
Proceedings of the 2000 Winter Simulation Conference
J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, eds.

A METHODOLOGY FOR DEVELOPING ROBOTIC
WORKCELL SIMULATION MODELS

Frank S. Cheng

Department of Industrial and Engineering Technology
Central Michigan University

Mount Pleasant, MI 48859, U.S.A.
ABSTRACT

Robotic workcell simulation is a modeling-based problem
solving approach developed for the design, analysis, and
offline programming of robotic workcells. Current
industrial practices show that commercial robotic
simulation software packages are able to provide designers
with an interactive and virtual environment in which
credible solutions for robotic workcell designs can be
obtained. However, conducting robotic workcell simulation
studies via robotic simulation packages require designers to
carry out complex processes of modeling, programming,
and analysis, which often results in technical challenges
and difficulties. In this paper, a methodology for
developing robotic workcell simulation models via Deneb
IGRIP technology is introduced. The development of the
method is based on successful applications of Deneb�s
IGRIP robotic simulation software in designing real robotic
workcells.

1 INTRODUCTION

Robotic workcells are important elements in automated
manufacturing systems for delivering required
manufacturing materials and operations with industrial
robots and associated peripheral devices. Rapid design and
deployment of a robotic workcell require the successful
applications of concepts, tools, and methods for fast
product design, manufacturing process planning, and plant
floor/cell control support. An important technology for
achieving this goal is robotic workcell simulation.

Robotic workcell simulation is a modeling-based
problem solving approach that aims to sufficiently produce
credible solutions for robotic system design. Figure 1
shows a simple robotic workcell simulation model
developed using Deneb�s IGRIP robotic simulation
software. The current practices of robotic workcell design
have proven that successfully implementing robotic
simulation brings the designers many benefits (Rudnick
1997, Knasinski 1997, Craig 1997, and Rooks 1997). First,
126
Figure 1: An IGRIP Robotic Workcell Simulation Model

designing a robotic workcell via robotic simulation
eliminates the guesswork from concepts and unrealistic
expectations based on technical equipment specifications.

Designers can offer optimum solutions to designs via
having evaluated alternatives. Second, as modifications are
made to a workcell design, the process of incorporating
modifications into the corresponding workcell simulation
models is mush easier and faster compared to making
changes to a real workcell. Finally, robotic simulation
packages bring designers a safe design environment.
Whether designing a new workcell, optimizing its
performance, or making modifications to an operational
workcell, developing and testing required programs can be
safely carried out.

Models in robotic workcell simulation are principles
for studying the behavior of the actual workcell devices
over time. These models may be geometric objects,
mathematical equations and relations, or graphical
representations. Designers usually use the commercial
robotic simulation software packages to build simulation
models. The simulation design tasks require designers to
constitute specific methods and procedures via selecting
5

Cheng
and executing the functions provided by the simulation
packages with appropriate design data. This process often
involves both inductive and deductive reasoning and
requires multifaceted knowledge in diverse disciplines
such as computer-aided design (CAD), machine design,
and robotics (Chen and Cheng 2000). Due to the complex
processes and multifaceted knowledge requirements, the
robotic simulation designers often face significant
theoretical and technical challenges in understanding and
applying the current robotic simulation technology. To deal
with this challenge, this paper introduces a methodology
for developing required robotic workcell simulation
models via Deneb IGRIP robotic simulation technology.

2 IGRIP OVERVIEW

The Interactive Graphics Robot Instruction Program
(IGRIP) software, a product of Deneb Robotics, Inc., is a
user-friendly computer based robotic workcell simulation
package for robotic workcell layout design, simulation and
offline programming. IGRIP is divided into three primary
systems: the IGRIP Menu System, Graphic Simulation
Language (GSL), and Command Line Interpreter (CLI).

The IGRIP Graphical User Interface (GUI) provides a
menu driven, point and click approach to robotic
simulation. A menu option on GUI is referred to as a
Context. The commonly used Contexts for developing
simulation models include CAD, Device, Layout, Motion,
and Program. Selecting a Context will cause a pull-down
menu to appear. Usually each pull-down menu displays
several choices that are referred to as Pages of a Context. A
Page provides access to a set of related IGRIP operations.
A Title Bar on a Page serves to group and define IGRIP�s
Action Buttons that are displayed immediately below it.
The selection of an Action Button is the basic method for
performing an IGRIP�s function.

The IGRIP Graphic Simulation Language (GSL) is a
procedural language used to control the behavior of
simulation models. GSL incorporates conventions
commonly used in high-level computer languages with
specific enhancements for model�s motion and simulation
environment inquiries.

The Command Line Interpreter (CLI) is a powerful
communication, command, and control system for
accessing and operating IGRIP system. It is accessible
from both inside and outside the IGRIP menu system.

3 CREATING PART MODELS

A Part model in IGRIP is a low-level, named geometric
entity. The IGRIP CAD Context provides operations for
creating three-dimensional visual representations of Part
models. The geometry of a Part model can be created in or
imported into the IGRIP CAD Context via basic geometric
elements such as vertices, lines, polygons, edges, surfaces,
126
etc. The IGRIP CAD Context has a world Cartesian
coordinate system that works as the common reference
point for dimension measurements of Part models. The
position (i.e., location and position) of the CAD world
coordinate system cannot be changed in the CAD Context.
When a Part model is created in or imported into the CAD
Context, a base Cartesian coordinate system is attached to
the Part model. The base coordinate system of a Part model
is always superposed on the world coordinate system of the
CAD Context as the Part model is first created in or
imported into the CAD Context.

A Part model can be manipulated via translation and
rotation operations in the CAD Context. After
manipulation operations are performed to a Part model, it
looks on the screen of GUI as if the entire Part model (i.e.,
the base coordinate system and the body of the Part model)
has been moved to a new position in the CAD Context.
However, when the Save function is performed within the
CAD Context to the Part model, the base coordinate
system of the Part model always superposes on the world
coordinate system of the CAD Context and the body of the
Part model remains in the same position as it was in the
CAD world before performing the Save function. In other
words, the base coordinate system of a Part model cannot
be moved with the manipulation operations (i.e.,
translation or rotation) in the CAD Context. Only the
position of geometric body of the Part model is actually
moved with manipulation operations. In order to
manipulate the base coordinate system of a Part model in
the CAD Context, different procedures must be performed
in the CAD Context.

Besides the base coordinate system of a Part model,
other auxiliary coordinate systems can also be first created
at the base origin of the Part model, and then manipulated
to specified positions. It is important to notice that both the
base and auxiliary coordinate systems of Part models are to
be used in constructing an IGRIP Device model.

4 BUILDING DEVICE MODELS

A Device model in IGRIP represents an actual workcell
component such as robot, table, conveyor, part, end-
effector, and so on. The simplest Device model may only
consist of one Part model, representing the workcell
component that is defined as a rigid body such as a
workpiece, peg, pallet, table, and conveyor in the workcell.
These one-part models are usually called non-robotic
Device models. If an IGRIP Device model consists of
multiple Part models that are connected by a series of
joints, the Device model is called a manipulator model or
robotic model that may have the complex geometry of
motions. All industrial robots are represented as
manipulator models in IGRIP. For a Device model with
multiple Part models, the Part models play the roles of
structural elements that compose joints of the Device
6

Cheng
model for generating motions between Part models.
Usually, an independent motion generated by a joint of a
manipulator or robotic Device model defines a �degree of
freedom� (DOF) of the Device model.

Creating an IGRIP Device model starts with the base
Part model that is the first Part model retrieved from the
IGRIP Part library and placed in the Device Context. The
base coordinate system of the base Part model is used by
IGRIP as the base coordinate system of the Device model.
Then, the second Part model is to be selected and attached
to the base Part model. As a rule of attaching Part models
for constructing a Device model, an available coordinate
system (i.e., base coordinate system or auxiliary coordinate
system) of the selected Parent Part model on the Device
model must be selected to attach to the base coordinate
system of the Attached Part model.

Besides the structural construction of a Device model
using Part models, the programmability and
communicability of a Device model can also be defined or
specified when the Device model is created. The
programmability determines whether or not a Device
model can be programmed via IGRIP�s GSL, and the
communicability specifies the capability of a Device model
to send and receive signals via its input/output (I/O) ports.

4.1 Motion Transformation of Part Models

The motion transformation of a Part model on a
manipulator or robotic model defines how the Part model
moves with respect to the joint defined by the base
coordinate system of the Part model. Usually, the motion
transformation of a Part model can be defined as a
sequence that includes �Set-Home,� �Basic
Transformation,� and �Return.� Among the sequence, the
�Basic Transformation� defines how the Part model moves
(i.e., translation or rotation) about three principal axes of
its base coordinate system. For an n-joint manipulator
model, the motion transformation must be assigned for
each of the Part models that constitute the corresponding
joint, which results in n DOF. When a motion of a Part
model in a Device model is dependent on other joints or
DOFs, a DOF expression may also be used in IGRIP to
specify the �Basic Transformation� of the Part model.
Generally, a DOF expression specified for a joint of a
Device model can be as simple as a constant (i.e., 1, 2,
etc.), or as complex as a mathematical program.

4.2 Tool Center Point (TCP) of Robotic Device Model

A study of the geometry of motion is essential for
controlling the behavior of a manipulator model. This is
achieved by establishing the mappings between the
position (i.e., location and orientation) of the end of the
manipulator model and the movements of the manipulator
Part models. The end of a manipulator model is referred to
126
as the �Tool Center Point (TCP)� which often includes the
mounting plate offset on the wrist of the manipulator or
robotic model. If a Device model such as an end effector is
attached to the mounting plate, the TCP may be redefined
at a point on the attached Device model.

The TCP position of a manipulator model can be
represented in a number of ways. One way is to utilize the
joint variables of a manipulator model, which is known as
the representation of the TCP in the �joint� space of the
manipulator model. In this representation, each joint
variable is defined as either an angle θ for a rotational joint
or a linear translation d for a prismatic joint.

The TCP position of a manipulator model can also be
defined in the �world� space of the manipulator model.
This representation involves the use of the base coordinate
system of the manipulator model and a describing frame
created at the TCP. The location of the TCP frame is then
represented by location values of x, y, and z measured in
the base coordinate system. The orientation of the TCP
frame with respect to the base coordinate system of the
manipulator model is represented by the values of yaw,
pitch, and roll (Paul 1981 and Rubinovitz 1999).

4.3 Kinematics of Manipulator Model

Representing the TCP in different spaces (i.e., the world
and joint spaces) is served for different purposes. The TCP
representation in the �world� space is very useful when a
manipulator model must interact with other Device models
in the workcell. With such a �neutral� representation, tasks
carried out by all Device models can be specified in the
IGRIP workcell layout. However, from the perspective of
IGRIP motion control and simulation, given a desired
position of the TCP in the workcell, the IGRIP motion
controller of the manipulator model needs to know the
corresponding values of joint variables in order to position
the TCP at the desired position. In this case, a �joint� space
representation of the TCP is critical. In order to obtain both
representations, transformations must be performed from
one to the other. A transformation going from the �joint�
space to the �world� space is called forward kinematics,
and a transformation going from the �world� space to the
�joint� space is called inverse kinematics.

Given the geometry of a manipulator model, the
objective of inverse kinematics is to find the corresponding
values of joint variables that will place the TCP at a desired
position relative to the base coordinate system of the
manipulator model within its work volume. In IGRIP, an
inverse kinematics solution for a manipulator model can be
obtained via different methods. These methods include
generic, numeric, simple, device, and user-defined
methods. Depending on the nature of the actual component
being modeled, the user may choose a particular method
listed above to develop the required inverse kinematics for
the Device model.
7

Cheng
The generic-inverse-kinematics method makes it
possible to obtain inverse kinematics solutions for most
types of manipulator model with six or fewer DOFs. The
method works by breaking the general kinematics problem
into generic classes of manipulator models. Typical classes
of manipulator models include articulate, Cartesian,
cylindrical, spherical, and so on.

The device-inverse-kinematics method allows a user to
copy the assigned inverse kinematics of an existing device
model for a new Device model being built. However, the
following conditions must be satisfied as this method is
applied:

� The orientations of the base coordinate systems
for each Part model on each Device model must
match exactly.

� The positive/negative directions of a rotation must
be identical.

� The number of DOFs for both Device models
must be the same.

� The type of each DOF (i.e., rotational or
translational) must be the same for both Device
models.

The simple-inverse-kinematics method works for a
simple or non-robotic Device model that (1) consists of
only one rigid part model and (2) requires moving its body
in the workcell as a free body with at least six DOFs. This
method is often used for Device models such as AGVs,
carts, pallets, etc, whose body need to be moved in the
workcell.

4.4 Device Motion Attributes

The motion attributes of a Device model define the motion
limits for the joints of the Device model in terms of home
position, speed, acceleration, and travel. The attributes are
stored in the database file of the Device model and thus are
permanently associated with the Device model. The
attribute �home position� defines the default position and
orientation of joints of the Device model, resulting in the
default configuration of the model. Each Device model
may have multiple numbered home positions. The �speed�
and �acceleration� attributes set the maximum speed and
acceleration for a joint or TCP of the Device model. The
�travel� attribute sets the travel limits for each joint of the
Device model.

5 POSITIONING DEVICE MODELS IN
IGRIP LAYOUT

The geometry of a workcell layout model is developed
using the functions defined by the Workcell Page in the
126
IGRIP Layout Context. When a Device model is retrieved
from IGRIP Device library and placed in the layout, the
base coordinate system of the Device model first
superposes onto the world Cartesian coordinate system of
the layout Context.

A Device model in the layout Context can be
translated and rotated with respect to its base coordinate
system or the world coordinate system of the layout. If the
translation (or rotation) performed to a Device model is
absolutely to the world coordinate system of the layout, the
operation represents an absolute positional or rotational
measure between the base coordinate system of the Device
model and the world coordinate system of the layout
Context. If the translation or rotation performed to a
Device model is relative to its base coordinate system, the
operation represents the relative positional or rotational
measure between a specific axis of the Device model and
the base coordinate system of the Device model.

In the IGRIP layout Context, the base coordinate
system of a Device model can also be �snapped� to a
position (i.e., location and orientation) that can be defined
by a vertex, surface, a coordinate system of another Device
model in the layout, or a point on the floor of the layout.
When a vertex, a coordinate system, or the floor is used in
the layout to snap a Device model, the base origin of the
Device model will be relocated on the selected vertex, the
origin of the coordinate system, or the point on the floor,
respectively, without changing the orientation of the base
coordinate system of the snapped Device model. However,
if a surface is used to snap a Device model, the Device
model is to be snapped to a selected position on the surface
with the z-axis of its base coordinate system aligned with
surface normal.

The IGRIP Workcell Page also provides the functions
for attaching a Device model to a parent Device model. To
do this, an available coordinate system of a Part model on
the parent Device model must be selected and used to
superpose the base coordinate system of the attached
Device model. By default, the base coordinate system of
the selected Part model on the parent Device model is to be
used for attaching the selected Device model. Once
attached, the coordinates of the attached Device model will
be with respect to the selected Part model on the parent
Device model. Whenever the parent Part model moves, the
attached Device model will move with it. For example, if a
gripper Device model is attached to a robot Device model
via the mounting Part model of the robot Device model, the
gripper Device model becomes a Part model of the robot
Device model. Thus, the gripper Device model moves with
respect to the base coordinate system of the robot Device
model. In this case, the TCP of the robot Device model can
also be redefined on the attached gripper Device model.
8

Cheng
6 DEFINING DEVICES� MOTION
DESTINATIONS IN IGRIP LAYOUT

In the IGRIP layout, the motion destination position of a
Device model is represented by a tag point that is a
Cartesian coordinate frame with n, o, and a (or x, y, and z)
axes. To determine the position of a tag point in the layout,
a Part model of a Device model in the layout must be used
to attach the tag point. With the attachment, the position of
a tag point can be determined with respect to the base
coordinate system of the Part model of the Device model to
which the tag point is attached. In the database, all created
tag points in the layout are stored in different named (tag)
paths. A named path is an ordered collection of tag points
that are attached to a common Device model. IGRIP
allows a Device model to attach different named (tag)
paths.

In the IGRIP layout, tag points are used as the TCP
motion destinations of a Device model that has inverse
kinematics. As a Device model with inverse kinematics is
instructed to move to a tag point through various IGRIP
methods (i.e., jogging or a GSL motion statement), the x, y,
and z axes of the TCP frame of the model is attempted to
superpose onto the n, o, and a axes of the tag point. If the
relative TCP frame position of the model and the tag point
position make this superposing impossible, the tag point is
defined as unreachable one with respect to the Device
model.

The procedures for creating and manipulating tag
points in the IGRIP layout are:

Step 1 Creating a path for tag points in the database.
To do this, a geometric model such as a Part
model of a Device model must be first
selected. Then, a unique name must be given
to the created path.

Step 2 Creating tag points for a named path. There are
three basic methods for creating tag points.
The �single� method creates a tag point one at
a time for a named path. When such a tag
point is created in the workcell, it always first
appears at the base origin of the device model
that the named group is attached to. The
�automatic� method is similar to the �single�
method in the way that it creates tag points one
at a time. The difference is that the
�automatic� method automatically creates and
names a new tag point for the named path. The
new created tag point appears at the same
position (location and orientation) of the
current tag point in the workcell. The
�multiple� method allows creating a number of
tag points for a named path at one time. These
tag points won�t appear in the workcell until
12
manipulation procedures such as �snap� are
performed to them.

Step 3 Manipulating tag points in the layout. Once a
tag point is created in a named path, it can be
manipulated in many ways. Besides typical
manipulation functions such as selection,
translation, and/or rotation, the IGRIP Layout
Context provides a variety of �snap� functions.
These �snap� functions allow a user to place a
created tag point by snapping it to a position
defined by a vertex, edge, frame, curve, and
surface of a Part or Device model appeared in
the layout world. Constraints and options for a
specific snap function can be set up before a
snap function is performed. For example, if the
�center� option is chosen, a tag point will be
snapped on the �center� of the geometric
entities such as line, edge, polygon, etc. If a
tag point is required to snap on �surface,� the
parameter �approach axis� must be set up to
determine which axis of the tag point will be
aligned with the surface normal vector.

7 DEVICE BEHAVIOR AND PROGRAMMING
IN IGRIP LAYOUT

Three types of movements represent the behavior of a
Device model in the layout: action, motion, and
manipulation. In IGRIP, the GSL statements in the GSL
program of a Device model control the Device model for
performing a series of movements in the workcell. In order
to cause a harmonious behavior of a Device model in the
layout, the Device�s GSL program also realizes the
interlock conditions through the signal passing on the
Device�s input/output (I/O) ports.

7.1 Device Action and Programming

A Device�s action represents a simple movement generated
by a joint of the Device model. Opening and closing the
fingers of a gripper Device model are the typical example
of this type action. Because an action is a result of a joint�s
movement with respect to the original or current position
of a Device model, thus the Device model does not need to
have inverse kinematics for generating a joint�s action.

In GSL, the MOVE JOINT statements are used to
realize Device�s joint actions. Besides controlling the
speed and travel distance of a joint, the statements may
also be specified to control the joints� movements
simultaneously, sequentially, and immediately.

7.2 Device Motion and Programming

A Device�s motion represents a movement of the base
frame or TCP frame of a Device model to a tag point in the
69

Cheng
layout world. To generate this type of motion, the Device
model must have inverse kinematics. In this category, a
manipulator model represents the general case, where the
TCP frame of the manipulator model is required to move to
a tag point defined in the workcell.

A Device�s motion is defined from the time it starts to
the time it stops, which may consist of multiple motion
segments. A motion segment is a single movement of the
TCP and characterized by (1) initial and final tag point, (2)
acceleration/deceleration, (3) commanded speed, and (4)
trajectory. The control and simulation of a Device� motion
in IGRIP involve in both the program developed for the
Device model and the motion controller implemented in
IGRIP software.

GSL Motion statements are used to simulate the move-
ment of the Device being programmed. Among them are:

� Move Away Statement
� Move Near Statement
� Move To Statement

7.3 Device�s Manipulation and Programming

A Device�s manipulation represents a movement caused by
the direct interactions of Device models in layout world.
Typical examples include holding, pushing, pulling of a
Device model by other Device models in the layout. In
IGRIP robotic workcell simulation, it is sure that a
Device�s manipulation and programming must be applied
to a robot�s gripper Device model in order for holding and
releasing a workpiece Device model.
 In GSL, the GRAB and RELEASE Statements are
used to deal with a Device�s manipulation and
programming. Unlike an �Attach� function, a �Grab�
function or GRAB statements in GSL do not move the
grabbed Device model at the time it is grabbed in the
layout. However, like �Attach� function, once grabbed,
the movement of the grabbed Device model follows the
movement of the grabbing Part model of the grabbing
Device model in the layout.

7.4 Device�s I/O Communication
and Programming

The I/O Page in the Layout Context contains functions that
allow a user to establish I/O port connections between
Device models in the layout. These I/O port connections
are used to direct the flow of control signals during a
workcell simulation run. The I/O port connections may be
analog or digital. The number and type of I/O signals
associated with a Device model are defined as the Device
attributes. These attributes are set when a Device model is
created, and can be changed during model development.

To set up the I/O port connections between two
Device models in the layout, �Dual Connection� function
12
can be used in the I/O Page. The user will be asked to
select the first Device model for dual I/O port connections.
Once selected, a list of I/O port names for that Device
model will appear. The user should then selected one of
the names marked �free.� Once a �free� port has been
selected for the first Device model, the user should repeat
the same steps for defining I/O signals for the second
Device model. The GSL I/O statements are to be used in
the GSL program to control the passing of signals via I/O
connections of a Device model.

8 EXECUTING IGRIP WORKCELL
SIMULATION AND ANALYSIS

Given a workcell layout model with one or more Device
models being programmed, the behavior of each
programmed Device model in the layout can be simulated
over time. This is achieved through simulation functions
provided by the IGRIP Motion Context. There are steps
that must be performed in order to conduct an IGRIP
simulation run to a workcell model.

Step 1 Load GSL programs for the Device model that
is to participate in simulation. In this step, the
developed program for a device model can be
selected from the IGRIP program directory
and downloaded into the Device model in the
layout.

Step 2 Active each Device model that has a loaded
GSL program.

Step 3 Set simulation step size. A simulation step can
be best described as a time slice of the
simulation in workcell time. The unit of the
simulation step is seconds. Updating the
graphic display on the screen to show the
Device models in their new position(s) can be
performed at the completion of one step or a
number of steps. In this sense, the smaller the
simulation step is, the more detailed the
graphic display is. For example, if there is
great concern about collisions at some tag
point during a simulation run, the step size
should be set to a relative small value to assure
that the collision-checking algorithm does not
miss a collision display between steps.

Step 4 Conduct a simulation run. In this step, the
initial configuration of Device models in the
layout can be set before simulation begins. In
addition, the �Run� types of simulation
determine how the simulation stops. For
example, a simulation run may continue until
it finishes, encounters an error, or reaches the
modeler-specified stop time.
70

Cheng
During a simulation run, the GSL program that runs a
Device model in the layout can be debugged, and
performance data can be recorded and displayed. The
common performance data includes Device�s cycle times,
joint values, joint speeds and accelerations, TCP values
and speeds, I/O values, etc. More advanced procedures
can be conducted as well for analyzing the performance of
the workcell layout model. For example, an overlooked
collision is one of the most important concerns in robotic
workcell design. During a simulation run, all potential
collisions in the layout can be automatically detected by
the simulation system. This is achieved by (1) defining the
pairs of Device models or pairs of Part models that may
collide to each other in the layout, and (2) storing them into
the collision queue of the simulation system. When the
collision-checking function is �ON� during a simulation
run, the simulation system will check exact collisions for
all the Device pairs and Part pairs in the established
collision queue. If a collision is detected, the simulation
system may highlighted the collision and halt the
simulation according to the user request.

9 CONCLUSION

Robotic workcell simulation is a modeling-based problem
solving approach that fundamentally changes the way for
designing a robotic workcell. This research has
investigated a methodology for conducting robotic
workcell simulation via Deneb�s IGRIP robotic simulation
technology. It shows that developing faithful models for a
robotic workcell simulation study is a complex process that
requires the multifaceted knowledge in diverse disciplines.
With the developed methodology presented in this paper,
designers in the field of engineering design and automation
are able to easily understand the state-of-the-art tech-
nologies of robotic workcell simulation, and integrate these
technologies with their knowledge and experience about
CAD, robotics, and robotic workcell design.

REFERENCES

Chen, D. and F. Cheng. 2000. Integration of product and
process development using rapid prototyping and
workcell simulation technologies. Journal of
Industrial Technology, Vol. 16, No. 1. pp. 2-5.

Craig, J.J. 1997. Simulation-based robot cell design in
AdeptRapid. In Proceedings of the 1997 IEEE
International Conference on Robotics and Automation,
ICRA, Albuquerue, April, Vol. 4. pp. 3214 -3219.

Knasinski, A.B. 1997. Linking simulation to the real world
through robot metrology. In Proceedings of Robotic
Simulation & Off-Line Programming Workshop,
Seattle, Washington.

Paul, R.P. 1981. Robot Manipulators, 8th Ed., The MIT
Press.
12
Rooks, B.W. 1997. Offline programming: a success for the
automotive industry. Industrial Robot 24(1), pp. 30-
34.

Rubinovitz, J. 1999. CAD and graphic simulators
/emulators of robotic systems. In Handbook of
Industrial Robotics, S.Y. Nof (eds.), John Wiley &
Sons, Inc, pp.755-773.

Rudnick, F.C. and S.G. Moore. 1997. Robotic paint
simulation and off-line programming in a rapid
prototyping environment. In Proceedings of Robotic
Simulation & Off-Line Programming Workshop,
Seattle, Washington.

AUTHOR BIOGRAPHY

FRANK S. CHENG is an assistant professor in the
Department of Industrial and Engineering Technology
(IET) at Central Michigan University (CMU). He holds a
M.S. degree in Mechanical Engineering, and Ph.D. in
Industrial Engineering from the University of Cincinnati.
His research interests include robotic workcell design and
simulation, Petri nets, flexible automation, and control
system design. He is a member of SME, NAIT, and
ASEE. He is currently engaged in the industry and NSF
sponsored projects in developing methodologies for
teaching and applying robotic and manufacturing
simulation technologies. His email is <fcheng@iet.
cmich.edu>.
71

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

