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ABSTRACT  
 
The work described in this paper attempts to validate the 
implicit assumption in traditional flow shop scheduling 
research that there is a buffer of infinite capacity between 
any two adjacent machines. The modified NEH (Nawaz, 
Encore and Ham) algorithm is used to generate an initial 
permutation schedule which is then improved by tabu 
search. For any given sequence, a limited equal buffer size 
is considered in computing job completion times. The 
scheduling objective is to minimize mean job flowtime. 
Computational results and analysis are presented. Through 
these simulation experiments, it was found that the 
improvement by tabu search can be significant and there is 
no need for more than 4 buffer spaces between any two 
adjacent machines. Future research directions are also 
discussed. 
 
1 INTRODUCTION 
 
This paper addresses the flow shop scheduling problem 
described as follows. A number of jobs are to be processed 
on a number of machines. Each job must go through all the 
machines in exactly the same order. Each machine can 
process at most one job at any point in time, and each job 
may be processed on at most one machine at any time. All 
jobs are ready for processing at time zero. There are limited 
buffer spaces between machines but there is unlimited buffer 
capacity before the first machine. The objective is to 
schedule the given jobs on the given machines such that the 
mean job flowtime is minimized. It is well known that the 
mean flowtime flowshop scheduling problem is NP-Hard 
even if there are only two machines with infinite buffer 
capacity (Garey, Johnson and Sethi 1976). 
 Most research on flow shop scheduling assumes 
unlimited buffer capacity (e.g. Applegate and Cook 1991, 
Balas 1969, Carlier and Pinson 1989, Ho and Chang 1995, 
Morton and Pentico 1993, Wang, Chu and Proth 1997). 
Some authors have considered finite buffers between 
machines, and machine failures (Conway et al. 1988, 
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Hillier and So 1996, Vouros and Papadopoulos 1998) and 
concluded that the buffer capacity affects shop 
performance but the performance improvement diminishes 
rapidly with increased buffer size. Altiok (1985) developed 
a Markov chain approach to obtain certain performance 
measures, for production flow lines with finite buffer 
storage between unreliable machines. Bloat (1997) 
implemented a dynamic program to schedule jobs to 
minimize total blocking time for an automated 
manufacturing system with buffer in a paced line at a fixed 
rate. Van Deman and Baker (1973) studied minimizing 
mean flowtime in the flow shop with no intermediate 
queues. Zavanella, Agliari and Diligenti (1992) analyzed 
the buffer saturation phenomenon under various priority 
rules. Modern search methods such as tabu search and 
simulated annealing to find good heuristic solutions have 
also been studied (e.g. Ishibuchi, Misaki and Tanaka 1995, 
Nowicki and Smutnicki 1996). 
 Most research involving limited buffers used the 
Markov chain approach and emphasized developing the 
relationship between buffer capacity and processing time 
variation, or identifying the optimal buffer size and 
allocation, in an attempt to maximize shop throughput 
which is equivalent to minimizing makespan. On the other 
hand, the traditional scheduling research ignores the buffer 
consideration all together (by implicitly assuming infinite 
buffer capacity). Due to the computational complexity of 
the flowshop scheduling problem, simple heuristics 
probably have been the only widely used scheduling 
methods in practice. To the best of our knowledge, 
however, the impact of limited buffers on the performances 
of traditional simple heuristics has not been addressed in 
the literature. This paper attempts to make a step toward 
addressing this issue. 
 There is no doubt that finite buffer capacity will affect 
the performances of simple heuristics. But, how significant 
will the impact be? Does there exist a reasonable maximum 
buffer size beyond which performance improvement will 
completely diminish? How much can tabu search improve 
the heuristic solutions? This paper attempts to answer these 
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questions. The rest of the paper is organized as follows. 
Section 2 formally states the underlying flowshop 
scheduling problem. Section 3 presents the NEH heuristics 
used in this study. Tabu search is described in Section 4. 
The experimental design is given in Section 5. Section 6 
presents the simulation results and analysis. Section 7 
concludes the paper. 
 
2 PROBLEM STATEMENT 
 
In a typical static flow shop, a set of n jobs is 
simultaneously available for being processed on a set of m 
machines. Without loss of generality, assume that all jobs 
are available for processing at time zero. Each job j, j ∈ J = 
{1, 2, �, n}, passes through the machines 1, 2, �, m in 
that order and requires an uninterrupted processing time pjk 
on machine k, k = 1, 2, �, m. Each machine may process 
the n jobs in any order. If all machines process the n jobs in 
exactly the same order, the schedule is called a permutation 
schedule. In this paper, we will focus on permutation 
schedules. The scheduling objective is to minimize the 
makespan. It is worth noticing that in this case, a job 
sequence uniquely determines a permutation schedule 
since unforced machine idleness is undesirable. 
 It is assumed that a job may be processed by at most 
one machine and a machine may process at most one job at 
any point of time. If a job is completed on machine k and 
the buffer at machine k+1 is full, the job cannot be 
unloaded and must stay on machine k until there is 
available space in the buffer at machine k+1. Let [i] denote 
the index of the i�th job in a schedule. Then, in case of 
infinite buffer capacity, job [i] can not start on machine k 
before it is completed on machine k-1, or before job [i-1] is 
completed on machine k. In case of finite buffer capacity, 
we let bk denote the buffer size at machine k. Then, the 
start of job [i] on machine k may also be blocked if there 
are already bk+1 jobs waiting for machine k+1. 
 Let Cjk denote the completion time of job j on machine 
k. Then, C[i],k is the completion time of the [i]th job on 
machine k. If the buffer capacity is limited, C[i]k can be 
computed as follows. 
 

C[i],k = p[i],k +max{C[i],k-1, 1],1[ 1 +−− + kbi k
C , C[i-1], k}. (1) 

 
If the buffer capacity is infinite, the above formula is 

reduced to 
 

C[i], k = p[i], k + max{C[i], k-1, C[i-1], k},    (2) 
 
where i = 2, 3, �, n, and  k = 2, 3, �,  m. 
 
 The mean flwtime F  is equal to (1/n)∑j C[j], m. Our 
goal is to find a permutation schedule that minimizes F . 
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3 HEURISTIC IMPLEMENTATION 
 
As mensioned earlier, many simple heuristics have been 
developed for the flowshop scheduling problem. The NEH 
algorithm of Nawaz, Encore and Ham (1988) appears to be 
the best heuristic for flowshops in minimizing makespan 
(Talliard, 1990) and mean flowtime (Ho, 1993). We use 
the modified version of NEH algorithm (Woo and Yim 
1998) which is described as follows. 
 
3.1 Modified NEH Algorithm 
 
Step 1. Arrange the jobs in descending order of the sum 

of processing times. 
Step 2. Set k = 2. Pick the first two jobs from the 

rearranged jobs list and schedule them in order to 
minimize the mean flowtime as if there are only 
two jobs. Set the better one as the current solution. 

Step 3. Increment k by 1. Generate k candidate sequences 
by inserting the first job in the remaining job list 
into each slot of the current solution. Among these 
candidates, select the best one with the least 
partial mean flowtime. Update the selected partial 
solution as the new current solution. 

Step 4. If k = n, a schedule (the current solution) has been 
found and stop. Otherwise, go to step 3. 

 
 For any given sequence and given buffer size, job 
completion times are computed by (1). 
 
4 TABU SEARCH 
 
Tabu search has been used widely in combinatorial 
optimization (Glover and Laguna 1997). The basic idea is 
to slightly alter a known (current) solution in a certain 
manner (called neighborhood structure) and take the best 
alteration as the new current solution. Such altered 
solutions are called neighbors of the current solution. An 
operation that yields a neighbor is called a move. To avoid 
being trapped at a local optima, the best neighbor that is 
worse than the current solution is allowed to become the 
new current solution. To avoid cycling, certain moves are 
marked as tabu. A tabu move may be allowed if some 
aspiration criterion is satisfied. This procedure continues 
until some criterion is met. 
 The initial current solution is obtained by the modified 
NEH algorithm. The neighborhood structure considered is 
the general pairwise interchange (i.e., interchanging jobs i 
and j, for all i and all j > i). In each iteration, the entire 
neighborhood is searched. Tabu tenure is set to be 7. We 
used the simple aspiration criterion: A tabu move is 
overridden if it leads to a schedule that is better than the 
current best. 
 The tabu search stops after a maximum number of 
iterations. Our preliminary runs indicated that tabu search 
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almost does not find better solutions after around 70 
iterations. Therefore, we have set the maximum number of 
iterations to be 100. That is, tabu search will terminate 
after 100 iterations. 
 
5 EXPERIMENTIAL DESIGN 
 
In this study we considered 5, 10 and 20 machine cases 
with 20, 50 and 100 jobs. The generation of processing 
times is similar to that of Thaillard (1993). In particular, 
the processing time of each job on each machine follows 
the uniform distribution U[1, 99]. This represents a 
balanced flow shop and gives an average job processing 
time of about 50 on each machine. 
 Since buffers act as cushions for workload/traffic flow 
variability, which may result from the inconsistency 
processing capabilities of machines, the failure or 
maintenance of machines, or unbalanced job arrivals and 
fluctuations in processing times, buffers have been 
employed in most manufacturing systems to enhance their 
productivity and efficiency. The relevant direct and 
indirect production costs will increase when the buffer 
capacities grow. And a larger buffer storage raises the 
throughput of the system at the expense of more work in 
process (WIP) inventory (So, 1990). However, low ratios 
of WIP to throughput are necessary to maintain a 
competitive production (Conway, 1988). Thus there have 
been necessities and importance to analyze buffer 
resources to obtain an optimal buffer capacity for each 
machine under certain constraints. In this paper we 
consider the equal buffer capacity case. That is, the buffer 
capacity between any two adjacent machines is the same. 6 
buffer sizes (b = 0, 1, 2, 3, 4, 5, 7) are tested. For each 
combination of n and m, 10 test problems are generated. 
For each test problem, all 7 buffer sizes are considered. 
This leads to a total of 630 test problem instances. 
 
6 COMPUTATIONAL RESULTS 
 
The computational results are presented in table 1, where 
the last column is the improvement of tabu search over the 
NEH solutions. That is, Imp. = 100×(NEH-tabu)/NEH %. 

From Tables 1-3, we can see that tabu search improves 
the heuristic solutions by the NEH algorithm by 2% to over 
18%. As buffer size increases or as the number of 
machines increases, tabu search improvement decreases. 
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Table 1:  Mean Flowtime for n = 20 Jobs 
m b   NEH  tabu Imp. (%) 

0 876.76 779.57 11.09 
1 763.76 714.91 6.40 
2 755.65 707.92 6.32 
3 755.65 707.92 6.32 
4 755.65 707.92 6.32 
5 755.65 707.92 6.32 

 
 
 
5 

6 755.65 707.92 6.32 

0 1191.1 1115.91 6.31 
1 1092.45 1055.57 3.38 
2 1083.68 1050.23 3.09 
3 1083.68 1050.23 3.09 
4 1083.68 1050.23 3.09 
5 1083.68 1050.23 3.09 

 
 
 
10 

6 1083.68 1050.23 3.09 

0 1838.37 1734.17 5.67 
1 1758.31 1689.32 3.92 
2 1755.92 1683.46 4.13 
3 1755.92 1683.46 4.13 
4 1755.92 1683.46 4.13 
5 1755.92 1683.46 4.13 

 
 
 
20 

6 1755.92 1683.46 4.13 

Table 2:  Mean Flowtime for n = 50 Jobs 
m b   NEH  tabu Imp. (%) 

0 1919.8 1622.63 15.48 
1 1599.94 1429.5 10.65 
2 1533.33 1419.14 7.45 
3 1528.17 1410.68 7.69 
4 1528.17 1410.68 7.69 
5 1528.17 1410.68 7.69 

 
 
 
5 

6 1528.17 1410.68 7.69 

0 2336.84 2077.12 11.11 
1 1981.85 1867.94 5.75 
2 1930.17 1841.26 4.61 
3 1926.07 1839.48 4.50 
4 1925.97 1833.98 4.78 
5 1925.97 1833.98 4.78 

 
 
 
10 

6 1925.97 1833.98 4.78 

0 3020.31 2787.14 7.72 
1 2699.94 2582.32 4.36 
2 2666.95 2562.45 3.92 
3 2666.95 2556.41 4.14 
4 2666.95 2556.41 4.14 
5 2666.95 2556.41 4.14 

 
 
 
20 

6 2666.95 2556.41 4.14 
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Table 3:  Mean Flowtime for n = 100 Jobs 
m b   NEH  tabu Imp. (%) 

0 3634.71 2973.67 18.19 
1 2975.76 2602.85 12.53 
2 2801.69 2534.06 9.55 
3 2754.01 2525.13 8.31 
4 2745.64 2522.02 8.14 
5 2745.64 2522.02 8.14 

 
 
 
5 

6 2745.64 2522.02 8.14 

0 4283.15 3777.21 11.81 
1 3445.42 3194.45 7.28 
2 3249.89 3079.74 5.24 
3 3203.17 3054.37 4.65 
4 3192.54 3047.31 4.55 
5 3189.76 3047.31 4.47 

 
 
 
10 

6 3189.76 3047.31 4.47 

0 5017.18 4634.34 7.63 
1 4237.59 4063.88 4.10 
2 4096.73 4005.65 2.22 
3 4072.88 4003.91 1.69 
4 4070.59 3988.86 2.01 
5 4070.59 3988.86 2.01 

 
 
 
20 

6 4070.59 3988.86 2.01 
 
 It can also be seen that buffer capacity does affect the 
mean flowtime performance, but the effect diminishes very 
rapidly as buffer size increases. This can be seen from table 
4. Note that the percentage improvement by one buffer unit 
increase is computed by [ )(bF - )1( +bF ]/ )(bF , where 

)(bF  is the mean flowtime when the buffer size is b (= 0, 
1, 2, 3, 4, 5). The mean flowtime is significantly reduced 
when the buffer size is increased from zero to one. The 
buffer effect dramatically decreases after that. As a matter 
of fact, for all the problem instances tested, there is no need 
for more than 4 buffer spaces. On the other hand, the buffer 
effect increases as the number of jobs increases. 
 
Table 4: Mean Flowtime Improvement (%) by One Buffer 
Unit Increase 

m n 0 →1 1→2 2→3 3→4 4→5 5→6 
20 8.29 0.98 0 0 0 0 
50 11.90 0.72 0.60 0 0 0 

 
5 

100 12.47 2.64 0.35 0.12 0 0 

20 5.41 0.51 0 0 0 0 
50 10.07 1.43 0.10 0.30 0 0 

 
10 

100 15.43 3.59 0.82 0.23 0 0 

20 2.59 0.35 0 0 0 0 
50 7.35 0.77 0.24 0 0 0 

 
20 

100 12.31 1.43 0.04 0.38 0 0 
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7 CONCLUSION REMARKS 
 
The work described in this paper attempted to validate the 
implicit assumption in traditional flow shop scheduling 
research that there is a buffer of infinite capacity between 
any two adjacent machines. The modified NEH algorithm is 
used to generate an initial permutation schedule which is 
then improved by tabu search. For any given sequence, a 
limited equal buffer size is considered computing job 
completion times. The scheduling objective is to minimize 
mean job flowtime. 
 It is found that the impact of limited buffers on the 
performance of traditional heuristics for static flow shop 
scheduling is significant only for small buffer sizes and 
diminishes rapidly as buffer size increases. This indicates 
that buffer capacity can be treated as infinite once the buffer 
size reaches a certain critical size. Our simulation results 
show that this critical buffer size for up to 100 jobs and 20 
machines is no more than 4. Using larger buffer sizes will 
not improve shop performance and should be discouraged 
since additional costs may incur. The buffer impact is more 
significant when there are more jobs. Tabu search can 
improve the NEH heuristic solutions by 2% to 18%. As 
buffer size increases or as the number of machines increases, 
tabu search improvement decreases. 
 A future research area is to study the impact of limited 
buffers on commonly used dispatching rules in flow shop 
scheduling with other processing time distributions, with 
other scheduling objectives such as mean tardiness, and with 
machine breakdowns. Another area is to extend this research 
to other shop environments such as unbalanced flow shop, 
dynamic flow shops and job shops.  
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