
Proceedings of the 2000 Winter Simulation Conference
J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, eds.

NEUTRAL TEMPLATE LIBRARIES FOR EFFICIENT DISTRIBUTED SIMULATION
WITHIN A MANUFACTURING SYSTEM ENGINEERING PLATFORM

Kai Mertins
Markus Rabe

Frank-Walter Jaekel

Corporate Engineering Division
Fraunhofer-IPK

Pascalstr. 8-9, 10587 Berlin, GERMANY

ABSTRACT

The MISSION project develops an environment for
integrated applications of simulation tools which can be
offered by different vendors. The template library supports
the generation of models from the view of the application
instead of simulation tool features. The selection of
simulation tools applied is performed with the mostly
completed, but still neutral model. The template library is a
reservoir of neutral re-usable elements incorporating their
major attributes, and referencing to implementations of
these models in different simulation tools. Within the
manufacturing system engineering (MSE) process, the
template library is mainly used as a flexible knowledge
base. For this purpose, attributes can be defined depending
on the design agents applied. Some attributes are
predefined according to the requirements of the MISSION
modelling platform (MMP) or according to available user
requirements. The user has the chance to add templates and
attributes of templates. Furthermore, the user can use
objects of these templates within the MSE process.
Concerning the simulation process, the template library
contains for each application template a reference to
simulation models. The simulation model implements the
content of the template. The paper presents the template
library approach and a short introduction to the MISSION
platform.

1 INTRODUCTION

Global Enterprises have to face new ways of distributed
work (Mertins et al. 1998a). Within this huge field,
MISSION focuses on the Manufacturing Engineering
process and, furthermore, on simulation. The global
approach is enhanced by the integration of three regions
from Japan, Europe and USA.
 The E.U. and U.S. partners have defined a common
architecture, called the MISSION General Architecture
15

(McLean et al. 2000). The European demonstrator
architecture (Figure 1) is one instance of the MISSION
general architecture.
 Figure 1 shows the outline of the European
demonstrator architecture for the MMP, based on the
perceived requirements for integrating the activities within
the Manufacturing System Engineering Integration
Infrastructure. The general goal of MISSION is the support
of the Manufacturing System Engineering (MSE) process
by integrating the tools, which can be employed in various
aspects of the process. However, in order to enhance and
accelerate the process, they must refer particularly to both,
the usage of simulation, and the integration of simulation
tools with other software tools. The suggested architecture
therefore incorporates the MSE integration as well as the
distributed simulation of the manufacturing processes.
 The following are prerequisites for a comfortable use
of the Mission Modelling Platform (MMP).

• Manufacturing Process - Run Time Interface
(MS-RTI)

• Manufacturing System Engineering Integration
Infrastructure (MSE Integration Infrastructure)

• Information Manager
• Project Agent
• MSE Moderator
• Template Library
• Simulation Manager

The European MISSION demonstrator includes a
specification and first prototypes of MMP components.
However, the specification will be made public. This
enables software producers to develop and market their
own tools for the MMP which can replace the prototypes
developed within the project.
 The demonstrator will show how the MMP can be
used to bridge the gap between different simulation model
49

Mertins, Rabe, and Jaekel

Simulation
ManagerProject

Agent
MSE

Moderator

Sim 1 Sim 2 Visualization
system

MSE Integration Infrastructure

Real
Production
Sw System

Sim ...

Informat
Manager

- Template library
- Vendor specific
 models &
 simulations
- Enterprise state
 information

MSE agents

CAD
CAPP
Template manager
Others�

�..

MS-RTIHLA Adaptor

DB Access

OODBMS PDMS File SystemRDBMS

Structure of the DB
Figure 1: MISSION Modelling Platform Architecture
islands. In addition, the bridge between the simulation and
the necessary information available within different
software tools will be shown. The demonstrator is mainly
based on on existing tools and methodologies. The MS-
RTI and the MSE integration infrastructure are anchors for
the different components of the MMP (Figure 1).
 The MSE integration infrastructure provides the
mechanism for interfacing software agents that participate
in the Manufacturing System Engineering Process. Its
purpose is to distribute information generated by any
component to all components that have an interest in that
information. In this way the MSE integration infrastructure
supports the information flow within the MSE process.
Additionally the information manager supports an object
oriented data retrieval to access the mission repository.
This repository holds a current state of all data exchanged
within the MSE process.
 Before an MSE process can be started a project has to
be defined. The project agent supports management of the
Manufacturing System Engineering Integration
Infrastructure by monitoring the life cycle of a particular
project from inception, through all stages of design,
implementation, and perhaps, evaluation of outcome. It
will also ensure that all information pertaining to a
particular project is accessible to all activities in the project
and maintained separately from other project information.
The term �project� indicates a set of data, for which one
engineer (or a small group of engineers) is responsible.
This is, typically, be a small subset of all the information
available to the MMP, and some projects may share
15
common information. The Project Agent can be useful in
four main areas:

• Configuration of a new project (Project

administration)
• Definition of standard project structures which

can be adapted to a special project
• Use of standard project structures
• Monitoring of the project progress.

During the MSE process conflicts can arise between the
different involved agents. This is the point when the MSE
moderator starts his part of the game. The MSE moderator
observes the activities of other components, and in particular
the decisions applied to the design through the other
components. Its purpose is to identify the points at which
one agent generates information which might conflict with
the interests of other MISSION tools; it then signals the
conflict to the agents involved, and orchestrates an dialogue
between the components until the conflict is resolved.
 A central structure within the MMP approach is the
template library. Together with the MISSION repository it
allows a flexible definition of classes, attributes and
objects. The template library is mainly supported by the
simulation manager. Both will be described in more detail
within the next chapters.

2 TEMPLATE LIBRARY

Within the MSE process, the template library is mainly
used as a flexible knowledge base. For this purpose,
50

Mertins, Rabe, and Jaekel
attributes can be defined depending on the used design
agents. Some attributes are pre-defined according to the
requirements of the MMP or according to user
requirements. The user has the chance to add templates and
attributes of templates. Additionally, the user can use
objects of these templates within the MSE process. For
example, the developer may decide to use a special AGV.
If an AGV template already exists as a subclass of the
�transport� template the developer can use it. Otherwise
the developer can create a new template class and add the
necessary attributes, as far as they are not derived from the
transport class. Now the developer can create an object of
the AGV class and set the values. Furthermore, the AGV
object can be used during the design process. If a
simulation model is available for the AGV class and the
relevant attributes for the simulation were set, then this
AGV object can be used directly within a simulation
scenario.
 Concerning the simulation process, the template
library contains a reference to simulation models for each
application template. The simulation model implements the
content of the application template. Each model has to be
able to execute this partial simulation process by itself.
Furthermore, the notation �application template� will be
used for templates directly applicable within a simulation
scenario.
 Additional descriptions are necessary to execute
different simulation models in a distributed simulation
scenario for a template. It is important to describe the
relations between the different templates. In order to enable
an automatic generation of simulations based on a given
simulation scenario, an object scheme required. This scheme
1

describes the objects exchanged with other simulation
models (�Common Exchange Object Model�). Furthermore,
the exchanged objects can be divided in two types:

1. Objects including necessary information but not

associated with other objects
2. Objects including necessary information and

associated with objects of other simulation models
(e.g. the port of a warehouse is associated with a
net node of a transport system).

In order to avoid modelling all the exchanged objects for
each single simulation scenario anew , the template library
includes an additional structure of common exchanged
objects (Figure 2). This structure can be expanded by the
template library administrator following the template
library rules. The rules include mainly:

• Clear and unique name space for objects
• Clear and unique name space for attributes within

one inheritance tree
• Unique semantic structures of each object class
• Unique semantic structures of each attribute

within one object class.

This approach will allow an automatic generation of a
common exchange object model for a user defined
simulation scenario. Furthermore, it becomes possible to
configure a simulation scenario including an automatic
generation of HLA-RTI-FED files and federate
configuration files.
Common exchange object
model

Template
specific

exchange
objects

used objects

Template Library

Figure 2: Relation Between a Single Template of the Template Library and the Common Exchange Object Model
551

Mertins, Rabe, and Jaekel
 An additional part of an application template is the
graphical representation of the template. 2D and 3D
representations can be used for the graphical representation
of the template. A possible format for the graphical
representation is VRML. VRML allows a modular
structure of objects within a 3D animation.
 Summarizing, a template contains (Figure 3):

• References to simulation models
• Description of exchanged objects
• Visualization of the template
• Parameter descriptions of the template.

Now the templates can be used for the definition of
simulation scenarios by deriving building blocks from the
template library.

2.1 Building Blocks

A template can be seen as a building block of a huge
simulation scenario, or as a predefined component of a
manufacturing design like a transport system, a warehouse,
etc.. Therefore, a building block in this context is defined
as an object derived from a template of the template
library.

15

 A simulation study applying the building blocks
consists of the following steps:

1. Selection of suitable templates
2. Insertion of a building block which is derived

from the selected templates into the simulation
scenario

3. Parameterisation of the building blocks
4. Selecting the relevant region of the scenario for

the simulation
5. Consistency check and if necessary

supplementation of the selected simulation
scenario

6. Execution of the simulation scenario.

The template library supports the selection of suitable
templates by a search structure and the special indication of
application templates. Highlighting the templates already
used within the current MSE project will furthermore speed
up the selection process. The insertion of the building block
into the simulation scenario can be done during the MSE
process in order to identify the required processes and
resources for the manufacturing system (MS). Then the
model and especially the building blocks derived from the
templates can be used as an information base for the whole
design process. The information about the objects within the
manufacturing process model becomes more and more
supplemented during the MSE process.
Warehouse

Storage System
FIFO Buffer

Material related Resource

Definition of
exchanged objects

Storage Area

Depart
Customer

Storage SimulationStorage Simulation

Transporter
Vihecle

Storages area
Customer

D

Packing Area

Customer

Connection of
a simulation model

Definition of simulation
parameters

Warehouse_Port

Definition of
connectivity elements

Graphical
representation and
parameters for VR
scenarios

Figure 3: Content of a Template Within the Template Library
52

Mertins, Rabe, and Jaekel
 In the next step this manufacturing process model is
the base of the simulation scenario. A region of the model
or the whole model can be selected as simulation scenario.
Furthermore, a completeness and consistency check is
started to identify missing parameter settings, missing
simulation models and so on. For each building block, the
user has to set the missing parameters, as far as they are
required by the simulation model. For this task some
supporting wizards are proposed (Figure 4). An important
task is to associate the connectivity elements of the
different building blocks. Each building block has a set of
connectivity elements. It is necessary to define the input
and output of the building blocks via connectivity elements
defined for the building blocks. For example, the user has
to associate the output of a processing line with a station of
a transport system. When the simulation scenario is
complete and consistent, the user can execute it. Three
steps will be done during the initialisation of the execution:

1. The generation of a common information model
and the generation of the configuration files

2. The generation of the runtime environment of the
simulation scenario

3. The start of the runtime scenario.

The common information model of exchanged objects can
be generated easily on the base of the exchange object
model being part of each template, if the template library
rules are adhered to. The different exchange object classes
can be integrated into one common class structure based on
15

the common exchange object model of the template
(Figure 5). This is done by the following steps:

1. Modelling of a simulation scenario by application
of building blocks derived from the templates

2. Supplementation or setting of the necessary
parameters of the building blocks for simulation

3. Merging of the exchange object classes and
generation of a common structure for the
simulation scenario

4. On this base, automatic generation of a FED file
to configure the RTI

5. Generation of the federate configuration files
from the model of the simulation scenario

6. Conduction of experiments by simply changing
the parameter settings.

For an experiment, the common information model will not
be changed. Only the federate configuration files have to
be adapted to the experiment.
 The generation of the runtime environment of the
simulation scenario is based on the previously generated
federate configuration files. Each simulation model
involved in the simulation scenario gets its own federate
configuration file including all information necessary to
configure the simulator interface for this simulation model.

The next stepis the consistent combination of
simulator, simulation model and federate configuration
file.

produce A

produce B

Transport Store

Transport-
System

A n

B n

A n+1

B n+1

AB n+3

Part processing
line A

Part processing
line B

Warehouse

Exchange object model wizard

! Support of object definition
 along the template library rules.

! Check consistency with the related
 simulation models

Simulation model wizard

! Reference to an existing model
! Path to missing simulator
! Creation of a new simulation model
The wizard secures the template
requirements
(e.g. consistency with the object model)

Exchange object model
is missing

Parameter wizard

! consistent setting of parameters
! consistent adding of parameters

Simulation model or
Simulator is missing

Parameter
inconsistent

Figure 4: Simulation Scenario Check
53

Mertins, Rabe, and Jaekel

Part processing line
MISSION_Product (N) Example_Product (PS)
MISSION_Port (N) Input_Port (PS)

Output_Port (PS)
MISSION_Transport_Unit (S)

AGV System
MISSION_Product (N) Example_Product (S)
MISSION_Port (N) Network_Node (PS)
MISSION_Transport_Unit (N) Vehicle (PS)

MISSION_Product (N) Example_Product
MISSION_Port (N) Network_Node

Input_Port
Output_Port

MISSION_Transport_Unit (N) Vehicle

Common structure

Figure 5: Merge of Exchange Object Classes of Different Templates

Parameterisation
Exchange Objects view

2

Common
model

3

Federate
configuration
files

4
FED

4

Template
library

1
Modelling After consistency

check along the
template library
rules;
automatically
generated

Experiments
(change of parameters) 6

5

Figure 6: Generation of the Simulation Scenario Runtime Configuration Files
When this step is completed, the HLA-RTI can be
started using the previously generated FED file. Now the
different components of the simulation scenario runtime
environment will be executed. Figure 7 shows an Adapter
to the RTI that allows an easier connection of software
tools. The adapter supports the retrieval of class and
attribute information described within the federate
configuration file. Furthermore it supports the association
between class and attribute descriptions within the federate
configuration file and the class and attribute names within
the FED file. Therefore, it will be easy to retrieve
information for an attribute name like value type, default
values of attributes, etc.

15
2.2 Design of a Template

The approach described is based on the template definition.
The consistent combination of template attributes,
parameters of simulation models and the exchange-object-
model is very important.
 The simulation model can be built independently from
the template, adhering the template description, only.
Afterwards, the simulation model can be connected with
the template. The parameters of the simulation model are
connected with attributes of the template. These attributes
have to be marked as attributes relevant for the simulation
(e.g. for consistency checks). At the end, it is necessary

54

Mertins, Rabe, and Jaekel

HLA-
RTI

Federate 1:
Warehouse

FED

MISSION
Adapter

Federate 2:
part processing
line A

Federate 3:
part processing
line B

Federate 4:
Transport
system

MISSION
Adapter

MISSION
Adapter

MISSION
Adapter

Federate configuration files

Federate 5:
Visualisation of
the simulation
process

MISSION
Adapter

Federate 6:
simulation manager
(Monitoring)

MISSION
Adapter

Figure 7: Execution of a Simulation Scenario
that each parameter of the simulation model has a clear
relation to a template attribute. The description of the
exchanged objects and the integration into the common-
exchange object model is more challenging.
 For the simulation model, it has to be decided which
objects are necessary for the communication with the
distributed simulation environment. Furthermore, attention
to the input and output segments as well as the input and
output objects is necessary. An output segment of a
processing line could be the output buffer. Within a
simulation scenario this output segment will be associated
with an input segment of an other simulation model, e.g. a
transport system. In addition, the objects which pass those
segments have to be described, also. In the remains of this
paper, these segments are named as connectivity elements.

 The connectivity element classes and attributes are a
part of the exchange object model. Connectivity element
objects and the connections between these objects are
described within the federate configuration files.
 Instead of a detailed description of a template, it is
possible to compose a template of other templates
(Figure 8). This allows a modular structure of the templates
and of the components of the distributed simulation. For
example, a transport system may be composed of a route
planning system, a network simulation and a vehicle
simulation (Figure 8). The hierarchical inheritance
structure of the template library can support wizards to
recognize the necessary elements of a more detailed
template. This works because on a higher level the
structure can be described in more generic terms. If, e.g.,
the description of a transport system includes a vehicle as
an essential part, the wizard can ask for a vehicle as part of
an AGV system.
 The behaviour description of the template supports the
retrieval of a suitable template and secures a similar
content of the simulation models behind the template. The
description could be done using a natural language.
15
However, it is much better to use a formal language based
on XML. The advantage of a formal language is the chance
to load this description directly into a simulator. That does
not result necessarily in an automatic generation of
simulation models, but it provides a base to build such
models faster.

2.3 Federate Configuration File

The federate configuration (FC) file will close the gap
between the HLA-RTI-FED-file and the interface
definition of simulation models (federates). The description
of the information within a federate configuration file
(Table 1) will be defined via XML.
 The definition of the object and attribute names within
the FC files according to the FED file are necessary,
because otherwise a federate does not recognize the names
of the involved exchange objects. The type information is
important for a federate to extract information from the
objects handled by the RTI. Default values can be defined
to substitute more detailed simulation models. For
example, the speed attribute of a vehicle is defined as an
attribute of an exchange object and set by an engine
simulator. The default setting of the speed attribute will
allow to leave out the engine simulator. On the same way,

Line 1

Line 2

Warehouse

Transport-
System

Routing

Network

Vehicle

Figure 8: Bill of Material Structure for the Template
�Transport System�
55

Mertins, Rabe, and Jaekel

Table 1: Federation Execution Definition File (FED) vs. Federate Configuration Files

Content of the Federation execution definition (FED) file

used by the HLA-RTI

Content of the federate configuration files used for

simulation interface configuration

• necessary class names of exchanged object classes
• attribute names

• class names of exchanged objects
• attribute descriptions of the classes including:

+ names
+ type information
+ default values

• initial values of attributes or parameters
• parameter settings (e.g. max vehicle speed)
• Information about sequences (process flow)
• Information about output and input relations
initial values allow to define a start status of a simulation
model.
 The setting of simulation parameters can be used to
tune the simulation models. For example, two part
processing lines A and B are used as building blocks. Then
the performance of the processing lines can be defined for
each building block by setting the performance parameters.
Therefore, the same model can be used in different
incarnations.
 An additional requirement is the description of process
sequences and input/output relations. This allows the
configuration of simulators with relations between the
different simulation models.
 The content of the FC files will be proved during the
implementation of the MMP. In addition, it will be adapted
to the requirements of the interfaces to commercial
simulation systems.

3 SIMULATION MANAGEMENT

The simulation manager mainly supports the template
library. Most functions of the simulation manager are
based on the template library approach. It includes views to
manipulate template classes, objects, building blocks and
manufacturing system (MS) process models. Furthermore,
it supports the design and execution of simulation
scenarios based on the template library mechanism. The
MS process model is created during the MSE process and
includes all objects needed during the MS process.
Especially, machines, transport systems and storages with
their attributes are specified within the process model. This
MS process model can be used later to select a part of the
MS process for the simulation.
 The Simulation Manager uses the information from
the template library and the information collected during
the MSE process to construct a distributed simulation
scenario. It further supports the design of simulation
experiments, the creation of FEDEX (Federation
Execution) and it executes the design. The results of

15
experiments are predictions of the manufacturing process
performance, which the manager makes available, through
the Manufacturing System Engineering Integration
Infrastructure to other components (Jaekel and Arroyo
2000).
 The Simulation Manager is needed to start up,
initialize and manage the execution of the different
simulations in a distributed simulation execution.
Summarizing the description given above the Simulation
Manager consists of the following seven parts:

1. Template library editor
2. Modeling tool for the design of the whole

simulation scenario using elements derived from
the template library

3. Supplementation of elements in user and standard
Template Libraries

4. Configuration of the runtime simulation scenarios
5. Execution and monitoring of the whole simulation

scenario
6. Bridge between the MSE Integration

infrastructure and MS-RTI
7. Experimenter (optimisation by variation of

simulation parameters)

4 ADVANTAGES OF THE TEMPLATE

LIBRARY APPROACH

Within different simulation systems mechanisms like
templates, modules or classes are already available (e.g.
Arena, eMPlant). These mechanisms have been further
improved by reference models (Mertins et al. 1998).

The disadvantage today is that these methodologies
are specific for one simulator and currently, these
methodologies are not compatible for different simulators.
The advantage of the template library is that this approach
includes a mechanism to reuse simulation models from
different simulators in different simulation scenarios.
Furthermore, it allows distributed simulations between
56

Mertins, Rabe, and Jaekel

different enterprises without the necessity for these
enterprises to use the same simulator.
 HLA allows the connection of different simulation
models via a runtime infrastructure (RTI) called federation.
However, it is still a disadvantage, that each federation
needs a hard programming of the interface between the
federates and the RTI. This is one of the reasons, why the
HLA is not used more frequently within the civil area.
 The advantage of the MISSION template library
approach is that the simulation manager, as a part of the
template library implementation, will implement the
generation of configuration files for federates participating
in the simulation scenario to avoid intense programming.

ACKNOWLEDGMENTS

The European Module of the MISSION project is carried
out with financial contribution of the European
Commission under the specific RTD Programme, Esprit
Project 29 656. Partners within this European Module are
Bosch (D), CASA (E), Sisteplant (E), vr-architects (A),
ProSTEP (D), Fraunhofer IPK (D) and Loughborough
University (UK).

REFERENCES

McLean, C., F. Riddick, and S. Leong. 2000. Architecture

for Modeling and Simulation of Global Distributed
Enterprises. . In The New Simulation in Production
and Logistics, ed., Mertins, K.; Rabe, M. 365-374.
IPK, Berlin.

Mertins, K., M. Rabe, and P. Rieger. 1998. Taking
Advantage of Process Oriented Reference Models for
Setting up Federations for Distributed Simulation in
HLA Environments. In 12th European Simulation
Multiconference ESM�98, Manchester ed., Zobel, R.;
Moeller, D. 259-263.

Mertins, K., M. Rabe, and O. Krause. 1998a. Modeling for
Planning and Operation of Global Distributed
Enterprises. IX. Internationales Produktion-
stechnisches Kolloquium PTK�98, Berlin. 363-367.

Jäkel, F.-W., and J.S. Arroyo Pinedo. 2000. Development
of a Demonstrator for Modelling and Simulation of
Global Distributed Enterprises. In The New Simulation
in Production and Logistics, ed., Mertins, K.; Rabe,
M. 375-384. IPK, Berlin.

AUTHOR BIOGRAPHIES

MARKUS RABE, born 1961, is the head of the produc-
tion planning department of IPK. He is responsible for
business process planning, factory planning and simulation
and head of the Berlin Demonstration Center for
Simulation in Production and Logistics. Markus Rabe is
active in the German Simulation Society ASIM, has been
15

member in several conference programme committees and
was chair of the conference �Simulation in Production and
Logistics� in 1998 and 2000. More than 80 publications
and editions report from his work. His email and web
adresses are <markus.rabe@ipk.fhg.de> and
<http://www-plt.ipk.fhg.de/unternehmens
planung/index.htm>.

FRANK-WALTER JÄKEL, born 1959 studied vehicle
design in Hamburg and computer science at the Technical
University of Berlin. Since 1989 he is working at the
Corporate Management division of IPK-Berlin. Frank-
Walter Jäkel is involved in various research and consulting
projects. His main points of interest in consulting are
business process modelling, analysis and optimisation,
software development, adaptation and use of business
process modelling methods in different domains. His email
address is <Frank-Walter.Jaekel@ipk.fhg.de>.
57

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

