
Proceedings of the 2000 Winter Simulation Conference
J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, eds.

OPTIMIZING PRODUCTION WORK FLOW USING OPEMCSS

John R. Clymer

Applied Research Center for Systems Science
California State University Fullerton

Fullerton, CA 92834, U.S.A.

ABSTRACT

A graphical discrete event simulation library is proposed
for system simulation that is based on interacting
concurrent processes. This library works with EXTEND
(Imagine That Inc), an inexpensive yet capable and easy to
use simulation software package, and it is called
Operational Evaluation Modeling for Context-Sensitive
Systems (OpEMCSS). Context-Sensitive Systems (CSS) is
a systems theory, based on finite state machines, that can
assist a systems engineering manager, business operations
manager, or manufacturing production manager in
understanding, evaluating, and optimizing production work
flow, represented as communicating concurrent (parallel)
processes. CSS theory can be expressed using the OpEM
graphical modeling language. Thus, OpEMCSS is a
graphical simulation library that can model systems based
on CSS theory and the OpEM language. A simple part
production problem is discussed that is an example of
applying the Classifier Event Action block, which is a rule-
based classifier contained in OpEMCSS, to discover
optimal rules to manage the workflow.

1 INTRODUCTION

In order to optimize production workflow, it is necessary
that the concurrent processes, used to represent the operation
of each workstation as it performs production tasks, share
information. Through either central or distributed decision
making, workstations are allocated to production tasks based
on shared information in order to maintain balanced work
flow and on-time completion of tasks. In complex systems
where each workstation can perform many different
production tasks, it can be difficult to discover good decision
rules to allocate workstations to production tasks. An
OpEMCSS simulation of the production process can model
the required information sharing and can be used to discover
good decision rules to manage production workflow.
 OpEMCSS is a graphical Discrete Event Simulation
(DES) library that works with EXTEND, a relatively inex-
pensive yet powerful software product of Imagine That Inc.
130
<http:\\www.imaginethatinc.com>. OpEMCSS
can be put into perspective by comparing it with other DES
views such as queuing models, Petri nets, and functional
flow models. A comprehensive review of alternative
systems modeling views, including OpEMCSS, can be
found in (Bahill 1998).

1.1 Queuing Models

In a queuing model, transactions flow through a network of
queues and servers. If queuing processes operate without
any interactions or communications that modify their
behavior, other than transaction flow, they are called
context-free processes in this paper. In contrast, if
transaction flow in one queuing process depends on what is
happening in another queuing process, they are called
context-sensitive processes. For example, the EXTEND
DES library is based on context-free queuing processes. To
apply this library to model context-sensitive process
interactions in surface ship combat, attribute sharing and
process synchronization blocks had to be added to the
library. The SLAM graphical simulation language (Pritsker
1986) also describes transactions flowing through a
network of queues and servers.

1.2 Petri Nets

In a Petri net model, tokens flow from place to place as
defined by transitions. The significance of tokens can be as
varied as the state of a process or data flow. One of the
early goals of Petri net developers was to be able to predict
mathematically, model characteristics such as consistency
and deadlock. Since then, the Petri net model has been
expanded to model process timing, and what tokens can
represent has also been expanded by allowing tokens to
have �Color.� With these additions, the Petri net modeling
approach has lost the ability to predict model
characteristics mathematically and has evolved from an
analytical to a simulation based method. Petri nets are
capable of expressing moderately context-sensitive process
interactions.
5

Clymer

1.3 Functional Flow Models

In a functional flow model, such as IDEF0 (Buede 1999),
transactions flow in a network of functional blocks. Each
block receives transactions (i.e., data, knowledge, energy,
or material) from other blocks, transforms input
transactions into output transactions which are then sent to
other blocks. Functional flow models are usually
developed from the top-down, forming a hierarchy of
models. OpEMCSS supports hierarchical functional flow
models by using EXTEND�s hierarchical blocks. In
context-free systems these functional transformations do
not adapt. If these transformations do adapt based on what
other functions are doing, then such a system model is
context-sensitive. Complex Adaptive Systems (CAS) are
context-sensitive systems that have an emergent behavior
for the overall system that cannot be achieved by any
proper subset of the system. In a production CAS the
desired emergent behavior is balanced workflow and on
time tasks.

1.4 Overview

The concept of a parallel process is discussed first because
this concept is key to understanding Context-Sensitive
Systems (CSS) theory and thus Complex Adaptive Systems
(CAS). A Finite State Machine (FSM) modeling view, that
is based on transition rules, is presented next to explain
CSS theory and the parallel process concept. The FSM
modeling view is presented because this model has a
formal basis in computation theory (Yeh 1976). In the
FSM modeling view, the form of the transition rules
determines if a system is context-free or context-sensitive
and, thus, provides a formal definition of these concepts.
Different kinds of transitions are possible which allow
modeling of queuing systems operation, process-resource
contention issues, functional flow, and production system
architecture features as they affect overall systems
effectiveness, which for a production system are task
latency, resource utilization, and system throughput. A
FSM expressed using transition rules, although instructive,
is not easy to understand or communicate to others.
Therefore, a graphical description of FSM transitions is
presented using the OpEM graphical language in the
remainder of the paper.

OpEM graphical language, that is an expression of
interrelated communicating FSMs and the parallel process
concept, and OpEMCSS library blocks, that implement the
OpEM graphical language, are proposed as a basis for
complex system simulation, including production systems.
A simulation of a part production process that is built using
these blocks is discussed as an example of an OpEMCSS
model.

13

2 PARALLEL PROCESS

Considering the three modeling views that are discussed
above, the queuing theory model is probably the one most
familiar to a business operations manager or manufacturing
production manager. An OpEM parallel process model can
represent queuing processes by including a wait until state
that represents a transaction waiting in a queue. When the
wait logic is true, the transaction goes to a workstation
where the task is executed. Task execution is represented
by a reaction time state that models a period of time.

For example, consider a simple production system that
consists of three tasks: cut parts, mill parts, and drill parts.
Assume that the sequence of these tasks in the production
process is fixed as listed and that there are five
workstations that can perform either mill or drill. Also,
assume that a sixth workstation cuts the parts. Thus, when
a part is cut it goes to the mill queue to wait for one of the
workstations to perform the milling task. When milling is
complete, the part goes to the drill queue to wait for a
workstation to perform the drilling task. Three concurrent
processes can describe this queuing system: (1) part cutting
described by the �Cut Part� state, (2) part milling
represented by the �Wait for Mill� and �Mill Part� states,
and (3) part drilling described by the �Wait for Drill� and
�Drill Part� states.

A parallel process is defined as the collection of all
possible sequences of system states and events that represent
process flow and interactions for a system or organization.
Each system state consists of the discrete state of each
process instance, where the number of process instances
may vary, plus zero or more state variables. The discrete
state portion of an example system state for the part
production process, discussed above, is (Cut Part, Wait for
Mill, Mill Part, Drill Part) that describes four concurrent
process instances at a particular point in time. Thus, discrete
states represent periods of time where either (1) a task is
being performed by a resource(s) such as �Mill Part� or (2) a
task is waiting for a specified logical condition to be
satisfied before it can continue such as �Wait for Mill,�
discussed above. Also, included in the system state are zero
or more state variables. State variables have values that
identify conditions, other than what task is currently being
performed, such as parameters that are used to control
execution of the process activities. For example, for the part
production parallel process there is a state variable R, that
indicates how many workstations are currently available,
that is used in the wait until state logic to decide when to
allocate a workstation to a part task.

A Finite State Machine (FSM) is defined as a set of
states and a set of transitions between these states. For
example, DEVS (Zeigler 1999) uses a FSM model to
describe the operation of each system component such that
components can communicate with each other and can be
formed into hierarchies. FSM models are often expressed
06

Clymer
either in terms of state transition tables, sets of transition
rules, or using state transition graphs. We will use
transition rules in the following discussion because the
form of these rules determines whether a system is context-
free or context-sensitive (Yeh 1976). Each of the rules we
use in this paper describes the operation of a subset of
FSMs (one or more FSMs) where each FSM in the subset
represents one sub-process. Such a rule can describe either
one FSM or several FSMs operating together. This allows
us to explicitly describe both context-free operation and
context-sensitive interactions among concurrent sub-
processes using our transition rules.

In the FSM modeling view discussed next, system
operation is represented by a set of concurrent processes
where each process instance is a described by a FSM.
Thus, each process instance in the set requires a discrete
state dimension and zero or more state variable
dimensions, as discussed above. A process instance occurs
each time that a sub-process diagram in an OpEM directed
graph model is duplicated one or more times, as discussed
in the next section. Dimensions for one or more process
instances can form subsets of the system state vector
(D1D2...DN) that contains dimensions for all process
instances currently in the system model. As in the
production system example discussed above, the size of the
system state vector can vary as process instances are
created and destroyed.

For example, let (DiDj...Dk) dimensions be a subset of
system state and event sequence EaEb...En, implementing a
transition, indicate value changes in these dimensions. An
example system transition is described by the rule:

(Di Dj...Dk) -> EaEb...En (D�i D�j...D�k)

This rule indicates that a transition from subset dimensions
(DiDj...Dk) to new values (D�iD�j...D�k) occurs after event
sequence EaEb...En is executed. Each event Ei is associated
with an individual sub-process process instance, and it may
cause a change in one or more dimensions of the subset
when it is executed. The dimensions of each sub-process
process instance are grouped together, and one or more
sub-process instances can be represented in a rule. A
transition (event sequence) occurs and persists for zero
time; a state may persist for a non-zero time. The transition
rule notation is commonly used in computation theory
(Yeh 1976) to define formal languages or finite state
machine behavior as strings of symbols.

Taking the operational view, state transitions provide a
parallel process model of operation for the overall system.
The OpEM graphical language and its OpEMCSS
implementation describe the behavior of parallel processes,
as they interact in time, and the dependence of each process
instance execution on subsystem attributes and data flow.

Taking either the functional flow or architectural view,
subsystem behavior is described by a collection of one or
13

more processes. Here, a state dimension containing a state
variable can represent transactions. Flow of transactions
from one subsystem to another in the network can be
described by transition rules.

Context-Sensitive Systems (CSS) are systems with at
least one transition rule based on a context (i.e., the left
side of a rule) involving two or more process instances. For
example, a system becomes context sensitive when the
subset dimensions (DiDj...Dk) forming the left side of a
transition rule represent two or more process instances.
This definition permits many context-sensitive interactions,
which may include:

• A transition for a single sequential process that
depends on state dimensions of two or more
process instances and results in a change in
discrete state. A process is permitted to adapt its
behavior based on knowledge or data obtained
from other processes. The OpEMCSS alternate
action block models this interaction.

• A synchronized transition for two or more process
instances that depends on discrete state dimen-
sions of each process instance and results in a
change of discrete state for each process instance.
Processes can coordinate begin and end of tasks
using the OpEMCSS split action and assemble
event blocks to model this interaction. These
blocks allow one subprocess to split into one or
more sub-processes; further, each subprocess in
the split can be duplicated forming multiple
concurrent process instances.

• Functional flow transition rules that can depend
on state variable dimensions (data or control) for
one or more process instances and result in a
change in one or more state variable dimensions
for one or more process instances. These rules
model the functional transformations and
transaction flows found in the functional-flow
model. OpEMCSS context-sensitive, message,
memory, local, and global event action blocks
model this interaction.

Because of the split action and assemble event pairs in

a system process model discussed above, process instances
can come into and out of existence as a function of time.
Such variable instantiation of process instances is similar
to the Object-Modeling Technique (OMT) where instances
of object classes are created and deleted as the program
executes (Rumbaugh 1991).

3 OPEM DIRECTED GRAPH LANGUAGE

Use of the Operational Evaluation Modeling (OpEM)
directed graph language to develop a model and analyze a
problem requires an in-depth understanding of the OpEM
07

Clymer

Figure 1: Four Kinds of Discrete States

REACTION TIME WAIT SEMICONTINUOUS IDLE

I1S1 (W1) [S2]
parallel process language. In this section, each language
element is defined and rules for combining elements to
form process diagrams are provided.

3.1 System State

A parallel process is the set of all sequences of system states
and events that represent system operation. The system state
is the discrete state of each process instance and the value of
each state variable. Discrete states of parallel processes
represent periods of time and are circles on an OpEM
directed graph. There are four kinds of discrete states: (1)
reaction time, (2) wait, (3) semi-continuous, and (4) idle.
These are shown in figure 1 on the previous page.

A reaction time state represents the length of time a
resource is performing a particular process instance task.
Often a random variable generator computes a reaction
time. Data to determine the distribution of the random
variable may be determined by field observation or
experimentation. Thus, a random variable can represent
details of system operation that occur at lower levels of the
system description hierarchy, allowing us to focus on
complexity issues at the current level (Clymer 1990).

 A wait until state represents the time a process
instance waits for a logical condition to be satisfied in
order to perform a task. Logic that activates the event may
be in the event itself or elsewhere. If in the event itself, the
state itself is identified with the logic on the graph. If
�passivated�, awaiting external logic to be satisfied the
event following the wait until state is identified as a direct
execution path. Events are depicted as �< >� in a model.
The two kinds of wait states are shown in figure 2.

Figure 2: Two Kinds of Wait States

A more efficient technique, from the point of view of

computer time required, is to use the �passivated� event
approach. Logic is checked by another process instance
only when necessary and the wait event is executed by this
process instance, using a direct execution path, when this
logic is satisfied.

If the logic is located internally, logic usually is tested
at each discrete time in the simulated sequence of states

WAIT UNTIL LOGIC TRUE

(W1)

PASSIVATED

(W2)

LOGIC DIRECT

130

and events until it is satisfied. Logic can involve values of
both discrete and continuous state variables. In a detailed
model, it is sometimes necessary to compute values of state
variables prior to testing logic.

A semi-continuous state approximates the continuous
behavior of a detailed model of system operation. State
variables associated with this kind of state are updated
repeatedly with a constant time step to model a process that
varies continuously. In contrast, discrete time events occur
at irregular time intervals. Combined discrete event and
continuous processes often occur in hardware-in-the-loop
simulations. A semi-continuous state is shown in figure 3.

Figure 3: A Semi-Continuous State

A semi-continuous state is indicated by square
brackets around the state name inside the circle. A detailed
model that updates state variables is a part of the logic
associated with the event following the state. The logic
decides when the continuous process ends.

An idle state represents a period of time a subprocess
is waiting for one or more other subprocesses to be
completed before an assemble event can occur. In contrast,
a wait state requires logic to be satisfied. Some of these
subprocesses may be duplicated into multiple process
instances. An assemble event combines one or more
subprocesses and process instances into a single
subprocess. The idle state will be discussed further in the
context of the assemble event.

State variables represent data, knowledge facts used in
inferencing, process control variables, entity position and
velocity, and many other useful model attributes. In
general, they represent process conditions other than the
discrete process states discussed above.

3.2 Events

Events signify changes in system state, and are represented
by directed line segments connecting the states in a

[S1]

LOGIC

8

Clymer

directed graph model (figure 4). Near the center of the line
segment is a pair of brackets �< >.�

Figure 4: Events Shown as Directed Line Segments

Below these brackets is the event name, a short description
of the event. To the left of the brackets is the �occurrence
path� that connects the event to the prior state. To the right is
the �action path� that connects the event to the following
state. As discussed above, an event represents a change in
one or more process instance dimensions of the system state
vector. Event action implements state vector dimension
changes, controls process flow, directly executes events in
other sub-processes, and collects simulation report data.

Figure 5 shows an exit event from a wait state. The
event has two alternate occurrence paths. Path 1 has logic
specified and path 2 is a direct execution path from another
event. An event may have alternate action paths as well.

Figure 5: Exit Event from a Wait State

Figure 6 shows an event having two action paths.
Only one path can occur each time that the preceding event
is executed. ACTION1, associated with both paths, is
executed first, then logic chooses the action to perform. In
the example shown, if LOGIC is true, action two is
performed, otherwise action three occurs.

Two parallel vertical lines to the right of the brackets
�< >� indicate a split event (figure 7). Action one,
preceding both parallel paths, is performed first. The sub-
process then splits into two parallel subprocesses, both
action two and three being performed. A split event
models a context-sensitive transition where two FSMs have
a synchronized start of operation, as discussed above,
causing them to begin concurrent operation together.
 Multiple process instances can occur two ways: (1) a
split event creates multiple sub-processes and process
instances as discussed above or (2) a generator process can
create process instances and directly execute each process
start event as shown in figure 11.
 An assemble event (figure 8) has two parallel vertical
lines preceding the brackets �< >.� Assemble logic is
specified to the left of the brackets next to the parallel
lines. The numbers below each occurrence path to the left
of the parallel double lines are path numbers that define the
path that has been completed.

EVENT NAME

ACTION PATHOCCURENCE PATH
5

ACTION1LOGIC
51

2

DIRECT
EXECUTION
130
Figure 6: An Event having Two Action Paths

Figure 7: A Split Event

Figure 8: An Assemble Event

When a sub-process, process instance ends, assemble

logic is tested. The path number associated with that
occurrence path determines that the process that has been
completed. The event �<5>� occurs only when the
assemble logic is satisfied. An example of assemble logic
is (1 * 2 * 3). The * is a logical AND. This means that
sub-process paths one and two and three must be
completed before these processes are assembled. Another
example logic is ((1 * 2) + 3) which means that sub-
process paths one and two or three must complete before
these processes assemble since the + is a logical OR.

When assemble event �<5>� occurs, three sub-process
diagrams are terminated and a single sub-process diagram
continues. What is represented here is that all process
instances, created for each sub-process diagram involved in
the assemble event, must be deleted before continuing. In
particular, assemble logic that includes a logical OR will
definitely require process instances to be deleted, and this
is very difficult for Petri nets to model because some
process instances must be found and destroyed. However,
the OpEMCSS Assemble Event block can model OR logic
easily and automatically destroys the appropriate sub-
process, process instances.

ACTIONLOGIC
5

4

DIRECT

I1

I2

I3

1

2

3

ACTION1
5

LOGIC: ACTION2

LOGIC: ACTION3

ACTION1
5

ACTION2

ACTION3
9

Clymer
4 OPEMCSS LIBRARY BLOCKS

The basic OpEMCSS blocks are organized by categories:

1. Begin Event, End Event, and Evolutionary
Algorithm blocks that define a system process
instance (EXTEND calls these �runs�);

2. Split Action and Assemble Event that define the
begin and end of concurrent (parallel) processes;

3. Global Reaction Time Event, Reaction Time
Event, and Wait Until Event that model the time
spent in a discrete state;

4. Alternate Action, Classifier Event Action,
Context-Sensitive Event Action, Event Action,
Global Event Action, Initialize Event Action,
Input Event Action, Local Event Action, Message
Event Action, and Reward Event Action that
perform event actions; and

5. Executive Block that sequences events in
simulated time and Context-Sensitive Priority that
updates the priority of each process instance at
each event.

A brief summary of the OpEMCSS library blocks used in
the part production model is provided next. For a more
detailed evaluation, download the library from <http//
ecs.fullerton.edu/~jclymer.>

4.1 Category 1

The Begin Event block generates an initial process instance
item and initializes its attributes to start a simulation run. In
EXTEND, attributes are of the form �AttributeName=
NumericalValue� and are used to implement the OpEM
model state variables discussed above. An Evolutionary
Algorithm block can be the action of a begin event to
search for optimal process control parameters. A Split
Action block, that creates a set of sub-process, process
instances, usually follows a Begin Event block and its
initialization actions.

Since each parallel process instance in the model uses
the attributes initialized by the Begin Event block, these
attributes can provide global communication among all
process instances. An example is a resource counter R that
is used to decide if a resource is available for a process
instance. If a resource is taken, the resource counter is
decremented globally to communicate this to all process
instances. When a process instance is finished with the
resource, the resource counter is incremented globally to
communicate to all process instances that the resource is
available.

The End Event block deletes the final process instance
item of a simulation run. This block can obtain parameter
values from up to five blocks. These values are
13

accumulated to produce an average value for each selected
parameter based on a sample of simulation runs. The End
Event block also sends the parameter values obtained from
other blocks to each Evolutionary Algorithm block for
computation of population member fitness that is used to
control the search.

4.2 Category 2

The Split Action and Assemble Event blocks, working in
pairs, allow sub-process diagrams and associated process
instances at the same level in the system process to be
synchronized according to a user supplied logic equation.
Split Action and Assemble Event blocks allow a process
instance to come into existence and operate concurrently
with other process instances for a period of time, ceasing to
exist when assemble logic is satisfied.

In an object-oriented model of a system, variable
numbers of objects come into existence, exist for a time,
then go out of existence (Rumbaugh 1991). An OpEMCSS
process diagram, including one to three split-assemble
levels, is similar to an OMT model in that each OpEMCSS
sub-process diagram can define a variable number of
duplicated process instances as discussed above. This
contrasts with basic timed Petri net models that require a
diagram to be duplicated for each process instance.

4.3 Category 3

Each block in Category 3 models the time required for
each sub-process process instance to perform a task or wait
for a logical condition to be satisfied to continue.

The Wait Until Event block can have its time duration
determined by a logical equation. The wait until logic
equation can be a function of up to eight process instance
attributes, specified in the block dialog shown in figure 9,
plus built in parameters to achieve pre-emptive, priority
resource allocation and agent motion interaction events.
Event actions allowed in the block are modifications of up
to two global process instance item attributes using a �+=�
operation. For example, when a shared resource is
allocated to a process instance, the attribute R, representing
the quantity of this resource, must be decremented. The
operation R += -1 decrements R globally so all process
instances that share this resource are notified. In this case,
the += operation is equivalent to R= R-1.

A process instance item arriving on the �Direct� input
connector of the Wait Until Event block bypasses the logic
equation and is sent directly to the output connector. Direct
input allows a �passivated� wait event to be modeled as
discussed above. Such a process waits until another process
�wakes it up� with direct execution.
10

Clymer

Figure 9: Wait Until Event Block Dialog

The Reaction Time Event block has a Gamma
distributed reaction time specified in the block dialog
shown in figure 10. Event actions permitted are
modifications of up to two global process instance item
attributes, using the �+=� operation, and one local process
instance item attribute based on an equation. The global
resource attribute R, discussed above, is incremented by
this block when the resource is no longer needed.

Figure 10: Reaction Time Event Block Dialog

For the Global Reaction Time Event block, reaction
time is computed by an equation. The reaction time equation
can be a function of GAMMADELAY, a Gamma distri-
buted random variable, plus up to four attributes. Up to two
global attributes can be modified using a �+=� operation.

The Global Reaction Time Event block works with the
Wait Until Event block to achieve pre-emptive, priority
resource allocation. Details of how to accomplish this are
given in the �help� section of each block�s dialog.

The Executive and Wait Until Event blocks work
together to ensure that any time a global state variable is
changed anywhere in the model, all wait logic is checked

131
again before time is advanced. This ensures that no
improper wait time is accumulated.

4.4 Category 4

Blocks in this category perform an event action after a
category 3 block is completed. As discussed above, an event
represents a change in one or more process instance
dimensions of the system state vector. A Reaction Time
Event block, Global Reaction Time Event block, or Wait
Until Event block implements a change in discrete state for a
process instance. Event action blocks change attribute
values, decide process flow, directly execute events in other
sub-processes, and compute simulation report attributes.

Each event block maintains a linked list, ordered by
time, to store process instance items currently associated
with the state represented by the block. When an event
occurs, a process instance item is sent from an event block
and passes through zero or more action blocks to the next
event block. Event blocks have only a limited capability to
perform event actions; action blocks expand the kinds of
event actions that can be performed when an event occurs.

Alternate Action blocks allow one of three alternate
transition paths to be selected, after an event has occurred,
based on a decision equation. The DECISION value can
equal 1, 2, or 3, which specifies the top, middle, or bottom
output connector of the block; respectively. The decision
equation can be a function of up to eight attributes,
specified in the block dialog.

Classifier Event Action blocks each contain a forward
chaining inference engine that is used to transform process
instance attributes, for an item passing through the block,
into other process instance attributes that represent rule
actions. If several different actions are implied by the input
process instance attributes (i.e., several rules are eligible to
fire in a context), the best action is selected based on either
the maximum BID value or a probability. The BID is a
function of rule strength, specificity, and condition support
such that a more specific rule has a higher BID. The rule
selection probability is a function of rule strength and
specificity such that a more specific rule has a higher
probability of being selected to fire. Probability of rule
selection is required for rule learning, but the maximum
BID can be used once all rules have been determined.

An Event Action block can modify two global process
instance attributes, using the �+=� operation, and one local
process instance item based on an equation. The equation
can be a function of up to four attributes, specified in the
block dialog, plus �RandomNum�, a uniformly distributed
random number, and �CurrentTime.�

A new process instance item can be created by an
Event Action block and sent to an input connector of an
Event Occurrence block placed before either a reaction
time or wait until event block. This feature can represent a
generator process that creates new process instance items
1

Clymer

as a function of time. For example, the arrival of cut parts
into the part milling sub-process during a period of time is
modeled as shown in figure 11. This feature can also allow
one process instance to execute another process instance
directly. For example, a �passivated� process can be
�waked up� by direct execution as discussed for the Wait
Until Event block. Direct execution of events makes many
types of complex, context-sensitive transitions possible.

A Global Event Action block can modify two global
attributes based on an equation. Each global process instance
attribute, having the proper process number, is modified by
an attribute equation that can be a function of up to eight
process attributes, specified in its dialog, plus
�RandomNum�, a uniformly distributed random number, or
�CurrentTime�. If process number in the dialog is zero, all
system process instance items are modified. Otherwise, only
process instance items with �Process�, an element of the
process identifier, equal to process number are modified. If
the �local� box is checked in the dialog, the process instance
item passing through the block is also updated.

The Reward Event Action block is used to compute a
Classifier Event Action block reward payoff value based on
an equation. The reward payoff value, that is sent to all
Classifier blocks via a message, is computed by a reward
payoff equation that can be a function of up to eight process
instance item attributes. The payoff attribute name, specified
in the dialog, is also sent in the payoff message. Classifier
blocks with the message attribute name equal to
�PayoffAttributeName,� specified in the Classifier block

131
Learning Dialog, can accept the message. A process
number, specified in the dialog, is also sent in the payoff
message. If this process number is zero, the rest of the
process identifier sent is ignored. Otherwise, the duplicate
process numbers, included in the process identifier sent,
must be correct for a decision to be rewarded. If a duplicate
process number is zero or compares with the duplicate
process number for a process decision, then that process
instance decision can be rewarded. This allows a sequence
of decisions for a process instance to be rewarded.

4.5 Category 5

An OpEMCSS Executive block sequences events in
simulated time. A Context-Sensitive Priority Block
computes a priority for each process instance item at each
discrete time based on an equation and prints process
identifier, discrete state, and state variable values for each
process instance at the end of each discrete time. The
Executive and Context-Sensitive Priority Block work
together to print a state trace, if selected, at each event in
simulated time.

4.6 Summary of OpEMCSS Block Categories

An important feature of the OpEMCCS graphical simu-
lation language is that a sub-process diagram can describe
one or more process instances without having to duplicate
the sub-process diagram for each one. This is especially

Figure 11: OpEMCSS Directed Graph Model of a Part Production System
2

Clymer

important when modeling systems where the number of
process instances is variable in simulated time and changes
as the model executes. For example, the number of
concurrent part milling process instances or part drilling
process instances varies throughout a simulation run.

5 PART PRODUCTION MODEL

The part production model, shown in figure 11, is an
example of applying the OpEMCSS library to model a
simple process. Even for complex models, it is easy to
place the blocks on the screen and connect them. Blocks
are placed on the screen by clicking your mouse on a block
name from the list opened from the EXTEND OpEMCSS
library menu and dragging the icon to where you want it.
When several blocks are on the screen, click your mouse
on an output connector (little box with a black interior) and
drag the mouse symbol to an input connector (little box
with a white interior) of the next block. Next, you double
click your mouse on a block icon and the block dialog,
such as shown in figures 9 and 10, appears. You set up the
dialog for proper block action, click your mouse on �OK,�
and the dialog closes. A model like the part production
model can be built in less than an hour.

The part production model shown in figure 11 has four
concurrent sub-process diagrams. These four sub-
processes begin with a Split Action block that generates a
process instance for the top and bottom process diagrams
and ends with an Assemble Event block where logic
synchronizes all process instances in the model when the
last part has been completed for a simulation run.

The top process diagram is a part cutting process that
generates part process instances that are sent to the part
milling sub-process. Each part process instance can have
attributes that distinguish it from other parts. The top sub-
process diagram has a Global Reaction Time Event block
that models the part cutting time for each part. The
Alternate Action block continues sending the part cutting
process instance back for another reaction time until the
last part has been generated. When part generation is
complete, the Alternate Action block sends the part cutting
process instance to the Assemble Event block where it
remains idle until synchronization occurs.

The second sub-process is a part milling process that
models a part waiting in the part milling queue until a
workstation is available to mill the part. The part milling
queue is modeled by a Wait Until Event block whose
dialog is shown in figure 9. When a workstation becomes
available, resource attribute R is decremented and the part
milling process instance item is sent to a Reaction Time
Event block. This block models the time it takes to mill the
part. When milling is complete, the Reaction Time Event
block increments resource attribute R, as shown in figure
10, and the part process instance item is sent to an Event
Action block. This block sends a part process instance item
131
to the part drilling sub-process, as shown in figure 11, and
the part milling process instance item is passed to a Global
Event Action block. This block sends the current workload
attribute W1 to the bottom, manager sub-process diagram
as a global attribute. When the last part has been milled,
the part milling process instance is sent to the Assemble
Event block to remain idle until synchronization occurs.

The third sub-process is a part drilling process that
models a part waiting in the part drilling queue until a work-
station is available to drill the part. The sub-process diagram
is similar to the second sub-process discussed above. For
both the second and third sub-processes, the number of
process instance items moving through the blocks varies
throughout the simulation run. This is an example of a sin-
gle sub-process diagram modeling multiple process instanc-
es. In a traditional Petri Net model, a sub-process diagram
would be required for each concurrent process instance.

The fourth sub-process is a manager process that
periodically updates two control attributes, R1 and R2, that
are used in the wait until logic of the part milling and
drilling processes; respectively. Figure 9 shows how R1 is
used in the part milling process. Values for attributes R1
and R2 are decided using a Classifier Event Action block
that has workload attributes W1 and W2 as its input.

A Classifier Event Action block contains a forward
chaining inference engine that uses condition-action rules
to transform condition attributes into action attributes. The
condition attributes are obtained from a process instance
item passing through the block. After the inference
algorithm is complete, action attributes are added to the
process instance item passing through the block before the
item is sent to the output connector. These action attributes
are used to control the system.

The Classifier Event Action block also has an
evolutionary rule induction capability. In the part production
model, this block receives a payoff attribute from a Reward
Event Action such that a sequence of decisions is rewarded
when they result in a balanced workload.

The rules that were discovered tend to decrease R1
and increase R2 as W1 increases so that more workstations
are made available for milling parts when needed by the
part milling process. The rules tend to maintain a balanced
work-flow and maximize the throughput of parts moving
through the system.

6 SUMMARY

A graphical discrete event simulation library is described
that is based on interacting concurrent processes. This
library is called Operational Evaluation Modeling for
Context-Sensitive Systems (OpEMCSS). CSS, as dis-
cussed in this paper, is a systems theory, based on finite
state machines, that can assist a manufacturing or produc-
tion manager in understanding, evaluating, and optimizing
production work flow, represented as communicating
3

Clymer

concurrent (parallel) processes. A Finite State Machine
(FSM) is defined as a set of states and a set of transition
rules that describe transitions between these states. It was
shown that if transition rules describe transitions for
several FSMs working together, then these rules can
describe context-sensitive process interactions. OpEM is
described as a graphical simulation language that can
model several FSMs working together and, thus, context-
sensitive process interactions. A simple production
problem is discussed that is an example of applying the
Classifier Event Action block to discover optimal rules to
manage the workflow for a part production process.

REFERENCES

Bahill, A.T., et al, 1998. The Design-methods comparison
project, IEEE Transactions on Systems, Man, and
Cybernetics-Part C Applications and Reviews,
Volume 28(1): 80-103 .

Buede, D.M. 1999. The Engineering Design of Systems:
Models and Methods, Wiley-Interscience.

Clymer, J. R. 1990. Systems Analysis Using Simulation and
Markov Models, Englewood Cliffs, NJ: Prentice-Hall
Inc.

Clymer, J. R. 1997. Expansionist/context-sensitive metho-
dology: engineering of complex adaptive systems,
IEEE Transactions on Aerospace and Electronic
Systems, 33(2): 686-695.

Clymer, J. R. 1999. Simulation-based engineering of
complex adaptive systems, Simulation, San Diego,
CA: The Society of Computer Simulation
International, 72(4): 250-260.

Pritsker, A.A.B. 1986. Introduction to Simulation and
SLAM II, New York, NY: John Wiley and Sons.

Rumbaugh, J. et al. 1991. Object-oriented Modeling and
Design, Englewood Cliffs, NJ: Prentice-Hall Inc..

Yeh, R. T. 1976. Applied Computation Theory: Analysis,
Design, and Modeling, Englewood Cliffs, NJ:
Prentice-Hall.

Zeigler, B.P., and H. Praehofer. 1999. Theory of Modeling
and Simulation, 2nd edition, Academic Press.

AUTHOR BIOGRAPHY

JOHN R. CLYMER is a professor of electrical engineer-
ing at California State University Fullerton (CSUF) and
consults in the area of systems engineering, simulation, and
artificial intelligence. In addition to consulting, he presents
intensive short courses at various locations around the
United States and abroad. His teaching assignments have
included computer engineering, system control, continuous
systems simulation, operational analysis and DES
simulation, optimization and mathematical programming,
and artificial intelligence (fuzzy logic and control, neural
networks, and expert systems). Dr. Clymer�s current
131
research interests are focused in the area of intelligent,
complex adaptive systems, applying integrated simulation,
artificial intelligence, and evolutionary programming
methods to study such systems. He is a founding member
of the Applied Research Center for Systems Science at
CSUF. He is a member of IEEE, SCS (SIMULATION
journal associate editor), and INCOSE. His email address
is <jclymer@fullerton.edu>.
4

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

