
Proceedings of the 2000 Winter Simulation Conference
J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, eds.

MODEL COMPOSABILITY AS A RESEARCH INVESTMENT:
RESPONSES TO THE FEATURED PAPER

Paul C. Davis

RAND Graduate School of Policy Studies
1700 Main Street

Santa Monica, CA 90407-2138, U.S.A.

C. Michael Overstreet

Computer Science Department
Old Dominion University

Norfolk, VA 23529-0162, U.S.A.

Paul A. Fishwick

University of Florida
CISE Department, PO. Box 116120

Gainesville, FL 32611, U.S.A.

C. Dennis Pegden

Rockwell Software, Inc.
504 Beaver Street

Sewickley, PA 15143, U.S.A.

ABSTRACT

Responses to the featured paper are provided by four
authors who represent different elements of the simulation
research community: industry, private research laboratory,
and university. As is evident from the reactions given,
these perspective provide both shared and distinct
observations on model composability as an opportunity for
research investment.

1 COMMENTS ON THE KASPUTIS-NG PAPER

(PAUL C. DAVIS)

I applaud heartily the main thrusts of the Kasputis-Ng
paper. My observations add ammunition to the authors�
general arguments, question various particulars, and offer
alternatives.

1.1 Purposes of Composability

The authors argue well for composable systems. I would
add an important argument. A high-priority issue in the
�transformation� of the U.S. military for the demands of
future battlefields is developing highly composable
military operations. A future CINC should be able quickly
to construct a plan suited to details of the at-the-time
situation, which might include, for example: needing
quickly to: deploy with minimal warning; conduct forced-
entry; suppress and destroy air defenses and weapons of
mass destruction; and magnify the effectiveness of allied
forces. It might not have been clear in advance what
capabilities would be most effective, nor even where C2
functions would best be located (e.g., ashore, on ship, or on
158

aircraft). Moving to such an adaptive system for joint
operations will be no mean feat (Davis, Gompert, and
Kugler 1996). A principal enabler will be simulation�for
conceiving, exploring, constructing, training, and testing at
all levels of hierarchy. That simulation will need many of
the features called for by Kasputis and Ng.

1.2 Refining the Paradigm

Where I perhaps take issue with the paper relates more to
details. It seems from my reading of draft material that the
authors� vision is a system with so extensive a library of
compatible modules and machinery for assembly as to
allow automated system construction in any circumstance.
My preferred vision emphasizes the man-machine
interface. This anticipates that it will usually be necessary
to do a fair amount of at-the-time tailoring and stitching
together. Just as a craftsman may chip away at bricks to
accommodate odd corners or decorations (i.e., the building
blocks are never exhaustive), so also will future simulators
need to add to their models and create ad hoc interfaces.
An important measure of effectiveness in this paradigm is
the number of expert-days needed to assemble the
simulation needed. The goal then becomes efficient man-
machine work, rather than automation. This affects
priorities and emphasis.

1.3 Cautions About the Composability Concept

The authors have in mind nothing of the sort I fear in this
regard, but their imagery of a standard library of fully
tested modules and eliminating redundancy needs an
attached warning notice. Empirically, bureaucracies love
5

Davis, Fishwick, Overstreet, and Pegden
standardization and �accepted� models, but appear to care
much less about true validity�much less a rich
competition of ideas. Some recent aspects of DoD�s
approach to modeling and simulation have been compared
to Soviet-style Central Planning.

This is not merely academic: the integrated
composable system the authors seek cannot be achieved in
a fully portable form. Instead, based on my experience
with RAND�s RSAS and JICM systems, and discussions
with scientists at Los Alamos National Laboratories
regarding these matters, it seems to me that the
compatibility of building blocks typically depends on their
having been developed with certain low-level features of
modeling and computing environment frozen. This may
relate to operating-system issues, language, or, for
example, atomic characterization of terrain information.
There are also many semantic subtleties that can
reasonably be controlled only within a walled system (e.g.,
recall the story about how different Services interpret the
mission to �secure that building�). This leads me to
suggest that the composable systems that we need should
probably be conceived and defined at a specification-
language level. This would include a fair amount of free-
form text, picture-drawing, and example-giving; the ideas
could then be quickly transported to different
environments. In contrast, if the composable system were
tied to a particular system�and especially if access to that
system and its data were tightly controlled�the barriers to
innovation and rethinking could be high.

By �specification-language level,� I don�t necessarily
mean a specific specification language as discussed in
earlier years. Indeed, higher-level modeling environments
make it possible to design and implement simultaneously,
and to build good documentation along the way. One
example of this is the Analytica system, which my
colleagues and I have been using heavily in the last few
years. I believe it to be the case that it is much easier for
someone to receive, comprehend, and recode for his own
environment a model built properly in such a system�than
one written in C++ with usual documentation. The
recipient has data dictionaries, data-flow diagrams, and
algorithms in a high-level language to help. Even with
differences in convention from one high-level depiction to
another, the time spent comprehending and then recoding
could be trivial in comparison with the time required to
think out the problem and design an appropriate model.
Thus, I caution against equating reusability of concepts and
models with off-the-shelf reusability of computer code.
Both have their place. On the one hand, the staff of the
CINC�s I mentioned at the outset would want to be
working within a standardized and well-controlled
environment. So also would many study and analysis
organizations, or weapon-system developers. But they
would often prefer their own environments, not a single
standard system imposed upon them that lacks some of the
15

special features they need. The community as a whole
needs such flexibility to work in their own environments.
While some standards are enabling and liberating (e.g., the
original internet standards and the HLA), more detailed
standards can be quite dangerous to good work and
innovation.

1.4 Additional Issues in Composable Systems

I would like to mention one special challenge in
composability. That is the need to address seriously�in
the structuring of model components and the development
of databases�the massive and ubiquitous uncertainty that
often exists in problems of strategy and tactics. In my own
work, I have emphasized exploratory analysis as a
fundamental concept for dealing with uncertainty. The
variable- or multi-resolution modeling that the authors
mention is, in my view, an essential element of being able
to do exploratory analysis well. Many related principles are
emerging, as well as suggestions for enabling tools (Davis
2000).

A difficult but crucial aspect of working with multiple
levels and choices of abstraction is the need to use all the
information available�at all levels and choices of detail�
to develop mutually consistent families of models (Davis
and Bigelow 1998). Few tools exist for this and most that
do exist are biased more toward statistical fits than
phenomenological modeling. We should anticipate the
need for at-the-time tailoring, because abstractions (and
disaggregation schemes) are simply not generally valid.
An essential part of this tailoring will be a mutual
calibration process using information, including
information about uncertainty, suitable to the specific
context. Proceduralizing such work will require great
strides in theory, tools, and education.

1.5 Final Comments

To conclude, I found a great deal to applaud in the
Kasputis-Ng paper and hope that my comments add
ammunition to their own arguments, as well as posing even
more challenges consistent with their aim.

2 A RESPONSE TO �COMPOSABLE

SIMLUATIONS�: FIVE KEY ISSUES
(PAUL A. FISHWICK)

Kasputis and Ng have chosen a very broad and interesting
topic to address: composability within simulation. The
article takes the approach of an elicitation of requirements
and issues connected with composable simulations. My
response will be based on five areas that cut across their
issues, by expanding on some of the issues they present.
There are not as many answers as I like, since this topic
86

Davis, Fishwick, Overstreet, and Pegden
covers a vast territory. However, with this paper and
responses, we can try to address the major issues.

2.1 Representation

We need to address the type of representations that we will
accept for components, which will serve the composability
requirement. There are roughly two philosophical
approaches to making representations: universal versus
plethora. Either you believe that one type of representation
needs to be used, or that a plethora of representations are
acceptable. There are simulationists on both sides of this
argument. While theories based on a systems view provide
an excellent foundation for understanding the techniques of
composability, the simulation community requires multiple
representations since no one group is satisfied with a
singular view. The representation will likely be of an
atomic form that has a clearly defined input/output
interface. That much, we can probably all agree on. We
need to foster model-based thinking when creating
component networks. To those with a modeling bent, this
may seem like a foregone conclusion, but many component
makers view components as units of source code, say, in
Java or C++. It is not enough to work at this level. We
need to rise above source code and embrace graphically
oriented metaphors that can be defined at multiple
abstraction levels (Fishwick 1991, 1995). Even in most
University-level introductory courses on �programming,�
we still do not instill the importance of modeling into a
student�s mental framework of what it means to do
computation via composition, and yet, many good theories
and modeling frameworks have been around for at least
two decades. Thus, there is also an educational barrier that
we need to cross to make components and composability
part of the mainstream.

2.2 Requirements

The authors are correct to spend time on requirements.
Without knowing the requirements for the simulation, we
are hard-pressed to invent compositions. The problem is that
a lot more research and tool development needs to take place
to translate requirements, which will most likely be in
natural language form, into a set of components to do the
job. If requirements can be specified in �model form� then
this translation step may not be necessary. A lot of
researchers, like me, just ignore this problem, not because it
is trivial, but because it is extremely difficult. But we need to
place heavier emphasis upon it. Some quantitative
requirements, such as elapsed time (Lee and Fishwick 1999),
do have partial solutions but the larger problem needs further
elaboration (perhaps within another response).
15

2.3 Marketplace

If composable simulations are to ever take flight, there needs
to be a place where people buy and sell components.
Otherwise, they will not grow in number, or be accepted.
Even though DoD mandates do not always produce the
desired response (i.e., the adoption of Ada), DoD has a
crucial role to play in nurturing this marketplace. It works
something like this. DoD acquires new technology in the
form of hardware. Upon delivery of this hardware, DoD
should require the contractor to produce a digital version of
the hardware. In what form? At this point, any form is better
than none, and this returns us to the issues of component
representation. This may serve as a catalyst for increasing
the number of models and components. The idea is that
eventually, if DoD fosters the digital object requirement for
acquisition, that everyone will require it eventually, even
individual consumers before they agree to purchase a
product. For those industries that refuse to deliver the
components, competitors will be waiting in the wings.

2.4 Plug and Play

We can learn a lot from the way that electronic
components hook together to compose networks and
integrated installations. The components have to hook
together perfectly, which means that the inputs and outputs
must be of the specified data types. Having imposed
geometric constraints on components will also aid the
composability process since the connections are surfaced
through visualization (Hopkins and Fishwick 2000).
Figures 1 and 2 demonstrate the use of visualization when
dealing with components. An agent-based metaphor is
applied so that the model is composed of individual agents
traversing paths that lead from one resource to the next. In
this particular example, from (Hopkins and Fishwick
2000), a model is created to represent an Operating System
(O/S) kernel.

2.5 Finding Components

The Web should be a central vehicle for discussions and
implementations of composability. We use browsers for
almost all our interactions, and much product development
focuses on execution in the browser or, at least, through the
browser. We need a component search engine, which
means that we need standards for components. Tag
languages such as XML may address this need since, in
XML, one can express components naturally with domain-
specific elements.
87

Davis, Fishwick, Overstreet, and Pegden
Figure 1: Top View of the O/S Task Scheduler

The CPU facility is shown at top center, with its
priority queues just below and to the left of it. DEV,
COM, MEM, and I/O service facilities are on shown on the
right, top to bottom respectively, with queues to the left of
each.

Figure 2: Close-Up View of Task Scheduler Operation

3 COMPOSABLE SIMULATION SYSTEMS:
ANOTHER PHILOSOPHER�S STONE?
(C. MICHEAL OVERSTREET)

Remember the Philosopher�s Stone? It could be used to
turn lead (or other base metals) into gold (�alchemy�).
Many believed it would be useful. But neither desire nor
need implies possibility.

Or perhaps a better, more recent, analogy is Newell
and Simon�s Generalized Problem Solver (GPS) that many
in the artificial intelligence community attempted to build
in the past (Newell, Shaw, and Simon 1957, 1959). You
give it a problem (a set of requirements), and it uses its
reasoning capabilities and store of knowledge to build a
solution. If a GPS could be built, its benefits would be
significant and it would be perhaps the ultimate in reusable
software components. One might argue that a truly general
Composable Simulation System requires something as
complex as a GPS: a user describes a problem (it terms of
requirements), the system then finds and builds a solution.

15

Kasputis and Ng provide an excellent discussion on

the scope of issues related to Composable Simulation Sys-
tems. I choose to comment on just a few.

In the software development community in general
and specifically in the simulation tool development
community, we�re fighting two fundamental truths:

• Our desires are unbounded: The desire for new

system capabilities is never-ending. Some of
these desires reflect real needs. Some real needs
cannot be met with current capabilities, some will
not be met in the near-term, and some will never
be met. It is often impossible to tell the
difference. It is often impossible to prove that a
proposed task is impossible (maybe at any cost,
but certainly given scope, time and budget con-
straints).

• Some systems we attempt will always be just
barely doable: Systems are built when it is
feasible to do so. Some systems (for the research
community, the most interesting) are always just
barely feasible with current technologies.
Regardless of our development capabilities, some
desirable systems will remain just beyond our
current capabilities.

I mention this because I believe that even if we build a

functional Composable Simulation System, we will still
find that many desirable models are not quite feasible
given time and budget constraints: we will attempt bigger
models.

Other current realities (in my view) also make the
creation of effective, general-purpose composable
simulation systems impossible. These observations are
strongly influenced by experiences in working with the
U.S. Department of Defense�s ModSAF, now OneSAF
(ModSAF):

• Hardware improvements are the salvation and the

bane of simulations. The speed improvements
continue to make feasible this year that which was
infeasible last year. They are a bane because
these speed improvements make last year�s
models obsolete. ModSAF, and the level of detail
modeled in each participating entity, would not
have been attempted without the hardware
improvements and costs reductions of the past
decade.

• For many uses of simulation, particularly within
the U.S. Department of Defense, the simulation
system would be a virtual reality (VR) system if
technology would allow it. Assuming that the
hardware improvement trend of the past 5 decades
continues, this implies that most models built
today will be obsolete tomorrow. Again, it is
88

Davis, Fishwick, Overstreet, and Pegden
primarily my experiences with ModSAF that lead
me to this conclusion.

This merging of simulations and virtual reality

systems is bothersome. It seems to make traditional
approaches to building effective simulations ineffective in
some fundamental ways. In the past, the essence of
simulation was modeling: simplify reality by identifying
abstractions (for example, queueing system components) in
real situations. Models were built by combining these
widely recognized and frequently reoccurring abstractions.
In addition, the recognition that some abstract components
occur frequently in many models allows the construction of
simulation languages (like GPSS and scores of more
recent, graphics-based derivatives) to be used successfully
to build many models in widely different application
domains.

Virtual reality requires something different: A
component�s contribution to the system characteristics of
interest may ultimately be that of an M/M/1 queue, but for
VR, different M/M/1 queues will likely require different
physical representations. And depending on the capabilities
of future VR technologies, perhaps require different smells,
textures, radiate different amounts of heat, or vibrate at
different frequencies when touched. The effort required to
build reusable components is significantly different in the
VR case. Assuming an adequately parameterized
component exists that is valid for this use and can be
located, the effort and knowledge required to get all of the
specification details right is significantly increased.

Remember the Philosopher�s Stone? While
impossible, the search for it contributed to development of
chemistry as a real science. And while a generalized
problem solver may never be built (the SOAR community
might argue this (Laird, Newell, and Rosenbloom 1987)),
good automatic theorem provers and expert systems were,
although their effective scope is much narrower than
initially envisioned. Likewise, the quest for a system for
building new simulations out of old will make significant
contributions to simulation science even if it the ultimate
vision gets redefined along the way.

4 PURPOSE-BUILT VERSUS GENERIC

MODELING (C. DENNIS PEGDEN)

Since the beginning days of simulation, the conventional
wisdom has been that a successful simulation begins with a
clear statement of the purpose of the model. This point is
hammered home in nearly every introductory textbook on
simulation methodology. One begins with a statement of
the purpose and develops a model to meet that purpose.
This statement of purpose includes the specific questions
that need to be answered (e.g., predict daily production
capacity) and the accuracy required (e.g., within 5%). The
15

stated purpose then drives the level of detail (and the
amount of work) that is put into the model.
 A good example of the importance of model purpose
on model detail is the application of simulation to predict
or compare performance. There is a significant difference
in the level of detail required in the model based on
whether the model is being used to predict performance of
a single system or to compare two or more systems. If we
are attempting to predict the production capacity of a
factory, we must include all aspects of the system that
impact the capacity. This includes details such as restroom
breaks, equipment breakdowns, material shortages, and so
on. On the other hand, if we simply want to compare
system X against system Y to pick the best, all we really
care about is the difference in performance between the
two systems. In this case, we can omit elements of the
system that impact both systems in approximately the same
way, and typically we can get by with a much simpler
model. This is fortunate, in this instance, since we are
modeling two different systems.
 The wisdom of beginning with a clearly defined
purpose and using this to drive model detail has served the
modeling community extremely well and is a key factor in
the success of simulation applications. Many novice users
who fail in their first big simulation project do so because
they do not take this advice to heart. They start off building
a model with no clear purpose in mind or no understanding
of the questions they want to answer. Their models have no
basis for establishing the level of detail required in the
model. Often the level of detail within the model varies
dramatically based on either the sophistication of the
modeling tool or the application knowledge of the modeler.
The parts of the system that are well understood and have
strong tool support are modeled in detail, and other
elements of the model are captured in less detail.
 The ideal model is one that will answer the questions
within the desired level of accuracy with minimal effort. In
many cases, a very simple model is all that is needed; in
other cases, a very detailed model is required. The
objective of the simulation user is to decide on the minimal
level of detail that is adequate to answer the questions
posed by the study.
 Note that a model with greater fidelity than needed for
the purpose of the study is not only more costly to build,
but is also undesirable. An overly detailed model is
difficult to verify, expensive to modify/maintain, and most
importantly, takes significantly longer to run, a factor that
generally leads to fewer replications. The gains achieved
from the improved model accuracy are more than offset by
decreases in statistical accuracy resulting from fewer
replications of the model.
 As we look to the future in simulation, one of the
promising ideas is the concept of having pre-built models
or model components that can be plugged together to form
a model of our system. The idea is that we simply select
89

Davis, Fishwick, Overstreet, and Pegden
these components from a library and use them directly. For
example, we might build a model of our entire supply
chain by simply connecting together pre-built, generic
models of our plants, distribution centers, and
transportation centers. The goal is to build each model
component once, verify its operation, and then make it
available in a library to be used in many different
applications.
 There are some significant problems that must be
addressed to create a framework that supports the idea of
composing models from pre-built, generic
models/components. One critical issue is model fidelity.
 To make this concept work, we need to rethink
completely the concept of a purpose-built model. Our
generic model components must be built without knowing
the specific questions that they will be used to answer.
How do we decide on the level of detail to incorporate into
these generic models? If we build a highly detailed model
of our plant, then it will be useful for accurately predicting
our plant system performance, but much too detailed for
incorporation into an enterprise-wide supply chain model.
On the other hand, if we build a rough-cut capacity model
of our plant, it will be useful in our enterprise-wide supply
chain model, but useless for predicting detailed plant
system performance.
 The challenge is to build model components that have
multiple levels of fidelity that can be changed by the user
based on the purpose of the model. The generic model
must include high-level representations as well as detailed
representations of the same system. When a model or
model component is selected, the user specifies the level of
detail required, which causes the appropriate model
representation to be used.
 To accomplish this, we must anticipate and
accommodate a wide range of questions that might be
asked using the generic model that we are building. Our
task is shifted from developing a single purpose-built
model to one of building a generic model that is multi-
purpose built.
 The basic idea of composing large models from pre-
built components is compelling. However, there are some
significant issues to address to make this work in practice.
One of these is the challenge of supporting multi-purpose
models.

REFERENCES

�alchemy,� Encyclopedia Britannica Online, <http://

search.eb.com>, referenced July 6, 2000.
Davis, P.K., and J.H. Bigelow. 1998. Experiments in

Multiresolution Modeling. RAND, MR 1004, Santa
Monica, CA.

Davis, P.K. 2000, Exploratory Analysis Enabled by
Multiresolution Modeling. In Proceedings of the
Winter Simulation Conference 2000.
15

Davis, P.K., D. Gompert, and R. Kugler. 1996.

Adaptiveness in National Defense: the Basis for a New
Framework, RAND Issue Paper IP 155, Santa Monica,
CA.

Fishwick, P. 1991. Heterogeneous Decomposition and
Inter-Level Coupling for Combined Modeling. In
Proceedings of the 1991 Winter Simulation
Conference.

Fishwick, P. 1995. Simulation Model Design and Execu
tion: Building Digital Worlds, Prentice Hall.

Hopkins, J. and P. Fishwick. 2000. Synthetic Human
Agents for Modeling and Simulation. In Proceedings
of the IEEE, submitted for publication, May 2000.

Laird, J.E., A. Newell and P.S. Rosenbloom. 1987. SOAR:
An Architecture for General Intelligence. Artificial
Intelligence, 33: 1-64.

Lee, K. and P. Fishwick. 1999. OOPM/RT: A
Multimodeling Methodology for Real-Time
Simulation, ACM Transactions on Modeling and
Computer Simulation, 9(2), April 1999, pp. 141-170.

ModSAF, <www.modsaf.org>, referenced July 6, 2000.
Newell, A., J. C. Shaw, and H. A. Simon. 1957.

Preliminary Description of a Generalized Problem
Solver. Pittsburg: Carnegie Institute of Technology,
CIP Working Paper No. 7, 1957.

Newell, A., J.C. Shaw and H. A. Simon. 1959. Report on a
General Problem Solving Program, RAND
Corporation, Report No. P1584

AUTHOR BIOGRAPHIES

PAUL K. DAVIS is a senior scientist at RAND and a
professor in the RAND Graduate School of Policy Studies.
He has published extensively on defense planning,
analysis, modeling, and simulation. In the 1980s he led
development of the RAND Strategy Assessment System
(RSAS), a large-scale analytical war gaming system with a
mix of combat models and agents representing political
and military leaders. He was the principal author of a 1997
National Research Council 1997 book on Modeling and
Simulation. Dr. Davis received a B.S. from the U. of
Michigan and a Ph.D. in chemical physics from MIT.
Before moving to RAND in 1981, he was a senior
executive in the office of the Secretary of Defense. Dr.
Davis may be reached via email at <pdavis@
rand.org> and his website is located at <www.rand.
org/personal/pdavis>.

PAUL A. FISHWICK is Professor of Computer and
Information Science and Engineering at the University of
Florida. He received the PhD in Computer and Information
Science from the University of Pennsylvania. He also has
six years of industrial/government production and research
experience working at Newport News Shipbuilding and
Dry Dock Co. (doing CAD/CAM parts definition research)
90

Davis, Fishwick, Overstreet, and Pegden

and at NASA Langley Research Center (studying
engineering data base models for structural engineering).
His research interests are in computer simulation modeling
and analysis methods for complex systems. He is a senior
member of the IEEE and a Fellow of the Society for
Computer Simulation. Dr. Fishwick founded the
comp.simulation Internet news group (Simulation Digest)
in 1987, which now serves over 20,000 subscribers. He has
chaired workshops and conferences in the area of computer
simulation, and will serve as General Chair of the 2000
Winter Simulation Conference. He was chairman of the
IEEE Computer Society technical committee on simulation
(TCSIM) for two years (1988-1990). He has published
over 40 journal articles, written one textbook, co-edited
two Springer Verlag volumes in simulation, and published
six book chapters. Dr. Fishwick�s WWW home page is
<www.cise.ufl.edu/~fishwick> and his E-mail
address is <fishwick@cise.ufl.edu>.

C. MICHAEL OVERSTREET is an Associate Professor
of Computer Science at Old Dominion University. He
received his B.S for the University of Tennessee, an M.S:
for Idaho State University, and an M.S. and Ph.D. from
Virginia Polytechnic Institute and State University. His
current research interests include model specification and
analysis, static code analysis and support of interactive
distance instruction.

C. DENNIS PEGDEN received his bachelors in
Aeronautics, Astronautics, and Engineering Sciences from
Purdue University in 1970. He worked in the aerospace
industry at the National Aeronautics and Space
Administration and the Matrix Corporation. He returned to
Purdue in 1973 and received his Ph.D. in mathematical
optimization from the Industrial Engineering Department
in 1976. After graduation, he taught at the University of
Alabama in Huntsville where he began his work in
simulation and led in the development of the SLAM
simulation language. In 1979, he joined the faculty at the
Pennsylvania State University where he completed the
development of the SIMAN simulation language. He is
currently Director of Development of Rockwell Software,
Inc., which markets SIMAN and Arena simulation
products; the Tempo scheduling product; and vertical
market products in the areas of call centers, business
processing, manufacturing, high-speed processing, and
real-time control.

1591

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

