
based simulation of hybrid systems. His e-mail and web
addresses are <seungman_lee@hotmail.com> and
<www.isye.gatech.edu/~seungman>.

DAVID HUANG is a graduate student in the School of
Industrial and Systems Engineering at the Georgia Institute
of Technology. He received a B.S. (with a triple major)
from Duke University and an M.S. from Georgia Tech.
His e-mail address is <david.huang@alumni.duke.
edu>.

DAVID GOLDSMAN is a Professor in the School of
Industrial and Systems Engineering at the Georgia Institute
of Technology. His research interests include simulation
output analysis and ranking and selection. He was the
Program Chair for the 1995 Winter Simulation Conference.
His e-mail and web addresses are <sman@isye.
gatech.edu> and <www.isye.gatech.edu/
~sman>.

1142

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

