
Proceedings of the 2000 Winter Simulation Conference
J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, eds.

LANGUAGE BASED SIMULATION MODELS AS MANAGEMENT
TOOLS FOR ASSEMBLY LINES

Thomas Schulze

University of Magdeburg
School of Computer Science

PSF 4120
39102 Magdeburg, GERMANY

Marco Schumann

Fraunhofer IFF
Planning and Visualization Techniques

Sandtorstrasse 22
39106 Magdeburg, GERMANY

Gordon D. Rehn

Process Engineering
Deere & Company

One John Deere Place
Moline, IL 61265, U.S.A.

ABSTRACT

This paper demonstrates that despite the trend to Point &
Click environments, the traditional approach of using
general-purpose simulation languages is still eligible. The
authors share their experiences gained from building a
complex simulation using the language SLXTM. On the
basis of examples from the projects, the efficient modeling
features of the SLX languages are highlighted.

1 INTRODUCTION

Simulation models for operational use in manufacturing
systems are becoming increasingly important. Typically,
this type of models is developed to support the
management of manufacturing systems. Therefore, we call
this model category Management Simulation Models
(MSM). At the beginning, we will explain the uniqueness
of this category and we will answer the question: Why it is
necessary to develop such models? Following, we specify
requirements for simulation systems to fulfill the specific
circumstances for MSM. Then, we describe an assembly
line example to present some specific problems that have
to been modeled. Finally, we illustrate solutions for
selective problems.

2 MOTIVATION

Manufacturing and material handling systems are the best
known applications of simulation models. See Law and
McConas (1999) and Rohrer (1998) for a more detailed
13

description. Simulation models for manufacturing systems
can be divided into three general categories: design of
systems, management of systems and training the staff in
systems. In recent years most simulation projects are in the
first category.

Currently a new trend can be observed. An increasing
number of simulation models will be used in the day-to-
day operation of manufacturing facilities. These models
help manufacturers to evaluate the system capacity for new
orders, for changes in the operator team and for changes in
operating conditions. They support the management of
manufacturing systems for analysis of throughput and
detection of bottlenecks. Management can evaluate
operating decisions relative to the performance of the
system. In general the aim of models in this category is to
support the management. Management wants to gain
experiences from the future. We call this model category
Management Simulation Models (MSM).

MSM�s can be exploited both in the design phase and
in the operating phase of a factory. Once the time is
invested to build the original model for the design,
continued use of the model as a MSM maximizes the value
of that investment. Also, involving operating people in the
training of the MSM improves the system understanding
and will increase the chances that the simulation results
will be used.

Do new requirements, new needs exist for
Management Simulation Models relative to the classic
manufacturing simulation models? We will answer yes and
identify two differences. First the MSM require greater
level of detail than models for manufacturing system
93

Schulze, Schumann, and Rehn
design. For example, complex control mechanisms and
strategies may have to be implemented. Second, the MSM
must be initialized with the state of the real system. The
simulation can start from a null and idle status and runs
until it reaches the current state of the real system, or the
model can be initialized directly with the state of the real
system.

Law and McConas (1999) identify two types of
simulation packages for manufacturing simulation:
general-purpose simulation packages like ARENA,
AweSim, MODSIM III, Simple++ and SLX. The other
type is application oriented simulation packages like
AutoMod, AutoSched, ProModel and WITNESS. The
advantages and disadvantages of both categories have often
been discussed in the past. Whereas users of general
purpose simulation packages value the flexibility of their
modeling package, users of specialized simulation package
often argue that they can very rapidly construct their
models by taking advantage of already predefined model
elements of domain specific libraries. On the other hand,
the advantage of using a library of model elements can
easily turn into a disadvantage when a model element does
not support a desired behavior. The flexibility of a
general-purpose package can create a substantial amount of
work when even the simplest model element needs to be
developed from scratch. The choice of a package from one
of these categories seems often to be a matter of personal
preference, modeling skill, and simulation experience.

We will contribute to the discussion by presenting our
point of view focused on the area of MSM. When
predefined model elements can not attain the desired level
of abstraction, then the elements have to be adapted or new
ones have to be created. It is easy to use parameters for
changing attribute values but difficult to adapt complex
control and decision strategies. Management simulation
tools require a high level of detail and the needed control
strategies can not often build up on default strategies. The
boundaries of adapted or updated strategies have been
reached very quickly.

An alternate for MSM is the use of general simulation
packages. This software type can be subdivided into
language and graphical oriented packages. We prefer and
recommend the use of language oriented packages. One
reason is the modeling of complex control and decision
strategies. These strategies can be modeled better in
language constructs than in graphical description.

In the next section, we describe the derived
requirements for simulation languages used for
development and application of MSM.

3 REQUIREMENTS FOR SIMULATION

LANGUAGES AND MODELS

Simulation languages in general offer services to the
following subtasks in simulation models: define, create and
13

destroy simulation objects; data manipulation; time
advance and stochastic treatment. At first we will analyze
the necessity of these subtasks for using in the
development process of MSM. In the second part we will
point out which general services of the simulation models
would be useful for applications.

3.1 Requirements during the Developing Process

3.1.1 Create and Destroy Simulation Objects

The simulation language must offer the use and the
creation and the destruction of different types of simulation
objects. The types differ in their abstraction level.
 The lowest level covers well known simple data types
(integer, float and string) and complex data types (arrays,
records and objects with different attributes). This level is
necessary for MSM. The next abstraction level includes
objects that can be moved through the model. These
objects are often called entities. This level must be
available for MSM. The following abstraction level span
resource-oriented objects like machines, transporters and
operators. This level has not been available because
implemented level of detail inside these objects is often too
low for MSM users.

3.1.2 Data Manipulation

A high level of detail requires a lot of data to describe the
system-state. Every change of the system must be reflected
in the related data structures. Simulation languages have to
offer effective statistic methods for reading and writing
data, updating data and dynamic methods for data
manipulation like sorting and grouping. A large part of
written lines in MSM, often about 80 %, are related to data
manipulation. Effective methods must be available.

3.1.3 Time Advance

Time advance in simulation models can be classified into
time-delays, condition-delays and dormant-delays
(Schriber and Brunner 1996). Condition-delays are the
most used form in MSM. This class is important for the
description of detailed control and decision strategies and
we will discuss only this kind.
 Simulation languages offer two different possibilities
for modeling such condition delays. The first possibility is
the automatic monitoring of selected data by the simulation
system. Examples in the GPSS-language are the blocks
TEST and GATE and in the SIMAN-language is the
SCAN-block. The other possibility is the user-written
monitoring. The user decides when the condition will be
satisfied. The SIGNAL- and WAIT-Blocks are examples in
the SIMAN-language. The automatic monitoring will be
preferred for clear and well-structured models. The
94

Schulze, Schumann, and Rehn
implementation of automatic monitoring differs in the
simulation language world. (Schriber and Brunner 1999).
Multiple execution of complex condition-delays can lead to
an increasing computing time (Schulze and Preuß 1997).
Effective implementation, like the use of control-variables
in SLX, should be available for fast runs of MSM.

3.1.4 Stochastic Handling

Stochastic features play a negligible role in MSM. With an
increasing level of detail and decreasing time horizon of
model the relevancy for stochastic features becomes less
important.

3.2 General Services for Applications

The developed simulation models should be characterized
by following services:

3.2.1 User-Friendly Support for

Input and Output Data

The user of MSM want to modify the input data in their
known environment. Spreadsheets and databases are well
known and used features for input and output data.
Simulation models must be offer interoperability to other
software systems.

3.2.2 Animation

Animation of the manufacturing processes is not necessary
for every application. In many cases, however, it is very
helpful for the management to explain new situations in the
manufacturing process using an animation and depict how
problems can be solved.

3.2.3 Intranet Environment

This is a look into the future. It would be desirable to use
web-based architectures for the application of MSM. The
simulation model is located on an Intranet-server. All
advantages of client-server architectures could be used in
this case. The manager on the workplace would not be
stressed with license, security-key or maintaining problems.

4 DESCRIPTION OF THE

ASSEMBLY-LINE EXAMPLE

Speed of model development is one of the often
emphasized advantages of the �Point and Click� simulation
development environments. Users of such environments
can easily click different kinds of predefined resources into
his/her model. Typically, resources can be configured with
an extensive set of parameters, such as input/output buffer
size, loading time, processing time and many more. In the
13

case of factory simulation, most tools allow to connect
resources by edges denoting the direction of material flow.
Let�s consider the simple example of an assembly line
where a product has to pass all stations in a sequential
order. Clicking in, parameterizing, and connecting
resources can be accomplished in a matter of a few minutes
and the simulation model is ready to run. Figure 1:
SEQARABIC shows a screen shot of a Simple++
simulation model. Even a beginner would probably be
able to accomplish such a model in less than five minutes.

Figure 1: Screenshot from Simple++

However, this kind of examples is rather academic in

nature. Most scenarios will require a modification of the
standard model elements. Sooner or later one will reach a
point where model elements need to be extended to match
a certain application. This is where the power of a
modeling language comes into play.

Now, let�s consider a model of assembly stations that
involves a couple more realistic constraints. How fast can
one still develop the model using predefined model
elements? The assembly line is characterized by the
following facts:

• The assembly stations are connected with a

continuously moving conveyor. The speed of the
conveyor is automatically adjusted to the desired
number of products to be produced.

• Processing time at each assembly station varies
depending on the options of the manufactured
product. In order to compensate for very time-
consuming tasks, some tasks may interfere with
tasks to be executed at the next station, i.e. the
product is already moving to a certain extend into
the next station.

• Some stations, however, require the corresponding
tasks to be completely finished before moving into
the next station. This is due to special equipment
needed at these stations.

• If delays accumulate and the product moves into
the next station too far, the conveyor needs to be
stopped until all work of the previous stations is
finished.
95

Schulze, Schumann, and Rehn
• Work can only be carried out when a worker is
available. Each task requires a corresponding
qualification.

• In case there are no new tasks to do for a worker,
he/she will assist one of his/her co-workers and
therefore shorten the process time through team-
work.

• After a break, each worker resumes where he/she
left off. Jobs not being finished at the end of a
shift are carried over into the next shift which can
be composed of a different number workers with a
different combination of qualifications.

• Shifts are comprised of four types of segments.
They start with a start-up segment followed by a
productive (work) segment and end with a clean-
up segment. The work segment is further divided
by inserting break segment of different length.
Depending on their station workers can have their
breaks at different times.

5 DETAILED PROBLEM SOLVING

In this section, we choose a few of the above problems and
demonstrate their implementation. Of course, we do not
claim that these problems can only be solved with the
simulation system we selected. Most likely, they can be
implemented using any commercial manufacturing
simulation system.

From our point of view, however, there are vast
differences between the simulation systems with regard to
how easy it is for the simulation developer to step down one
abstraction layer if the pre-defined model elements do not
match the specific requirements. Basically, all simulation
systems provide this possibility. ARENA, for instance
allows use of different panels and thereby allows program-
ming at the SIMAN abstraction level. If a problem still
cannot be solved at SIMAN level, almost unlimited
flexibility is gained by including C code into the simulation.

No doubt, any kind of problem can be accomplished in
other simulation systems. The only question is how much
effort one needs to put in creating the simulation model.

The authors think that the simulation system SLX
provides a very efficient approach. Like other systems,
SLX allows for programming at different abstraction
layers. The advantage is, however, that there is no
paradigm shift when changing between these layers since
all of them are programmed using the same language.

The remainder of this chapter will give insight to a few
implementation features in SLX language.

5.1 Controlling of the Material Flow

In our model, the material flow is simulated using the
object classes for a conveyor, assembly stations, carts, and
units (the actual product). Whereas the conveyor and the
13

carts are active objects, assembly stations and units are
implemented as passive objects.

The conveyor continuously moves the carts until it
detects an exceptional condition that cause the conveyor to
stop. The carts monitor the current position on the conveyor
and generate new task orders when they enter the next
assembly station. Once a new task order is issued, workers
check with their qualification and start working on a task
accordingly.

All these model elements depend on each other and
need to be coordinated. Therefore, powerful mechanisms of
expressing conditions are needed. In a computer simulation,
model elements often have to wait for a condition that will
be fulfilled at a currently unknown time in the future.

The above example of an action property was taken
from the conveyor code and gives an example for a
conditional wait. Execution of the code is delayed until the
condition becomes true. The variable forming the
condition can be modified by an external event. The key
word control informs SLX to observe the value of the
variable WorkPeriod. In case of changes, SLX
automatically reevaluates the condition in the wait until
statement and resumes the movement of the corresponding
puck accordingly. The wait until statement is one of
SLX�s most powerful statements.

5.2 Controlling of Workers

In our simulation, workers are modeled as active objects
that can have four different states: passive, available,
working and interrupted. Figure 2 illustrates possible
transitions between these states.

Each worker is available for only one shift a day. At
off-shift times, a worker remains in the state �passive�.
When the corresponding shift begins, workers become
�available�. An available worker starts working in case
there are pending tasks that match his/her qualification. If
there is no more work to do, the worker returns back to the
available state. While a worker is busy doing a task, he/she
might be interrupted by a break. At the end of a break the
worker resumes where the task was interrupted.

It is not the intention to present each transition in
detail. Instead, we would like to point out a few key
feature of the SLX kernel language.

interrupted working

availablepassive

Figure 2: Transition between Worker States
96

Schulze, Schumann, and Rehn
Workers are modeled as active elements. When a
worker starts to work on a task, the time needed to
accomplish that task is calculated and a scheduled time
advance is issued. The actual time needed for a task,
however, depends also on the shift schedule (break times)
and on the availability of other workers who may cut down
the time for a task. Especially the availability of additional
workers is difficult to determine in advance. Therefore,
flexible mechanisms for rescheduling are essential. In the
remainder of this section, we will present two approaches
how rescheduling can be describe in the SLX language.

The first approach uses the interrupt / resume statement
pair. At the beginning of a break, the corresponding
scheduled puck for the worker is interrupted by the shift
control. SLX automatically stores the amount of time left
until the puck was originally scheduled. At the end of the
break, the shift control resumes the worker�s puck. The
previously stored remaining time is added to the current
clock time and the puck is therefore rescheduled. Figure 3
illustrates this idea.

Time
Axis

Worker�s
source code

Shift Control
source code

advance 50;

interrupt;

resume;
advance 10;

0

20

30

60
Figure 3: Interrupt and Resume for Controlling of Workers

At time 0, the worker starts working on a task that takes
50 time units to be completed. After 20 time units, a break
for 10 time units occurs. The worker�s puck is interrupted at
time 30 and resumed at time 40 by the shift control. The
time for the task�s completion will therefore be postponed to
time 60.

A second approach for rescheduling pucks is the
reschedule statement. Whereas the interrupt/resume
combination is useful when the amount of time spent for a
certain task remains unchanged, the reschedule statement
can be used in case the time spent on a task needs to be
modified. This, for example, occurs when a worker receives
assistance from a co-worker.

Assuming the above example, the worker is assisted by
a co-worker beginning at time 20. Both workers are able to
finish the remaining work in the 2/3 of the time. In the
original situation, there would be work for another 30 time
units. Having assistance cuts the remaining time down to 20
13

time units and both workers are now finished at time 40.
This is depicted in Figure 4.

Time
Axis

First
Worker

Second
Worker

advance 50;

reschedule;
advance 20;

0

20

40

50

Figure 4: Rescheduling of a Worker�s Puck

5.3 Shift Scheduling

Productive times of the workers are defined by the shift
schedule. There can be up to three shifts a day. As
mentioned above, in our model a shift is comprised of four
different types of segments. At the beginning and the end
of each segment, a corresponding procedure will be
activated that describes the actions to be taken in response
of that event.

A sequence of segments beginning with a start-up
segment and ending with a clean-up segment is called a
module. Since not all workers in a factory have to follow
the same schedule, there may be parallel modules within a
shift. Each worker is assigned to one shift and one module
within that shift.

When designing a simulation the author always has to
decide whether to implement a certain class as an active or
passive object. Only active objects are able to advance in
time, e.g. experience scheduled or state based delays.
Although it may seem natural to describe an object�s
behavior as active, too many active objects can become an
obstacle. In case of errors, a simulation run with many
active objects is difficult to debug. Also, the question of
how to handle simultaneous events is more complex with a
large number of active objects.

At first glance, one might suggest implementing the
shift schedule using active objects and create an instance
for each module within a shift since several modules exist
in parallel but progress in different time steps.

Here, SLX provides an innovative approach of
expressing this type of parallelism (Henriksen 1996). SLX
uses pucks to keep track of active objects. When an active
object is instantiated a corresponding puck is created at the
same time and points at the first line of executable code for
that object.
97

Schulze, Schumann, and Rehn
In our model, only one active object is employed for
the shift schedule. Parallel modules are expressed by using
a mechanism that is called internal parallelism, which is
executed through a fork statement:

fork
{
 offspring actions
}
parent
{
 parent action

}

Execution of the fork statement creates an additional
puck for the currently active object. The newly created
puck is placed in the active puck list, poised to execute the
offspring action clause of the fork statement. The parent
puck executes the optional parent action clause.

Applied to the shift schedule this mechanism can be
utilized as follows: Actions to be taken at the beginning of
a segment are executed before the fork statement. Then,
the fork statement is issued. The offspring puck advances
to the segment�s end, executes the segment�s end actions
and terminates. �In parallel�, the parent puck advances to
the next start time of a segment from any module and the
same procedure starts over. In order to assure that the final
actions of the previous segment are always executed before
the next segment�s start actions, the priority of the
offspring puck is raised. Therefore, at any given time,
pucks poised for a segment�s end action are considered
before pucks poised for a segment start action.

The corresponding section of SLX code is shown in
Figure 5. Using internal parallelism provides an efficient
approach of modeling active objects and helps to limit the
number of object instances. The fork statement only
creates a new puck. All offspring pucks operate on the
same set of data as the parent puck does.
13

5.4 Statistics and Outputs

Collecting, preparing and presenting of simulation data is
an essential task in every simulation model. Three
challenges from our simulation will be pointed out:
statistics for different time periods, flexible management
for statistical data and calculating not-standard parameters
for queue statistics.

5.4.1 Statistics for different Time Periods

Creation of statistics for different time periods is a typical
task inside MSM. Often theses time periods are linked to
the shift regime. Every shift has its own conditions that
influence the state of the system. For example the number
of workers per shift is not equal in all shifts. The number
of operators in the morning shift is higher than in the night
shift. Different numbers lead to variable conditions for the
utilization of the equipment. It was necessary to present
shift-depended statistics. The traditional solution would be
to define one statistic for each shift. Statistical data will be
typically collected at several places inside the simulation
model. Traditionally, a distinction would be necessary at
each of these places in order to ensure the modification of
the correct statistic.

SLX offers a more flexible and well-structured
solution based on the statistic class random_variable and
interval. Our approach comprises three steps (see Figure
6): The first step is the instantiation of the needed
random_variable objects and one interval object. The
number of random_variables objects depends on the
equipment quantity. A second step includes the generation
of a link between the random_variables and the interval
object and finally the third step is the implementation of
the shift control. There exist only one place in the SLX
simulation model where shift changes have to be coded.

class cl_Schedule
{ ...
 for (CurrentEntry= each cl_ScheduleEntry in ScheduleEntries)
 {

 // advance to schedule entry's begin time.
 if (CurrentEntry->Start > TimeOfDay())
 advance (CurrentEntry->Start � TimeOfDay());

 DoSegmentStartActions(ModuleName, ScheduleName, Shift, SegmentType);

 // determine time of segment end
 Duration= CurrentEntry->Duration;

 fork
 {
 ACTIVE->priority++; // schedule segment end calls before start of new segment
 advance Duration;
 DoSegmentEndActions(ModuleName, ScheduleName, Shift, SegmentType);
 terminate;
 }
 }
 ...

}
Figure 5: Implementation of the Schedule Class
98

Schulze, Schumann, and Rehn
Definition

random_variable wT1, wT2;
interval shift1, shift2, shift3;

Link Generation

obeserve wT1,wT2 with
 shift1, shift2, shift3 ;

Shift Control

...
start_interval shift1;
advance shift1Time;
stop_interval shift1;
start_interval shift2;
...

Process Description
...
tabulate wT1= ... ;
...
tabulate wT2= ...;
...

Figure 6: Three Step Approach for Statistics in Different
Time Periods

5.4.2 Flexible Management for Statistical Data

The relevancy for flexible data structures and data
presentation will be demonstrated in the following example.
A worker holds different qualifications so he or she can
perform different operations or tasks. There exist a 1:m
relation between the worker and his qualifications. On the
other side, the operations will be done by different workers.
Here exist a 1:n relation between the operation and the
workers. The execution of an operation can be concurrent
(by parallel working) or sequential. Statistical data about the
operating time must be collected and presented. Two
different tables have to be used for presentation of the data.
Although both tables use a different view, they basically
present the same data. Whereas, one table is worker-
oriented and is sorted by workers and operations, the second
table presents the data from an operation-oriented view and
is sorted by operations and workers. See Figure 7 for table
structure examples. The worker-oriented table allows
management for detecting bottlenecks and the second table
offers additional information on the human resource for
solving the process.

The challenge writing the simulation model is to find
flexible and efficient data structures as a basis for the
required presentation forms. The classical solution is the
usage of a two-dimensional (n,m) arrays for each statistical
parameter, such as minimum, maximum, mean etc. One
has to bear in mind that these are sparse arrays because
every worker can hold a maximum of five qualifications.
Additionally, the matrix-approach is not flexible and
requires changes in the source code to adjust the matrix
size.
13

Worker Name T. W.Time T.A.Time Utialization M.Op.T. #Tasks
Assembly1 XXX XXX XXX.XX

Operation 1 XXX.XX XX
Operation 2 XXX.XX XX

Assembly2 XXX XXX XXX.XX
Operation 2 XXX.XX XX
Operation 3 XXX.XX XX

Worker-oriented

Operation Name T. W.Time T. for Technician Proportion
Operation 1 XXX

Assembly1 XXX XXX.XX
Assembly3 XXX XXX.XX

Operation 2 XXX
Assembly1 XXX XXX.XX
Assembly2 XXX XXX.XX

Opration-oriented

Figure 7: Examples of Structures for Result Tables

With SLX, better approaches can be implemented

which will be presented here. The basic idea is to use two
set ranked by different attributes of the contained objects.
These objects consist of two key-attributes for unique
identification and one random_variable object attribute for
collecting the observed data. The following SLX source
code shows the definition of the utilized class
WT_Statistics.

class WT_Statistics
{
 string(30) WorkerName;
 string(30) OperationName;
random_variable WorkTime ;

}

The attributes WorkerName and OperationName
uniquely identify the object. In case a new combination
occurs, a new object will be instantiated dynamically.
References to the objects will be inserted in both sets. The
object physically exists only once but references are stored
in the both sets. The definition of these sets is as follows:

set (WT-Statistics) ranked
(ascending WorkerName, ascending
OperationName)
WorkerStatistic;

set (WT-Statistics) ranked
(ascending OperationName, ascending
WorkerName)
OperationStatistic;

Each set has two keys for defining ascending sort

order for the contained object references. The primary key
for the set WorkerStatistic is the attribute WorkerName.
Alternatively, the primary key for the set OperationStatistic
is the attribute OperationName. The two sets are the basic
objects used for the report generation. Figure 8 displays
the used approach.

99

Schulze, Schumann, and Rehn

Class WT_Statistics

set WorkerStatistic

Operation Worker Statistics
Name Name

Worker Operation Statistics
Name Name

set OperationStatistic

Operation-oriented Report Worker-oriented Report

Figure 8: Process of Generating the Output Tables

5.4.3 Calculating Non-Standard Parameters

for Queue Statistics

Queues are typical elements for modeling waiting areas of
entities. The waiting behavior of the entities will be
observed during the simulation run. Statistical
computations will be done at the end of run and these
results are known as standard parameters. The standard
parameters characterize the waiting behavior of queued
entities.

One goal in our simulation was to track additional
parameters about waiting zones. For example, the
simulation has to gather data about the total empty times of
the waiting area. Standard parameters for queue statistic
contain values for the number of zero-entities and the mean
for waiting times for entities. But these parameters are not
related to the waiting lines.

Our solution was the definition of the new object class
waiting_room based on the existing default class queue.
The composition-approach was used to define the new
class. The new class consists of the existing class queue
and further necessary attributes. The calculated new two
non-standard parameters are the total time of empty space
in the waiting line and the utilization of the waiting line as
a relation between the empty time and the occupied time.
The following SLX code shows the definition of the new
class.

class waiting_room
{
 queue st_queue;
 pointer (*) lastObject ;
 float lastEmptyTime ;
 float emptyTime ;
 boolean empty ;
}

6 CONCLUSION

Management Simulation Models (MSM) are characterized
by a high level of detail. Manufacturing oriented
simulation packages have limits if existing model elements
can not match the required degree of fidelity. Often, there
140
is too much effort needed to modify these model elements.
One known solution is the use of flexible simulation
languages. The simulation languages have to fulfil
requirements like management of simulation objects,
flexible data structures and effective features for modeling
conditions-delays.

Our experiences derived from the simulation project
are that SLX meets the requirements. The model execution
speed was extremely fast regarding the complexity of the
model. A focus of future work in the area of MSM is the
reduction of the amount of time spent to build the model.
This goal can be reached by using more computer-based
tools for model generation. The extensibility features of
SLX offer basic mechanisms for starting the development
of necessary tools.

ACKNOWLEDGMENTS

The authors would like to thank Deere & Company for
granting permission for publication of this material.

REFERENCES

Henriksen, J. O. 1996. An introduction to SLXTM. In

Proceedings of the 1996 Winter Simulation
Conference, ed. J. Charnes, D. Morrice, D. Brunner,
and J. Swain, 468-475. Piscataway, New Jersey:
Institute of Electrical and Electronics Engineers.

Law, A., and M. McComas, 1999. The simulation of
manufacturing systems. In Proceedings of the 1999
Winter Simulation Conference, ed. P.A. Farrington, H.
B. Nembhard, D. T. Sturrock, and G.W. Evans., 56- 59

Rohrer, M. 1998. Simulation of Manufacturing and
Material Handling Systems. Chapter 14 in Handbook
of Simulation: Principles, Methodology, Advances,
Applications, and Practice, ed. J. Banks, 519-546,
New York, New York: John Wiley & Sons, Inc. 1998.

Schriber, T. J. and D.T. Brunner. 1996. Inside simulation
software: How it works and why it matters. In
Proceedings of the 1996 Winter Simulation
Conference, ed. J. Charnes, D. Morrice, D. Brunner,
and J. Swain, 23-30. Piscataway, New Jersey: Institute
of Electrical and Electronics Engineers.

Schriber, T. J. and D.T. Brunner. 1999. Inside simulation
software: How it works and why it matters. In
Proceedings of the 1999 Winter Simulation
Conference, ed. P.A. Farrington, H. B. Nembhard, D.
T. Sturrock, and G.W. Evans, 72-80. Winter
Simulation Conference Board of Directors.

Schulze, T. and F. Preuß. 1997. Benchmarks für diskrete
Simulationssysteme. In Proceedings Fachtagung
Simulation und Animation 97, ed. O. Deussen and P.
Lorenz, 43-55. SCS International, 1997.
0

Schulze, Schumann, and Rehn

AUTHOR BIOGRAPHIES

THOMAS SCHULZE is an Associate Professor in the
School of Computer Science at the Otto-von-Guericke-
University in Magdeburg. His research interests include
modeling methodology, public systems modeling, manu-
facturing simulation, and distributed simulation with HLA.
He is an active member in the ASIM, the German
organization of simulation. His email and web addresses
are <tom@isg.cs.uni-magdeburg.de> and
<www-wi.cs.uni-magdeburg.de/>.

MARCO SCHUMANN is an employee at the Fraunhofer
Institute in Magdeburg, Germany. He holds a Master�s
degree in Computer Science from the Otto-von-Guericke-
Universität Magdeburg. His experiences in developing
simulations and applications for the Internet include a one-
year-stay at the University of Wisconsin - Stevens Point.
His main research interest lies in application of simulation
methods in the field of factory planning and virtual training
environments. His email and web addresses are <www.
cs.uni-magdeburg.de/~maschuma> and
<schuma@iff.fhg.de>.

GORDON D. REHN is a Staff Engineer and Process
Owner of Modeling & Optimization analysis in the Process
Engineering Dept. of Deere & Company, the worldwide
corporate headquarters of John Deere. He received his
B.S.M.E. from Iowa State University, and is a registered
Professional Engineer in the State of Illinois. He is a
member of IIE. He has preformed discrete event
simulation analysis of manufacturing operations since 1976
for internal Deere projects, as well as consulted on
simulation projects outside the Deere organization. His
email address is <gr54556@deere.com>

1401

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

