
Proceedings of the 2000 Winter Simulation Conference
J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, eds.

AUTOMATIC GENERATION OF SIMULATION MODELS
FROM NEUTRAL LIBRARIES: AN EXAMPLE

Young Jun Son

Systems and Industrial Engineering
The University of Arizona
Tucson, AZ 85719, U.S.A.

Albert T. Jones

Manufacturing Systems Integration Division
National Institute of Standards & Technology

Gaithersburg, MD 20899, U.S.A.

Richard A. Wysk

Industrial and Manufacturing Engineering
The Pennsylvania State University
University Park, PA 16802, U.S.A.

ABSTRACT

Researchers at the National Institute of Standards and
Technology have proposed the development of neutral
libraries of simulation components. The availability of such
libraries would simplify the generation of simulation models,
enable component-based modeling, and speed Internet-based
simulation services. The result would be a reduction in the
complexity of simulation modeling and analysis. In this
paper, we consider a discrete-event simulation of the flow of
jobs through a job shop. We describe the information
requirements for the components in that simulation and
provide formal models based on those requirements. We then
derive a database structure from these formal models and
discuss the population of that database with the data entries for
a sample job shop. Finally, we examine the translators we
developed to go from the neutral representation of the
simulation components to the representation required by a
commercial simulation package.

1 INTRODUCTION

Simulation has been a useful design and analyses tool used
to model manufacturing systems for decades. A number of
commercial products, with a range of capabilities and price
tags, are on the market. Each of these packages has its own
user interface for building models, animation capabilities for
viewing the evolution of models over time, and tools for
analyzing the output from those models. The degree of
difficulty in building models, the fidelity of the visualization,
and the sophistication of the analysis tools vary dramatically.
Consequently, building, running, and analyzing a simulation
model can be a time-consuming and error-prone process.
15

To address the model building issue, researchers at the

National Institute of Standards and Technology (NIST)
have proposed the development of neutral libraries of
simulation components and model templates. The former
would contain detailed, formal, information models of all
commonly used simulation components - queues,
machines, transporters, and so forth. Each of these
component models would have views tailored to specific
modeling scenarios. These scenarios would be defined by
different modeling templates - such as an equipment
simulation, a material flow simulation, a supply chain
simulation, and so forth. The availability of such libraries,
together with the requisite translators, would simplify the
model-building process. It would also enable component-
based modeling, model reuse, and Internet-based services,
all of which could reduce the complexity and effort of
simulation in manufacturing (see Figure 1).

After the library of simulation objects is constructed,
each component in the library becomes a basic building
block (module) to model systems of interest. Then, a
translator, which we call a model builder (see Figure 1),
will generate a simulation model for a specific commercial
package from the neutral descriptions of the components.
In this research, model builders for Arena (Kelton et al.
1998) and ProModel (Harrell et al. 2000) have been
designed and implemented. Certain commercial software
products are identified in this paper. These products were
used only for demonstrations purposes. This use does not
imply approval or endorsement by NIST, nor does it imply
that these products are necessarily the best available for the
purpose. Each model builder generates a model for the
specified simulation language. Consequently, there are
differences between the two we have built.
58

Son, Jones, and Wysk

Figure 1: New Concept using Library Components

Library of

For shop floor

Builder

Engine
Simulation

Data

Animation
Visualization

Model

(Neutral)

Specific

Model

(Real data)

Statistical
Results

Animation

Visualization

Library of

For all applications

User

Simulation Objects

Model

Analyzer

Description

Simulation

Simulation Objects Shop Floor
(Schedule evaluation)

Or

 In this paper, we discuss the model builder for
ProModel - the model builder for Arena and a comparison
between the two will be presented in another paper. In
Section 2, we describe the simple job shop that serves as
our example manufacturing system. The simulation will
model the flow of jobs through that job shop. In Section 3,
we provide the information requirements for the simulation
components. In Section 4, we include a formal,
information model for some of those requirements, show
the resulting database structure, and discuss the population
of that database with the data entries for our sample job
shop. Finally, we examine the model builder and translator
that we developed to go that database to representation in
ProModel.

2 EXAMPLE MANUFACTURING SYSTEM

An example shop floor is shown in Figure 2. It contains a
system input buffer, a system output buffer, and three
processing stations - penn1, penn2, and penn3. Station
penn1 has a dedicated input buffer, penn1_in, and a
dedicated output buffer, penn1_out. Station penn2 has a
dedicated input buffer only, penn2_in, and penn3 has
neither input nor output buffers. The capacity of system
input and output buffers is 100, while the capacity of each
processing station is 1. This shop can make three different
products: a mouse, a notebook, and a pen. The mouse
requires processing at penn1 and penn2. The notebook
requires processing at penn2 only, and the pen requires
processing at penn3 only. Production of one item of each
product will be demonstrated in this paper.
1

3 INFORMATION REQUIREMENTS

For the flow simulation used in this project, there are six
classes of objects: header information, experiment
information, shop floor information, product-process
information, production information, and output
information.

3.1 Header Information

The header information object provides the introductory
information about the simulation file. Each simulation file
has exactly one header information object. The header
information object is composed of a simulation file name,
an analyst name, a layout file name, a save date, a save
time, and a description.

• Simulation file name - The unique name for the
simulation file.

• Analyst name - The name of person that created
the simulation file.

• Saved date - The date of the creation of the
simulation file.

• Saved time - The time of the creation of the
simulation file.

• Description - A word or group of words that
describe the basic information of the simulation
file.

• Layout file name - The name for the layout file
that is used for simulation background.
559

Son, Jones, and Wysk

Figure 2: Example Job Shop System

System
Input Buffer

System

Penn1_in

Penn3 Penn2_in Penn2

Penn1 Penn1_out

Output Buffer

3.2 Experimental Information

Each simulation file is associated with one experimental
information object. The experimental information object
describes the environmental setting to run the simulation
file and obtain the requested performance measures. That
environment includes a time unit, a distance unit, a
beginning time, a replication time, the number of
replications, a terminating condition, and a collection of
output information objects. Each output object is
composed of a performance measure name.

• Time unit - The unit of time in the simulation file,
usually one of day, hour, minute, or second.

• Distance unit - The unit of distance in the
simulation file, usually a meter or a foot.

• Beginning time - The real value defining the
beginning time of the first replication.

• Replication time - The length of each replication.
• Number of replications - The integer value

defining the number of replications to be
executed.

• Terminating condition - An optional field to
specify the terminating condition. If nothing is
specified in the file, the simulation runs until the
replication time.

• Output information - An optional field to specify
the performance name of interest.

3.3 Shop Floor Information

The shop floor information object describes the physical
entities on the shop floor. Each simulation file is
associated with one shop floor information object. The
shop floor information object is composed of a set of
station information objects. Each station information
15
object is composed of a station name, a capacity, a
description, and a station type information object. The
station type information object is associated with either a
processing station information object or a buffer station
information object. The processing station information
object is composed of an optional station buffer name and
an optional station output buffer name. In addition, the
buffer station information object is defined by a buffer type
item. In the actual shop floor, there are two classes of
stations: a processing station and a buffer station. If the
station information object does not include the processing
station information, it is interpreted as a buffer station.

• Station name - The unique name for the station.
• Capacity - The integer value defining capacity

characteristics of the station.
• Station type - Unique identifier for station; e.g.

processing, buffer.
• Processing station information

- Station input buffer name - The optional
string field containing station name for the
dedicated input buffer in the processing
station. Note the input station input buffer
needs to be defined explicitly as station
information.

- Station output buffer name - The optional
string field containing station name for the
dedicated output buffer in the processing
station. Note the output station input buffer
needs to be defined explicitly as station
information.

• Buffer station information
- Buffer type items - The string field specifying

the types of buffers. It contains four values:
system_input_buffer, system_output_buffer,
station_input_buffer, and station_output_
buffer.
60

Son, Jones, and Wysk
3.4 Product/Process Information

The product/process information object provides the run
time data for a simulation. It is composed of a product
name and a process plan information object. The process
plan object is composed of a process plan name and an
ordered list of operation information objects. Each
operation object is composed of an operation number, an
operation name, a description, a station name, a processing
time, a next station name, and a routing time.

• Product name - The unique name for the product.
• Process plan information

- Process plan name - The unique name for the
process plan.

- Operation information
- Operation number - The unique identifier for

the operation.
- Operation name - The word or a group of

words defining the current operation.
- Station name - The name of a station where

the operation occurs.
- Processing time - The real value defining the

duration taken for the current operation. If
the station is associated with a processing
station, this value is associated with actual
machining time.

- Next station name - The name of a station
that the job will visit next.

- Routing time - The real value defining the
duration taken moving from the current
station to the next station. In a more
complete modeling, an equipment will be
involved such as an AGV or a conveyor.
Therefore, equipment contention will be
included in the model. In the current version
of the document, the material transporters are
not included in the model, and it is assumed
that jobs can move to the next station
whenever there is available capacity.

- Description - A word or a group of words that
describe the operation.

3.5 Production Information

A production information object provides the data for what
is produced in the simulation and associated due dates.
The production information is composed of a product name
and a set of job information objects. The attributes for
each job information object include a job name, a quantity,
an arrival time, and a due time.

• Product name - The name of the product that the
job is associated with. Using this filed, we can
derive the associated process plan, which is
15

provided by the product process information
object in Section 3.4.

• Job information
- Job name - The unique name of a job. A job

is an atomic object associated with one
product.

- Quantity - The number of products to be
produced.

- Arrival time - The time when the current job
arrives in the simulation file.

- Due time - The time by when the current job
is wanted to be finished by the customer.

3.6 Output Information

The simulation output is stored in a returned result
information object. Each such object is composed of a
performance measure name, and an associated graph name.

• Performance measure name - The unique name of
the performance name. The contents of this file
will be specific to the commercial simulation
packages unless a generic way of specifying the
name is created. This file needs to be associated
with the performance measure name for the output
information object.

• Graph name - The name of the graph associated
with a particular performance measure. This
attribute is optional since not all performance
measures will be represented as a graph. In
general, each performance measure can have
many different types of graphs. In this research,
however, we only allowed one type for each
performance measure.

4 INFORMATION MODELING

Based on the preceding information requirements, a
complete information model has been developed in
EXPRESS (Schenck and Wilson 1994). Due to limited
space, we show only part of that model.

4.1 Schema

Types, entities, and functions have been defined formally
as follows:

SCHEMA discrete_event_simulation;
TYPE buffer_type_items = ENUMERATION OF
 (station_input_buffer,
 station_output_buffer,
 system_input_buffer,
 system_output_buffer);
END_TYPE;

TYPE name = STRING;
END_TYPE;

61

Son, Jones, and Wysk

TYPE station_type_information = SELECT
 (processing_station_information,
 buffer_station_information);
END_TYPE;

ENTITY shop_floor_information;
 station_data : SET [0:?] OF station_
information;
END_ENTITY;

ENTITY station_information;
 station_name : name;
 capacity : INTEGER;
 station_type_data : station_type_
information;
 description : OPTIONAL text;
 UNIQUE
 UR1: station_name;
END_ENTITY;

ENTITY buffer_station_information;
 buffer_type : buffer_type_items;
END_ENTITY;

ENTITY processing_station_information;
 station_input_buffer_name : OPTIONAL
name;
 station_output_buffer_name : OPTIONAL
name;
END_ENTITY;

- - - - -

END_SCHEMA;
156
4.2 Database Instantiation

From the schema in the previous section, we generated a
collection of database tables in MS Access 97 (see Figure
3). The tables in the figure belong to two classes. The first
class contains a table for each entity in the EXPRESS
schema. The second class contains tables that specify the
relationship among the entities.

4.3 Database for Example System

Several database tables associated with the example system
in Figure 2 have been populated by hand and are shown in
Figure 4. In the following sections, we describe how we
generated the corresponding ProModel .mod file.

5 DESIGN OF MODEL BUILDER

The role of the model builder is to create a discrete-event
simulation model from the neutral description of the
system and the actual data in the database. In that sense,
the model builder serves as a translator. The following
sections describe how that translator works.

Figure 3: Database Tables Associated with the Formal EXPRESS Model
2

Son, Jones, and Wysk

Figure 4: Database Information for the Example System

a: Simulation header, experiment, and station information for the example system

b: Process plan, product, and job information for illustration

c: Requested_results information for illustration
1563

Son, Jones, and Wysk

5.1 Shop Floor

The first step in creating the simulation model is the
construction of the shop floor. The model builder creates
this shop floor from the �stations� table in the database
(see Figure 4-a). Each station in that table is associated
with the �location� template in Promodel (see Figure 5-a).
The data for first two columns in this template come
directly from the stations table. The remaining columns in
the template are defaults. The use of the remaining data in
the locations table is described in Section 5.2.
 In general, job shops operate in one of two modes:
push and pull. Push mode implies there is a predetermined
schedule that jobs will follow through the shop. Pull mode
implies that jobs go through without such a schedule. In
our example, there is no schedule. Therefore, we need to
implement a pull mode. Promodel provides the pull
capability by default, so no pull logic is defined.

5.2 Job Flow Through the Shop

The shop floor was constructed so that any possible
routings and processing times can be implemented. To
control the flow of jobs through the shop during a
particular run, Promodel requires explicit values for the
routings and processing times. Variables for these values
are contained in the process template and the routing
template; exact values are contained in the initialization
file, (see Figures 5-a, 5-b).
 The initialization file contains the data for each
specific run of the simulation. The model builder is
designed so that the system is data-driven, the same model
can be run many times by simply changing this file. The
initialization file contains process plan data, which is a
collection of 3-dimensional arrays (product_id,
operation_id, n) where n =1,�,5. The meanings of the 5
values of n are: current location, processing time at this
location, next processing station, travel time, next physical
location. The actual data values are derived from the
stations table and the operations table in the database.
 For each Entity-Location pair, the process template
specifies a 3-dimensional variable called Operation. The
first entry is the product_id, the second is the operation_id,
and the third is the processing time. These entries are read
in from the process plan part of the initialization file,
Figure 5-b. For example, the processing time for the
product-id=1, the mouse at penn1, which performs
operation-id=2, is 300; the processing time at penn2, which
performs operation-id=3, is 200. Note that whenever the
Location is a buffer, the processing time is 0.

156
 The routing template contains variables called Output,
Destination, Rule, and MoveLogic. Output has the same
value as Entity, unless there is an assembly operation.
Rule specifies the order in which jobs are removed from
each queue; in this example it is defaulted to first-in-first-
out. For each location in the process template, Destination
specifies the next physical location that the Entity will visit
on its path through the shop and MoveLogic specifies the
travel time to that location. These values are read in from
the Initialization file as attributes 5 and 4, respectively.
From Figure 4-b, we see that the mouse�s route is input
station, penn1, penn2, and output station. However, from
the stations table, we see that the actual physical path is
input station, penn1_in, penn1, penn1_out, penn2_in,
penn2, and output station. As noted above, this physical
path, including all buffers, must be represented in
ProModel. This is accomplished using the routing
template.

5.3 Job Arrival Information

Job arrival data is contained in the arrivals template, which
contains variables called Entity, Location, Qty Each, First
Time, Occurrences, Frequency, Logic, and Disable. An
Entity arrives at Location. Qty each is the quantity of
entities that arrive at each arrival time. First Time is the
time of the first arrival, Occurrences is the number of
occurrences for every simulation run, and Frequency is the
time between arrivals. Logic is used to define any arrival
logic to be executed by each entity when it is created.
Disable is used to specify whether we want to disable
temporarily this arrival without deleting it. Each row in the
arrivals template (see Figure 5-c) is associated with one job
in the �jobs� table in the database (see Figure 4-b). Entity,
First Time, and Qty each are read from the �jobs� table.
Location is set to penn_in_storage since all the jobs are
assumed to arrive at the system input storage. Occurrences
is also set to 1. The model builder is designed so that
Logic assigns values read from the �jobs� table in the
database (see Figure 4-b) for product_id, operation_id, and
due_time. Frequency is left blank since each entity in a
row is created only once for each simulation run.
Frequency logic can be implemented using First time and
Occurrences. For example, a job, whose First time is zero,
Occurrences is 2, and Frequency is 10, is identical with
two jobs, where Occurrences of each job is 1 and First time
of each job is zero and 10 respectively. In this paper, the
latter logic is used. Finally, Disable is set to No by default.

4

Son, Jones, and Wysk

Figure 5: ProModel Templates Model for the Example System

a: Locations, processes, and routing templates generated

b: Partial initialization file generated

c: Arrivals template generated
1565

Son, Jones, and Wysk

Figure 6: Results after Simulation Run

5.4 Simulation Result Information

Performance names of interest have been provided in
Figure 4-c. Davg(location_Busy) represents the utilization
of resource. The model builder understands this predefined
name for performance measures. After simulation model
has been run, the results have been stored in
returned_results table (see Figure 6).

5.5 Implementation

The model builder has been implemented in Visual Basic
5.0. The model builder interacts with MS Access
databases though the Microsoft Access 8.0 Object library
and the DAO 3.5 (Data Access Objects) Object library.
DAO is an application program interface (API) available
with Microsoft�s Visual Basic that lets a programmer
request access to a Microsoft Access database. The model
builder can recognize templates and objects in ProModel
through the Promodel 1.0 Type library. Visual Basic 5.0
provides an environment in which we can link necessary
external libraries, Microsoft Access 8.0 Object library,
DAO 3.5 (Data Access Objects) Object library, and
Promodel 1.0 Type library.

6 CONCLUSION

In this paper, we used a simple manufacturing example to
demonstrate the use of neutral component libraries to
generate simulation models in specific simulation
languages. We included the information requirements for
these components, as well as a partial EXPRESS
information model. An MS Access database based on the
EXPRESS model and sample data have been instantiated.
A model builder has been designed to generate Promodel
models from such a database. Given the example
manufacturing system along with artificial product,
process, and order data, a complete Promodel model was
generated, run, and results reported. Future research will
first consider time distributions to add stochastic behaviors
to the system. In addition, material-handling equipment
will be included in the future research to make simulations
more realistic.

15
ACKNOWLEDGMENTS

This work was done as part of the intelligent
manufacturing systems (IMS) MISSION project
(<www.ims.org>), which is building an integrated
modeling and simulation platform for extended enterprises
and virtual enterprise networks.

REFERENCES

Harrell, C., B. Ghosh, and R. Bowden. 2000, Simulation

using Promodel, McGraw Hill, Boston,
Massachusetts.

Kelton, D. W., R. P. Sadowski, and D. A. Sadowski. 1998.
Simulation with Arena, McGraw Hill, Boston,
Massachusetts.

Schenck, D. and P. Wilson. 1994. Information Modeling
the EXPRESS Way, Oxford University Press, New
York, NY.

AUTHOR BIOGRAPHIES

DR. YOUNG JUN SON is an assistant professor in the
Department of Systems and Industrial Engineering at
University of Arizona. Dr. Son received his BS degree in
Industrial Engineering with honors from POSTECH and
MS and Ph.D. degrees in Industrial and Manufacturing
Engineering from Penn State University. His research
interests include simulation based shop floor control,
automatic model generation, distributed simulation, and
supply chain management. Dr. Son was the Rotary
International Multi-Year Ambassadorial Scholar in 1996,
the Council of Logistics Management Scholar in 1997, and
the recipient of the Graham Endowed Fellowship for
Engineering at Penn State University in 1999. He was the
representative of the Department of I&ME for the
Engineering Graduate Student Council at Penn State
University in 1997. He is a member of IIE and SME. His
email and web addresses are <son@sie.arizona.
edu> and <www.sie.arizona.edu>.

DR. ALBERT T. JONES is currently heading up projects
at the National Institute of Standards and Technology
(NIST) to investigate the functional and integration
requirements for the next generation simulation tools.
Prior to this assignment, Dr. Jones spent several years as
66

Son, Jones, and Wysk

Deputy Director of the Automated Manufacturing
Research Facility at NIST. During that time, Dr. Jones
worked with various NIST and academic researchers on
system architectures for shop floor control, cell control,
and distributed scheduling. He received his MS in
Mathematics and Ph.D. in Industrial Engineering from
Purdue University. Dr. Jones is currently on the Executive
Boards for the Winter Simulation Conference and the
Engineering School at Loyola of Baltimore. He is
Manufacturing Editor for several leading journals. He has
Chaired or Co-chaired several international conferences,
and has served on several proposal evaluation panels for
NSF, NIST, and ARPA. His email and web addresses are
<albert.jones@nist.gov> and <www.mel.
nist.gov/msidstaff/jones.albert.htm>.

DR. RICHARD A. WYSK is well-known for his work in
computer integrated manufacturing, computer automated
manufacturing, computer aided process planning and
concurrent engineering. He holds the Leonhard Chair in
Engineering at Penn State University. Prior to his current
position, he was director of the Institute for Manufacturing
Systems and holder of the Royce Wisenbaker Chair in
Innovation at Texas A&M. Dr. Wysk also served on the
faculty of Virginia Tech and worked in industry as a
research analyst for the Caterpillar Tractor Company and
as production control manager for General Electric. He is
a decorated Vietnam veteran. Dr. Wysk is the author of
several textbooks. Honors recognizing his research include
the Institute of Industrial Engineers, David F. Baker
Distinguished Research Award, and the Society of
Manufacturing Engineers Outstanding Young
Manufacturing Engineer Award. Dr. Wysk holds
Bachelor�s and Master�s degrees in Industrial Engineering
and Operations Research from the University of
Massachusetts and a Ph.D. in Industrial Engineering from
Purdue University. His email and web addresses are
<rwysk@psu.edu> and <www.engr.psu.edu/
cim/wysk.htm>.

1567

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

