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ABSTRACT 
 
A graphical discrete event simulation library is proposed 
for system simulation that is based on interacting 
concurrent processes. This library works with EXTEND 
(Imagine That Inc), an inexpensive yet capable and easy to 
use simulation software package, and it is called 
Operational Evaluation Modeling for Context-Sensitive 
Systems (OpEMCSS). Context-Sensitive Systems (CSS) is 
a systems theory, based on finite state machines, that can 
assist a systems engineering manager, business operations 
manager, or manufacturing production manager in 
understanding, evaluating, and optimizing production work 
flow, represented as communicating concurrent (parallel) 
processes. CSS theory can be expressed using the OpEM 
graphical modeling language. Thus, OpEMCSS is a 
graphical simulation library that can model systems based 
on CSS theory and the OpEM language. A simple part 
production problem is discussed that is an example of 
applying the Classifier Event Action block, which is a rule-
based classifier contained in OpEMCSS, to discover 
optimal rules to manage the workflow.  
 
1 INTRODUCTION 
 
In order to optimize production workflow, it is necessary 
that the concurrent processes, used to represent the operation 
of each workstation as it performs production tasks, share 
information. Through either central or distributed decision 
making, workstations are allocated to production tasks based 
on shared information in order to maintain balanced work 
flow and on-time completion of tasks. In complex systems 
where each workstation can perform many different 
production tasks, it can be difficult to discover good decision 
rules to allocate workstations to production tasks. An 
OpEMCSS simulation of the production process can model 
the required information sharing and can be used to discover 
good decision rules to manage production workflow.  
 OpEMCSS is a graphical Discrete Event Simulation 
(DES) library that works with EXTEND, a relatively inex-
pensive yet powerful software product of Imagine That Inc. 
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<http:\\www.imaginethatinc.com>.  OpEMCSS 
can be put into perspective by comparing it with other DES 
views such as queuing models, Petri nets, and functional 
flow models. A comprehensive review of alternative 
systems modeling views, including OpEMCSS, can be 
found in (Bahill 1998). 

 
1.1 Queuing Models 
 
In a queuing model, transactions flow through a network of 
queues and servers. If queuing processes operate without 
any interactions or communications that modify their 
behavior, other than transaction flow, they are called 
context-free processes in this paper. In contrast, if 
transaction flow in one queuing process depends on what is 
happening in another queuing process, they are called 
context-sensitive processes. For example, the EXTEND 
DES library is based on context-free queuing processes. To 
apply this library to model context-sensitive process 
interactions in surface ship combat, attribute sharing and 
process synchronization blocks had to be added to the 
library. The SLAM graphical simulation language (Pritsker 
1986) also describes transactions flowing through a 
network of queues and servers. 
 
1.2 Petri Nets 
 
In a Petri net model, tokens flow from place to place as 
defined by transitions. The significance of tokens can be as 
varied as the state of a process or data flow. One of the 
early goals of Petri net developers was to be able to predict 
mathematically, model characteristics such as consistency 
and deadlock.  Since then, the Petri net model has been 
expanded to model process timing, and what tokens can 
represent has also been expanded by allowing tokens to 
have �Color.� With these additions, the Petri net modeling 
approach has lost the ability to predict model 
characteristics mathematically and has evolved from an 
analytical to a simulation based method. Petri nets are 
capable of expressing moderately context-sensitive process 
interactions.  
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1.3 Functional Flow Models 
 
In a functional flow model, such as IDEF0 (Buede 1999), 
transactions flow in a network of functional blocks.  Each 
block receives transactions (i.e., data, knowledge, energy, 
or material) from other blocks, transforms input 
transactions into output transactions which are then sent to 
other blocks. Functional flow models are usually 
developed from the top-down, forming a hierarchy of 
models. OpEMCSS supports hierarchical functional flow 
models by using EXTEND�s hierarchical blocks. In 
context-free systems these functional transformations do 
not adapt. If these transformations do adapt based on what 
other functions are doing, then such a system model is 
context-sensitive. Complex Adaptive Systems (CAS) are 
context-sensitive systems that have an emergent behavior 
for the overall system that cannot be achieved by any 
proper subset of the system.  In a production CAS the 
desired emergent behavior is balanced workflow and on 
time tasks. 
 
1.4 Overview 
 
The concept of a parallel process is discussed first because 
this concept is key to understanding Context-Sensitive 
Systems (CSS) theory and thus Complex Adaptive Systems 
(CAS). A Finite State Machine (FSM) modeling view, that 
is based on transition rules, is presented next to explain 
CSS theory and the parallel process concept. The FSM 
modeling view is presented because this model has a 
formal basis in computation theory (Yeh 1976). In the 
FSM modeling view, the form of the transition rules 
determines if a system is context-free or context-sensitive 
and, thus, provides a formal definition of these concepts. 
Different kinds of transitions are possible which allow 
modeling of queuing systems operation, process-resource 
contention issues, functional flow, and production system 
architecture features as they affect overall systems 
effectiveness, which for a production system are task 
latency, resource utilization, and system throughput. A 
FSM expressed using transition rules, although instructive, 
is not easy to understand or communicate to others. 
Therefore, a graphical description of FSM transitions is 
presented using the OpEM graphical language in the 
remainder of the paper. 

OpEM graphical language, that is an expression of 
interrelated communicating FSMs and the parallel process 
concept, and OpEMCSS library blocks, that implement the 
OpEM graphical language, are proposed as a basis for 
complex system simulation, including production systems. 
A simulation of a part production process that is built using 
these blocks is discussed as an example of an OpEMCSS 
model.  
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2 PARALLEL PROCESS 
 
Considering the three modeling views that are discussed 
above, the queuing theory model is probably the one most 
familiar to a business operations manager or manufacturing 
production manager. An OpEM parallel process model can 
represent queuing processes by including a wait until state 
that represents a transaction waiting in a queue.  When the 
wait logic is true, the transaction goes to a workstation 
where the task is executed. Task execution is represented 
by a reaction time state that models a period of time. 

For example, consider a simple production system that 
consists of three tasks: cut parts, mill parts, and drill parts. 
Assume that the sequence of these tasks in the production 
process is fixed as listed and that there are five 
workstations that can perform either mill or drill. Also, 
assume that a sixth workstation cuts the parts. Thus, when 
a part is cut it goes to the mill queue to wait for one of the 
workstations to perform the milling task.  When milling is 
complete, the part goes to the drill queue to wait for a 
workstation to perform the drilling task. Three concurrent 
processes can describe this queuing system: (1) part cutting 
described by the �Cut Part� state, (2) part milling 
represented by the �Wait for Mill� and �Mill Part� states, 
and (3) part drilling described by the �Wait for Drill� and 
�Drill Part� states.    

A parallel process is defined as the collection of all 
possible sequences of system states and events that represent 
process flow and interactions for a system or organization. 
Each system state consists of the discrete state of each 
process instance, where the number of process instances 
may vary, plus zero or more state variables. The discrete 
state portion of an example system state for the part 
production process, discussed above, is (Cut Part, Wait for 
Mill, Mill Part, Drill Part) that describes four concurrent 
process instances at a particular point in time. Thus, discrete 
states represent periods of time where either (1) a task is 
being performed by a resource(s) such as �Mill Part� or (2) a 
task is waiting for a specified logical condition to be 
satisfied before it can continue such as �Wait for Mill,� 
discussed above. Also, included in the system state are zero 
or more state variables. State variables have values that 
identify conditions, other than what task is currently being 
performed, such as parameters that are used to control 
execution of the process activities. For example, for the part 
production parallel process there is a state variable R, that 
indicates how many workstations are currently available, 
that is used in the wait until state logic to decide when to 
allocate a workstation to a part task.  

A Finite State Machine (FSM) is defined as a set of 
states and a set of transitions between these states. For 
example, DEVS (Zeigler 1999) uses a FSM model to 
describe the operation of each system component such that 
components can communicate with each other and can be 
formed into hierarchies. FSM models are often expressed 
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either in terms of state transition tables, sets of transition 
rules, or using state transition graphs. We will use 
transition rules in the following discussion because the 
form of these rules determines whether a system is context-
free or context-sensitive (Yeh 1976).  Each of the rules we 
use in this paper describes the operation of a subset of 
FSMs (one or more FSMs) where each FSM in the subset 
represents one sub-process.  Such a rule can describe either 
one FSM or several FSMs operating together. This allows 
us to explicitly describe both context-free operation and 
context-sensitive interactions among concurrent sub-
processes using our transition rules.  

In the FSM modeling view discussed next, system 
operation is represented by a set of concurrent processes 
where each process instance is a described by a FSM. 
Thus, each process instance in the set requires a discrete 
state dimension and zero or more state variable 
dimensions, as discussed above. A process instance occurs 
each time that a sub-process diagram in an OpEM directed 
graph model is duplicated one or more times, as discussed 
in the next section. Dimensions for one or more process 
instances can form subsets of the system state vector 
(D1D2...DN) that contains dimensions for all process 
instances currently in the system model. As in the 
production system example discussed above, the size of the 
system state vector can vary as process instances are 
created and destroyed. 

For example, let (DiDj...Dk) dimensions be a subset of 
system state and event sequence EaEb...En, implementing a 
transition, indicate value changes in these dimensions. An 
example system transition is described by the rule: 

 
(Di Dj...Dk) -> EaEb...En (D�i D�j...D�k) 

 
This rule indicates that a transition from subset dimensions 
(DiDj...Dk) to new values (D�iD�j...D�k) occurs after event 
sequence EaEb...En is executed. Each event Ei is associated 
with an individual sub-process process instance, and it may 
cause a change in one or more dimensions of the subset 
when it is executed.  The dimensions of each sub-process 
process instance are grouped together, and one or more 
sub-process instances can be represented in a rule. A 
transition (event sequence) occurs and persists for zero 
time; a state may persist for a non-zero time. The transition 
rule notation is commonly used in computation theory 
(Yeh 1976) to define formal languages or finite state 
machine behavior as strings of symbols. 

Taking the operational view, state transitions provide a 
parallel process model of operation for the overall system. 
The OpEM graphical language and its OpEMCSS 
implementation describe the behavior of parallel processes, 
as they interact in time, and the dependence of each process 
instance execution on subsystem attributes and data flow. 

Taking either the functional flow or architectural view, 
subsystem behavior is described by a collection of one or 
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more processes. Here, a state dimension containing a state 
variable can represent transactions. Flow of transactions 
from one subsystem to another in the network can be 
described by transition rules. 

Context-Sensitive Systems (CSS) are systems with at 
least one transition rule based on a context (i.e., the left 
side of a rule) involving two or more process instances. For 
example, a system becomes context sensitive when the 
subset dimensions (DiDj...Dk) forming the left side of a 
transition rule represent two or more process instances. 
This definition permits many context-sensitive interactions, 
which may include: 
 

• A transition for a single sequential process that 
depends on state dimensions of two or more 
process instances and results in a change in 
discrete state. A process is permitted to adapt its 
behavior based on knowledge or data obtained 
from other processes. The OpEMCSS alternate 
action block models this interaction. 

• A synchronized transition for two or more process 
instances that depends on discrete state dimen-
sions of each process instance and results in a 
change of discrete state for each process instance. 
Processes can coordinate begin and end of tasks 
using the OpEMCSS split action and assemble 
event blocks to model this interaction. These 
blocks allow one subprocess to split into one or 
more sub-processes; further, each subprocess in 
the split can be duplicated forming multiple 
concurrent process instances. 

• Functional flow transition rules that can depend 
on state variable dimensions (data or control) for 
one or more process instances and result in a 
change in one or more state variable dimensions 
for one or more process instances. These rules 
model the functional transformations and 
transaction flows found in the functional-flow 
model. OpEMCSS context-sensitive, message, 
memory, local, and global event action blocks 
model this interaction. 

 
Because of the split action and assemble event pairs in 

a system process model discussed above, process instances 
can come into and out of existence as a function of time. 
Such variable instantiation of process instances is similar 
to the Object-Modeling Technique (OMT) where instances 
of object classes are created and deleted as the program 
executes (Rumbaugh 1991). 

 
3 OPEM DIRECTED GRAPH LANGUAGE 
 
Use of the Operational Evaluation Modeling (OpEM) 
directed graph language to develop a model and analyze a 
problem requires an in-depth understanding of the OpEM  
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Figure 1: Four Kinds of Discrete States 

REACTION TIME WAIT SEMICONTINUOUS IDLE

I1S1 (W1) [S2]
parallel process language.  In this section, each language 
element is defined and rules for combining elements to 
form process diagrams are provided.   
 
3.1 System State  
 
A parallel process is the set of all sequences of system states 
and events that represent system operation.  The system state 
is the discrete state of each process instance and the value of 
each state variable.  Discrete states of parallel processes 
represent periods of time and are circles on an OpEM 
directed graph. There are four kinds of discrete states: (1) 
reaction time, (2) wait, (3) semi-continuous, and (4) idle.  
These are shown in figure 1 on the previous page. 

A reaction time state represents the length of time a 
resource is performing a particular process instance task.  
Often a random variable generator computes a reaction 
time.  Data to determine the distribution of the random 
variable may be determined by field observation or 
experimentation.  Thus, a random variable can represent 
details of system operation that occur at lower levels of the 
system description hierarchy, allowing us to focus on 
complexity issues at the current level (Clymer 1990). 

 A wait until state represents the time a process 
instance waits for a logical condition to be satisfied in 
order to perform a task. Logic that activates the event may 
be in the event itself or elsewhere. If in the event itself, the 
state itself is identified with the logic on the graph. If 
�passivated�, awaiting external logic to be satisfied the 
event following the wait until state is identified as a direct 
execution path.  Events are depicted as �< >� in a model.  
The two kinds of wait states are shown in figure 2. 
 

Figure 2: Two Kinds of Wait States 
 
A more efficient technique, from the point of view of 

computer time required, is to use the �passivated� event 
approach.  Logic is checked by another process instance 
only when necessary and the wait event is executed by this 
process instance, using a direct execution path, when this 
logic is satisfied. 

If the logic is located internally, logic usually is tested 
at each discrete time in the simulated sequence of states 

WAIT UNTIL LOGIC TRUE

(W1)

PASSIVATED

(W2)

LOGIC DIRECT
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and events until it is satisfied. Logic can involve values of 
both discrete and continuous state variables.  In a detailed 
model, it is sometimes necessary to compute values of state 
variables prior to testing logic.   

A semi-continuous state approximates the continuous 
behavior of a detailed model of system operation.   State 
variables associated with this kind of state are updated 
repeatedly with a constant time step to model a process that 
varies continuously. In contrast, discrete time events occur 
at irregular time intervals. Combined discrete event and 
continuous processes often occur in hardware-in-the-loop 
simulations. A semi-continuous state is shown in figure 3. 

Figure 3: A Semi-Continuous State 
 

A semi-continuous state is indicated by square 
brackets around the state name inside the circle.  A detailed 
model that updates state variables is a part of the logic 
associated with the event following the state.  The logic 
decides when the continuous process ends. 

An idle state represents a period of time a subprocess 
is waiting for one or more other subprocesses to be 
completed before an assemble event can occur. In contrast, 
a wait state requires logic to be satisfied.  Some of these 
subprocesses may be duplicated into multiple process 
instances. An assemble event combines one or more 
subprocesses and process instances into a single 
subprocess. The idle state will be discussed further in the 
context of the assemble event.  

State variables represent data, knowledge facts used in 
inferencing, process control variables, entity position and 
velocity, and many other useful model attributes.  In 
general, they represent process conditions other than the 
discrete process states discussed above. 

 
3.2 Events  
 
Events signify changes in system state, and are represented 
by directed line segments connecting the states in a 

[S1]

LOGIC
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directed graph model (figure 4).  Near the center of the line 
segment is a pair of brackets �< >.�   
 

Figure 4: Events Shown as Directed Line Segments 
 
Below these brackets is the event name, a short description 
of the event.  To the left of the brackets is the �occurrence 
path� that connects the event to the prior state. To the right is 
the �action path� that connects the event to the following 
state. As discussed above, an event represents a change in 
one or more process instance dimensions of the system state 
vector. Event action implements state vector dimension 
changes, controls process flow, directly executes events in 
other sub-processes, and collects simulation report data. 

Figure 5 shows an exit event from a wait state.   The 
event has two alternate occurrence paths. Path 1 has logic 
specified and path 2 is a direct execution path from another 
event. An event may have alternate action paths as well.  

Figure 5: Exit Event from a Wait State 
 

Figure 6 shows an event having two action paths.  
Only one path can occur each time that the preceding event 
is executed.  ACTION1, associated with both paths, is 
executed first, then logic chooses the action to perform.  In 
the example shown, if LOGIC is true, action two is 
performed, otherwise action three occurs. 

Two parallel vertical lines to the right of the brackets 
�< >� indicate a split event (figure 7).  Action one, 
preceding both parallel paths, is performed first.  The sub-
process then splits into two parallel subprocesses, both 
action two and three being performed.  A split event 
models a context-sensitive transition where two FSMs have 
a synchronized start of operation, as discussed above, 
causing them to begin concurrent operation together. 
 Multiple process instances can occur two ways: (1) a 
split event creates multiple sub-processes and process 
instances as discussed above or (2) a generator process can 
create process instances and directly execute each process 
start event as shown in figure 11.  
 An assemble event (figure 8) has two parallel vertical 
lines preceding the brackets �< >.�  Assemble logic is 
specified to the left of the brackets next to the parallel 
lines.  The numbers below each occurrence path to the left 
of the parallel double lines are path numbers that define the 
path that has been completed. 

EVENT NAME

ACTION PATHOCCURENCE PATH
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Figure 6: An Event having Two Action Paths 
 

Figure 7: A Split Event 

Figure 8: An Assemble Event 
 
When a sub-process, process instance ends, assemble 

logic is tested.  The path number associated with that 
occurrence path determines that the process that has been 
completed.  The event �<5>� occurs only when the 
assemble logic is satisfied.  An example of assemble logic 
is (1 * 2 * 3).  The *  is a logical AND.  This means that 
sub-process paths one and two and three must be 
completed before these processes are assembled.  Another 
example logic is ((1 * 2) + 3) which means that sub-
process paths one and two or three must complete before 
these processes assemble since the + is a logical OR.   

When assemble event �<5>� occurs, three sub-process 
diagrams are terminated and a single sub-process diagram 
continues. What is represented here is that all process 
instances, created for each sub-process diagram involved in 
the assemble event, must be deleted before continuing.  In 
particular, assemble logic that includes a logical OR will 
definitely require process instances to be deleted, and this 
is very difficult for Petri nets to model because some 
process instances must be found and destroyed. However, 
the OpEMCSS Assemble Event block can model OR logic 
easily and automatically destroys the appropriate sub-
process, process instances. 

 

ACTIONLOGIC
5

4

DIRECT

I1

I2

I3

1

2

3  

ACTION1
5

LOGIC: ACTION2

LOGIC: ACTION3  

ACTION1
5

ACTION2

ACTION3  
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4 OPEMCSS LIBRARY BLOCKS 
 
The basic OpEMCSS blocks are organized by categories:  
 

1. Begin Event, End Event, and Evolutionary 
Algorithm blocks that define a system process 
instance (EXTEND calls these �runs�);  

2. Split Action and Assemble Event that define the 
begin and end of concurrent (parallel) processes;  

3. Global Reaction Time Event, Reaction Time 
Event, and Wait Until Event that model the time 
spent in a discrete state;  

4. Alternate Action, Classifier Event Action, 
Context-Sensitive Event Action, Event Action, 
Global Event Action, Initialize Event Action, 
Input Event Action, Local Event Action, Message 
Event Action, and Reward Event Action that 
perform event actions; and  

5. Executive Block that sequences events in 
simulated time and Context-Sensitive Priority that 
updates the priority of each process instance at 
each event. 

 
A brief summary of the OpEMCSS library blocks used in 
the part production model is provided next. For a more 
detailed evaluation, download the library from <http// 
ecs.fullerton.edu/~jclymer.>  
 
4.1 Category 1 
 
The Begin Event block generates an initial process instance 
item and initializes its attributes to start a simulation run. In 
EXTEND, attributes are of the form �AttributeName= 
NumericalValue� and are used to implement the OpEM 
model state variables discussed above. An Evolutionary 
Algorithm block can be the action of a begin event to 
search for optimal process control parameters. A Split 
Action block, that creates a set of sub-process, process 
instances, usually follows a Begin Event block and its 
initialization actions.  

Since each parallel process instance in the model uses 
the attributes initialized by the Begin Event block, these 
attributes can provide global communication among all 
process instances. An example is a resource counter R that 
is used to decide if a resource is available for a process 
instance. If a resource is taken, the resource counter is 
decremented globally to communicate this to all process 
instances. When a process instance is finished with the 
resource, the resource counter is incremented globally to 
communicate to all process instances that the resource is 
available. 

The End Event block deletes the final process instance 
item of a simulation run. This block can obtain parameter 
values from up to five blocks.  These values are 
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accumulated to produce an average value for each selected 
parameter based on a sample of simulation runs. The End 
Event block also sends the parameter values obtained from 
other blocks to each Evolutionary Algorithm block for 
computation of population member fitness that is used to 
control the search. 

 
4.2 Category 2 
 
The Split Action and Assemble Event blocks, working in 
pairs, allow sub-process diagrams and associated process 
instances at the same level in the system process to be 
synchronized according to a user supplied logic equation. 
Split Action and Assemble Event blocks allow a process 
instance to come into existence and operate concurrently 
with other process instances for a period of time, ceasing to 
exist when assemble logic is satisfied.   

In an object-oriented model of a system, variable 
numbers of objects come into existence, exist for a time, 
then go out of existence (Rumbaugh 1991). An OpEMCSS 
process diagram, including one to three split-assemble 
levels, is similar to an OMT model in that each OpEMCSS 
sub-process diagram can define a variable number of 
duplicated process instances as discussed above. This 
contrasts with basic timed Petri net models that require a 
diagram to be duplicated for each process instance.  

 
4.3 Category 3 
 
Each block in Category 3 models the time required for 
each sub-process process instance to perform a task or wait 
for a logical condition to be satisfied to continue. 

The Wait Until Event block can have its time duration 
determined by a logical equation. The wait until logic 
equation can be a function of up to eight process instance 
attributes, specified in the block dialog shown in figure 9, 
plus built in parameters to achieve pre-emptive, priority 
resource allocation and agent motion interaction events. 
Event actions allowed in the block are modifications of up 
to two global process instance item attributes using a �+=� 
operation. For example, when a shared resource is 
allocated to a process instance, the attribute R, representing 
the quantity of this resource, must be decremented. The 
operation R += -1 decrements R globally so all process 
instances that share this resource are notified. In this case, 
the += operation is equivalent to R= R-1. 

A process instance item arriving on the �Direct� input 
connector of the Wait Until Event block bypasses the logic 
equation and is sent directly to the output connector. Direct 
input allows a �passivated� wait event to be modeled as 
discussed above. Such a process waits until another process 
�wakes it up� with direct execution. 
10
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Figure 9: Wait Until Event Block Dialog 
 

The Reaction Time Event block has a Gamma 
distributed reaction time specified in the block dialog 
shown in figure 10. Event actions permitted are 
modifications of up to two global process instance item 
attributes, using the �+=� operation, and one local process 
instance item attribute based on an equation.  The global 
resource attribute R, discussed above, is incremented by 
this block when the resource is no longer needed. 
 

 
 

Figure 10:  Reaction Time Event Block Dialog 
 

For the Global Reaction Time Event block, reaction 
time is computed by an equation. The reaction time equation 
can be a function of GAMMADELAY, a Gamma distri-
buted random variable, plus up to four attributes. Up to two 
global attributes can be modified using a �+=� operation.  

The Global Reaction Time Event block works with the 
Wait Until Event block to achieve pre-emptive, priority 
resource allocation. Details of how to accomplish this are 
given in the �help� section of each block�s dialog. 

The Executive and Wait Until Event blocks work 
together to ensure that any time a global state variable is 
changed anywhere in the model, all wait logic is checked 
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again before time is advanced. This ensures that no 
improper wait time is accumulated. 

 
4.4 Category 4 
 
Blocks in this category perform an event action after a 
category 3 block is completed. As discussed above, an event 
represents a change in one or more process instance 
dimensions of the system state vector. A Reaction Time 
Event block, Global Reaction Time Event block, or Wait 
Until Event block implements a change in discrete state for a 
process instance. Event action blocks change attribute 
values, decide process flow, directly execute events in other 
sub-processes, and compute simulation report attributes.  

Each event block maintains a linked list, ordered by 
time, to store process instance items currently associated 
with the state represented by the block. When an event 
occurs, a process instance item is sent from an event block 
and passes through zero or more action blocks to the next 
event block. Event blocks have only a limited capability to 
perform event actions; action blocks expand the kinds of 
event actions that can be performed when an event occurs. 

Alternate Action blocks allow one of three alternate 
transition paths to be selected, after an event has occurred, 
based on a decision equation. The DECISION value can 
equal 1, 2, or 3, which specifies the top, middle, or bottom 
output connector of the block; respectively. The decision 
equation can be a function of up to eight attributes, 
specified in the block dialog. 

Classifier Event Action blocks each contain a forward 
chaining inference engine that is used to transform process 
instance attributes, for an item passing through the block, 
into other process instance attributes that represent rule 
actions. If several different actions are implied by the input 
process instance attributes (i.e., several rules are eligible to 
fire in a context), the best action is selected based on either 
the maximum BID value or a probability. The BID is a 
function of rule strength, specificity, and condition support 
such that a more specific rule has a higher BID. The rule 
selection probability is a function of rule strength and 
specificity such that a more specific rule has a higher 
probability of being selected to fire. Probability of rule 
selection is required for rule learning, but the maximum 
BID can be used once all rules have been determined. 

An Event Action block can modify two global process 
instance attributes, using the �+=� operation, and one local 
process instance item based on an equation. The equation 
can be a function of up to four attributes, specified in the 
block dialog, plus �RandomNum�, a uniformly distributed 
random number, and �CurrentTime.�   

A new process instance item can be created by an 
Event Action block and sent to an input connector of an 
Event Occurrence block placed before either a reaction 
time or wait until event block. This feature can represent a 
generator process that creates new process instance items 
1
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as a function of time. For example, the arrival of cut parts 
into the part milling sub-process during a period of time is 
modeled as shown in figure 11.  This feature can also allow 
one process instance to execute another process instance 
directly. For example, a �passivated� process can be 
�waked up� by direct execution as discussed for the Wait 
Until Event block. Direct execution of events makes many 
types of complex, context-sensitive transitions possible. 

A Global Event Action block can modify two global 
attributes based on an equation. Each global process instance 
attribute, having the proper process number, is modified by 
an attribute equation that can be a function of up to eight 
process attributes, specified in its dialog, plus 
�RandomNum�, a uniformly distributed random number, or 
�CurrentTime�. If process number in the dialog is zero, all 
system process instance items are modified. Otherwise, only 
process instance items with �Process�, an element of the 
process identifier, equal to process number are modified. If 
the �local� box is checked in the dialog, the process instance 
item passing through the block is also updated.   

The Reward Event Action block is used to compute a 
Classifier Event Action block reward payoff value based on 
an equation.  The reward payoff value, that is sent to all 
Classifier blocks via a message, is computed by a reward 
payoff equation that can be a function of up to eight process 
instance item attributes. The payoff attribute name, specified 
in the dialog, is also sent in the payoff message. Classifier 
blocks with the message attribute name equal to 
�PayoffAttributeName,� specified in the Classifier block  
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Learning Dialog, can accept the message.  A process  
number, specified in the dialog, is also sent in the payoff 
message.  If this process number is zero, the rest of the 
process identifier sent is ignored. Otherwise, the duplicate 
process numbers, included in the process identifier sent, 
must be correct for a decision to be rewarded. If a duplicate 
process number is zero or compares with the duplicate 
process number for a process decision, then that process 
instance decision can be rewarded. This allows a sequence 
of decisions for a process instance to be rewarded. 
 
4.5 Category 5 
 
An OpEMCSS Executive block sequences events in 
simulated time. A Context-Sensitive Priority Block 
computes a priority for each process instance item at each 
discrete time based on an equation and prints process 
identifier, discrete state, and state variable values for each 
process instance at the end of each discrete time. The 
Executive and Context-Sensitive Priority Block work 
together to print a state trace, if selected, at  each event in 
simulated time. 
 
4.6 Summary of OpEMCSS Block Categories 
 
An important feature of the OpEMCCS graphical simu-
lation language is that a sub-process diagram can describe 
one or more process instances without having to duplicate 
the sub-process diagram for each one.  This is especially  
 

 
 

Figure 11:  OpEMCSS Directed Graph Model of a Part Production System
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important when modeling systems where the number of 
process instances is variable in simulated time and changes 
as the model executes. For example, the number of 
concurrent part milling process instances or part drilling 
process instances varies throughout a simulation run.   
 
5 PART PRODUCTION MODEL  
 
The part production model, shown in figure 11, is an 
example of applying the OpEMCSS library to model a 
simple process.  Even for complex models, it is easy to 
place the blocks on the screen and connect them. Blocks 
are placed on the screen by clicking your mouse on a block 
name from the list opened from the EXTEND OpEMCSS 
library menu and dragging the icon to where you want it. 
When several blocks are on the screen, click your mouse 
on an output connector (little box with a black interior) and 
drag the mouse symbol to an input connector (little box 
with a white interior) of the next block.  Next, you double 
click your mouse on a block icon and the block dialog, 
such as shown in figures 9 and 10, appears. You set up the 
dialog for proper block action, click your mouse on �OK,� 
and the dialog closes.  A model like the part production 
model can be built in less than an hour. 

The part production model shown in figure 11 has four 
concurrent sub-process diagrams.  These four sub-
processes begin with a Split Action block that generates a 
process instance for the top and bottom process diagrams 
and ends with an Assemble Event block where logic 
synchronizes all process instances in the model when the 
last part has been completed for a simulation run.   

The top process diagram is a part cutting process that 
generates part process instances that are sent to the part 
milling sub-process.  Each part process instance can have 
attributes that distinguish it from other parts.  The top sub-
process diagram has a Global Reaction Time Event block 
that models the part cutting time for each part.  The 
Alternate Action block continues sending the part cutting 
process instance back for another reaction time until the 
last part has been generated.  When part generation is 
complete, the Alternate Action block sends the part cutting 
process instance to the Assemble Event block where it 
remains idle until synchronization occurs. 

The second sub-process is a part milling process that 
models a part waiting in the part milling queue until a 
workstation is available to mill the part. The part milling 
queue is modeled by a Wait Until Event block whose 
dialog is shown in figure 9. When a workstation becomes 
available, resource attribute R is decremented and the part 
milling process instance item is sent to a Reaction Time 
Event block. This block models the time it takes to mill the 
part. When milling is complete, the Reaction Time Event 
block increments resource attribute R, as shown in figure 
10, and the part process instance item is sent to an Event 
Action block. This block sends a part process instance item 
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to the part drilling sub-process, as shown in figure 11, and 
the part milling process instance item is passed to a Global 
Event Action block. This block sends the current workload 
attribute W1 to the bottom, manager sub-process diagram 
as a global attribute. When the last part has been milled, 
the part milling process instance is sent to the Assemble 
Event block to remain idle until synchronization occurs.  

The third sub-process is a part drilling process that 
models a part waiting in the part drilling queue until a work-
station is available to drill the part. The sub-process diagram 
is similar to the second sub-process discussed above.  For 
both the second and third sub-processes, the number of 
process instance items moving through the blocks varies 
throughout the simulation run.  This is an example of a sin-
gle sub-process diagram modeling multiple process instanc-
es. In a traditional Petri Net model, a sub-process diagram 
would be required for each concurrent process instance. 

The fourth sub-process is a manager process that 
periodically updates two control attributes, R1 and R2, that 
are used in the wait until logic of the part milling and 
drilling processes; respectively.  Figure 9 shows how R1 is 
used in the part milling process. Values for attributes R1 
and R2 are decided using a Classifier Event Action block 
that has workload attributes W1 and W2 as its input.      

A Classifier Event Action block contains a forward 
chaining inference engine that uses condition-action rules 
to transform condition attributes into action attributes. The 
condition attributes are obtained from a process instance 
item passing through the block.  After the inference 
algorithm is complete, action attributes are added to the 
process instance item passing through the block before the 
item is sent to the output connector.  These action attributes 
are used to control the system. 

The Classifier Event Action block also has an 
evolutionary rule induction capability. In the part production 
model, this block receives a payoff attribute from a Reward 
Event Action such that a sequence of decisions is rewarded 
when they result in a balanced workload. 

The rules that were discovered tend to decrease R1 
and increase R2 as W1 increases so that more workstations 
are made available for milling parts when needed by the 
part milling process. The rules tend to maintain a balanced 
work-flow and maximize the throughput of parts moving 
through the system.   

 
6 SUMMARY 
 
A graphical discrete event simulation library is described 
that is based on interacting concurrent processes. This 
library is called Operational Evaluation Modeling for 
Context-Sensitive Systems (OpEMCSS).  CSS, as dis-
cussed in this paper, is a systems theory, based on finite 
state machines, that can assist a manufacturing or produc-
tion manager in understanding, evaluating, and optimizing 
production work flow, represented as communicating 
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concurrent (parallel) processes. A Finite State Machine 
(FSM) is defined as a set of states and a set of transition 
rules that describe transitions between these states. It was 
shown that if transition rules describe transitions for 
several FSMs working together, then these rules can 
describe context-sensitive process interactions. OpEM is 
described as a graphical simulation language that can 
model several FSMs working together and, thus, context-
sensitive process interactions. A simple production 
problem is discussed that is an example of applying the 
Classifier Event Action block to discover optimal rules to 
manage the workflow for a part production process.   
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