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ABSTRACT  
 
Responses to the featured paper are provided by four 
authors who represent different elements of the simulation 
research community: industry, private research laboratory, 
and university.  As is evident from the reactions given, 
these perspective provide both shared and distinct 
observations on model composability as an opportunity for 
research investment. 
 
1 COMMENTS ON THE KASPUTIS-NG PAPER 

(PAUL C. DAVIS) 
 

I applaud heartily the main thrusts of the Kasputis-Ng 
paper.  My observations add ammunition to the authors� 
general arguments, question various particulars, and offer 
alternatives. 

 
1.1 Purposes of Composability 

 
The authors argue well for composable systems.  I would 
add an important argument.  A high-priority issue in the 
�transformation� of the U.S. military for the demands of 
future battlefields is developing highly composable 
military operations.  A future CINC should be able quickly 
to construct a plan suited to details of the at-the-time 
situation, which might include, for example: needing 
quickly to: deploy with minimal warning; conduct forced-
entry; suppress and destroy air defenses and weapons of 
mass destruction; and magnify the effectiveness of allied 
forces.  It might not have been clear in advance what 
capabilities would be most effective, nor even where C2 
functions would best be located (e.g., ashore, on ship, or on 
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aircraft).  Moving to such an adaptive system for joint 
operations will be no mean feat (Davis, Gompert, and 
Kugler 1996).  A principal enabler will be simulation�for 
conceiving, exploring, constructing, training, and testing at 
all levels of hierarchy.  That simulation will need many of 
the features called for by Kasputis and Ng. 

 
1.2 Refining the Paradigm 

 
Where I perhaps take issue with the paper relates more to 
details.  It seems from my reading of draft material that the 
authors� vision is a system with so extensive a library of 
compatible modules and machinery for assembly as to 
allow automated system construction in any circumstance.  
My preferred vision emphasizes the man-machine 
interface.  This anticipates that it will usually be necessary 
to do a fair amount of at-the-time tailoring and stitching 
together.  Just as a craftsman may chip away at bricks to 
accommodate odd corners or decorations (i.e., the building 
blocks are never exhaustive), so also will future simulators 
need to add to their models and create ad hoc interfaces.  
An important measure of effectiveness in this paradigm is 
the number of expert-days needed to assemble the 
simulation needed.  The goal then becomes efficient man-
machine work, rather than automation.  This affects 
priorities and emphasis. 

 
1.3 Cautions About the Composability Concept 

 
The authors have in mind nothing of the sort I fear in this 
regard, but their imagery of a standard library of fully 
tested modules and eliminating redundancy needs an 
attached warning notice.  Empirically, bureaucracies love 
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standardization and �accepted� models, but appear to care 
much less about true validity�much less a rich 
competition of ideas.  Some recent aspects of DoD�s 
approach to modeling and simulation have been compared 
to Soviet-style Central Planning.   

This is not merely academic: the integrated 
composable system the authors seek cannot be achieved in 
a fully portable form.  Instead, based on my experience 
with RAND�s RSAS and JICM systems, and discussions 
with scientists at Los Alamos National Laboratories 
regarding these matters, it seems to me that the 
compatibility of building blocks typically depends on their 
having been developed with certain low-level features of 
modeling and computing environment frozen.  This may 
relate to operating-system issues, language, or, for 
example, atomic characterization of terrain information.  
There are also many semantic subtleties that can 
reasonably be controlled only within a walled system (e.g., 
recall the story about how different Services interpret the 
mission to �secure that building�).  This leads me to 
suggest that the composable systems that we need should 
probably be conceived and defined at a specification-
language level.  This would include a fair amount of free-
form text, picture-drawing, and example-giving; the ideas 
could then be quickly transported to different 
environments.  In contrast, if the composable system were 
tied to a particular system�and especially if access to that 
system and its data were tightly controlled�the barriers to 
innovation and rethinking could be high.   

By �specification-language level,� I don�t necessarily 
mean a specific specification language as discussed in 
earlier years.  Indeed, higher-level modeling environments 
make it possible to design and implement simultaneously, 
and to build good documentation along the way.  One 
example of this is the Analytica system, which my 
colleagues and I have been using heavily in the last few 
years.  I believe it to be the case that it is much easier for 
someone to receive, comprehend, and recode for his own 
environment a model built properly in such a system�than 
one written in C++ with usual documentation.  The 
recipient has data dictionaries, data-flow diagrams, and 
algorithms in a high-level language to help.  Even with 
differences in convention from one high-level depiction to 
another, the time spent comprehending and then recoding 
could be trivial in comparison with the time required to 
think out the problem and design an appropriate model.  
Thus, I caution against equating reusability of concepts and 
models with off-the-shelf reusability of computer code.  
Both have their place.  On the one hand, the staff of the 
CINC�s I mentioned at the outset would want to be 
working within a standardized and well-controlled 
environment.  So also would many study and analysis 
organizations, or weapon-system developers.  But they 
would often prefer their own environments, not a single 
standard system imposed upon them that lacks some of the 
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special features they need.  The community as a whole 
needs such flexibility to work in their own environments.  
While some standards are enabling and liberating (e.g., the 
original internet standards and the HLA), more detailed 
standards can be quite dangerous to good work and 
innovation. 

 
1.4 Additional Issues in Composable Systems 

 
I would like to mention one special challenge in 
composability. That is the need to address seriously�in 
the structuring of model components and the development 
of databases�the massive and ubiquitous uncertainty that 
often exists in problems of strategy and tactics. In my own 
work, I have emphasized exploratory analysis as a 
fundamental concept for dealing with uncertainty. The 
variable- or multi-resolution modeling that the authors 
mention is, in my view, an essential element of being able 
to do exploratory analysis well. Many related principles are 
emerging, as well as suggestions for enabling tools (Davis 
2000). 

A difficult but crucial aspect of working with multiple 
levels and choices of abstraction is the need to use all the 
information available�at all levels and choices of detail�
to develop mutually consistent families of models (Davis 
and Bigelow 1998).  Few tools exist for this and most that 
do exist are biased more toward statistical fits than 
phenomenological modeling.  We should anticipate the 
need for at-the-time tailoring, because abstractions (and 
disaggregation schemes) are simply not generally valid.  
An essential part of this tailoring will be a mutual 
calibration process using information, including 
information about uncertainty, suitable to the specific 
context.  Proceduralizing such work will require great 
strides in theory, tools, and education. 

 
1.5 Final Comments 

 
To conclude, I found a great deal to applaud in the 
Kasputis-Ng paper and hope that my comments add 
ammunition to their own arguments, as well as posing even 
more challenges consistent with their aim. 
 
2 A RESPONSE TO �COMPOSABLE 

SIMLUATIONS�:  FIVE KEY ISSUES  
(PAUL A. FISHWICK) 

 
Kasputis and Ng have chosen a very broad and interesting 
topic to address: composability within simulation.  The 
article takes the approach of an elicitation of requirements 
and issues connected with composable simulations. My 
response will be based on five areas that cut across their 
issues, by expanding on some of the issues they present. 
There are not as many answers as I like, since this topic 
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covers a vast territory. However, with this paper and 
responses, we can try to address the major issues. 

 
2.1 Representation 

 
We need to address the type of representations that we will 
accept for components, which will serve the composability 
requirement. There are roughly two philosophical 
approaches to making representations: universal versus 
plethora. Either you believe that one type of representation 
needs to be used, or that a plethora of representations are 
acceptable. There are simulationists on both sides of this 
argument. While theories based on a systems view provide 
an excellent foundation for understanding the techniques of 
composability, the simulation community requires multiple 
representations since no one group is satisfied with a 
singular view. The representation will likely be of an 
atomic form that has a clearly defined input/output 
interface. That much, we can probably all agree on. We 
need to foster model-based thinking when creating 
component networks. To those with a modeling bent, this 
may seem like a foregone conclusion, but many component 
makers view components as units of source code, say, in 
Java or C++. It is not enough to work at this level. We 
need to rise above source code and embrace graphically 
oriented metaphors that can be defined at multiple 
abstraction levels (Fishwick 1991, 1995). Even in most 
University-level introductory courses on �programming,� 
we still do not instill the importance of modeling into a 
student�s mental framework of what it means to do 
computation via composition, and yet, many good theories 
and modeling frameworks have been around for at least 
two decades. Thus, there is also an educational barrier that 
we need to cross to make components and composability 
part of the mainstream. 
 
2.2 Requirements  

 
The authors are correct to spend time on requirements. 
Without knowing the requirements for the simulation, we 
are hard-pressed to invent compositions. The problem is that 
a lot more research and tool development needs to take place 
to translate requirements, which will most likely be in 
natural language form, into a set of components to do the 
job. If requirements can be specified in �model form� then 
this translation step may not be necessary. A lot of 
researchers, like me, just ignore this problem, not because it 
is trivial, but because it is extremely difficult. But we need to 
place heavier emphasis upon it. Some quantitative 
requirements, such as elapsed time (Lee and Fishwick 1999), 
do have partial solutions but the larger problem needs further 
elaboration (perhaps within another response). 
15
 
2.3 Marketplace 

 
If composable simulations are to ever take flight, there needs 
to be a place where people buy and sell components. 
Otherwise, they will not grow in number, or be accepted. 
Even though DoD mandates do not always produce the 
desired response (i.e., the adoption of Ada), DoD has a 
crucial role to play in nurturing this marketplace. It works 
something like this. DoD acquires new technology in the 
form of hardware. Upon delivery of this hardware, DoD 
should require the contractor to produce a digital version of 
the hardware. In what form? At this point, any form is better 
than none, and this returns us to the issues of component 
representation. This may serve as a catalyst for increasing 
the number of models and components. The idea is that 
eventually, if DoD fosters the digital object requirement for 
acquisition, that everyone will require it eventually, even 
individual consumers before they agree to purchase a 
product. For those industries that refuse to deliver the 
components, competitors will be waiting in the wings. 

 
2.4 Plug and Play 

 
We can learn a lot from the way that electronic 
components hook together to compose networks and 
integrated installations. The components have to hook 
together perfectly, which means that the inputs and outputs 
must be of the specified data types. Having imposed 
geometric constraints on components will also aid the 
composability process since the connections are surfaced 
through visualization (Hopkins and Fishwick 2000).  
Figures 1 and 2 demonstrate the use of visualization when 
dealing with components. An agent-based metaphor is 
applied so that the model is composed of individual agents 
traversing paths that lead from one resource to the next. In 
this particular example, from (Hopkins and Fishwick 
2000), a model is created to represent an Operating System 
(O/S) kernel. 
 
2.5 Finding Components 

 
The Web should be a central vehicle for discussions and 
implementations of composability. We use browsers for 
almost all our interactions, and much product development 
focuses on execution in the browser or, at least, through the 
browser. We need a component search engine, which 
means that we need standards for components. Tag 
languages such as XML may address this need since, in 
XML, one can express components naturally with domain-
specific elements. 
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Figure 1: Top View of the O/S Task Scheduler 
 

The CPU facility is shown at top center, with its 
priority queues just below and to the left of it.  DEV, 
COM, MEM, and I/O service facilities are on shown on the 
right, top to bottom respectively, with queues to the left of 
each. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2:  Close-Up View of Task Scheduler Operation 
 

3 COMPOSABLE SIMULATION SYSTEMS: 
ANOTHER PHILOSOPHER�S STONE?  
(C. MICHEAL OVERSTREET) 
 

Remember the Philosopher�s Stone? It could be used to 
turn lead (or other base metals) into gold (�alchemy�).  
Many believed it would be useful.  But neither desire nor 
need implies possibility. 

Or perhaps a better, more recent, analogy is Newell 
and Simon�s Generalized Problem Solver (GPS) that many 
in the artificial intelligence community attempted to build 
in the past (Newell, Shaw, and Simon 1957, 1959).  You 
give it a problem  (a set of requirements), and it uses its 
reasoning capabilities and store of knowledge to build a 
solution.  If a GPS could be built, its benefits would be 
significant and it would be perhaps the ultimate in reusable 
software components.  One might argue that a truly general 
Composable Simulation System requires something as 
complex as a GPS:  a user describes a problem (it terms of 
requirements), the system then finds and builds a solution. 
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Kasputis and Ng provide an excellent discussion on 

the scope of issues related to Composable Simulation Sys-
tems.  I choose to comment on just a few. 

In the software development community in general 
and specifically in the simulation tool development 
community, we�re fighting two fundamental truths: 

 
• Our desires are unbounded:  The desire for new 

system capabilities is never-ending.  Some of 
these desires reflect real needs.  Some real needs 
cannot be met with current capabilities, some will 
not be met in the near-term, and some will never 
be met.  It is often impossible to tell the 
difference. It is often impossible to prove that a 
proposed task is impossible (maybe at any cost, 
but certainly given scope, time and budget con-
straints). 

• Some systems we attempt will always be just 
barely doable:  Systems are built when it is 
feasible to do so.  Some systems (for the research 
community, the most interesting) are always just 
barely feasible with current technologies. 
Regardless of our development capabilities, some 
desirable systems will remain just beyond our 
current capabilities. 

 
I mention this because I believe that even if we build a 

functional Composable Simulation System, we will still 
find that many desirable models are not quite feasible 
given time and budget constraints: we will attempt bigger 
models. 

Other current realities (in my view) also make the 
creation of effective, general-purpose composable 
simulation systems impossible.  These observations are 
strongly influenced by experiences in working with the 
U.S. Department of Defense�s ModSAF, now OneSAF 
(ModSAF): 

 
• Hardware improvements are the salvation and the 

bane of simulations.  The speed improvements 
continue to make feasible this year that which was 
infeasible last year.  They are a bane because 
these speed improvements make last year�s 
models obsolete.  ModSAF, and the level of detail 
modeled in each participating entity, would not 
have been attempted without the hardware 
improvements and costs reductions of the past 
decade. 

• For many uses of simulation, particularly within 
the U.S. Department of Defense, the simulation 
system would be a virtual reality (VR) system if 
technology would allow it.  Assuming that the 
hardware improvement trend of the past 5 decades 
continues, this implies that most models built 
today will be obsolete tomorrow.  Again, it is 
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primarily my experiences with ModSAF that lead 
me to this conclusion. 

 
This merging of simulations and virtual reality 

systems is bothersome. It seems to make traditional 
approaches to building effective simulations ineffective in 
some fundamental ways.  In the past, the essence of 
simulation was modeling: simplify reality by identifying 
abstractions (for example, queueing system components) in 
real situations.  Models were built by combining these 
widely recognized and frequently reoccurring abstractions. 
In addition, the recognition that some abstract components 
occur frequently in many models allows the construction of 
simulation languages (like GPSS and scores of more 
recent, graphics-based derivatives) to be used successfully 
to build many models in widely different application 
domains.   

Virtual reality requires something different: A 
component�s contribution to the system characteristics of 
interest may ultimately be that of an M/M/1 queue, but for 
VR, different M/M/1 queues will likely require different 
physical representations. And depending on the capabilities 
of future VR technologies, perhaps require different smells, 
textures, radiate different amounts of heat, or vibrate at 
different frequencies when touched.  The effort required to 
build reusable components is significantly different in the 
VR case. Assuming an adequately parameterized 
component exists that is valid for this use and can be 
located, the effort and knowledge required to get all of the 
specification details right is significantly increased. 

Remember the Philosopher�s Stone?  While 
impossible, the search for it contributed to development of 
chemistry as a real science.  And while a generalized 
problem solver may never be built (the SOAR community 
might argue this (Laird, Newell, and Rosenbloom 1987)), 
good automatic theorem provers and expert systems were, 
although their effective scope is much narrower than 
initially envisioned.  Likewise, the quest for a system for 
building new simulations out of old will make significant 
contributions to simulation science even if it the ultimate 
vision gets redefined along the way. 
 
4 PURPOSE-BUILT VERSUS GENERIC 

MODELING (C. DENNIS PEGDEN) 
 
Since the beginning days of simulation, the conventional 
wisdom has been that a successful simulation begins with a 
clear statement of the purpose of the model. This point is 
hammered home in nearly every introductory textbook on 
simulation methodology. One begins with a statement of 
the purpose and develops a model to meet that purpose. 
This statement of purpose includes the specific questions 
that need to be answered (e.g., predict daily production 
capacity) and the accuracy required (e.g., within 5%). The 
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stated purpose then drives the level of detail (and the 
amount of work) that is put into the model. 
 A good example of the importance of model purpose 
on model detail is the application of simulation to predict 
or compare performance. There is a significant difference 
in the level of detail required in the model based on 
whether the model is being used to predict performance of 
a single system or to compare two or more systems. If we 
are attempting to predict the production capacity of a 
factory, we must include all aspects of the system that 
impact the capacity. This includes details such as restroom 
breaks, equipment breakdowns, material shortages, and so 
on. On the other hand, if we simply want to compare 
system X against system Y to pick the best, all we really 
care about is the difference in performance between the 
two systems. In this case, we can omit elements of the 
system that impact both systems in approximately the same 
way, and typically we can get by with a much simpler 
model. This is fortunate, in this instance, since we are 
modeling two different systems. 
 The wisdom of beginning with a clearly defined 
purpose and using this to drive model detail has served the 
modeling community extremely well and is a key factor in 
the success of simulation applications. Many novice users 
who fail in their first big simulation project do so because 
they do not take this advice to heart. They start off building 
a model with no clear purpose in mind or no understanding 
of the questions they want to answer. Their models have no 
basis for establishing the level of detail required in the 
model. Often the level of detail within the model varies 
dramatically based on either the sophistication of the 
modeling tool or the application knowledge of the modeler. 
The parts of the system that are well understood and have 
strong tool support are modeled in detail, and other 
elements of the model are captured in less detail. 
 The ideal model is one that will answer the questions 
within the desired level of accuracy with minimal effort. In 
many cases, a very simple model is all that is needed; in 
other cases, a very detailed model is required. The 
objective of the simulation user is to decide on the minimal 
level of detail that is adequate to answer the questions 
posed by the study. 
 Note that a model with greater fidelity than needed for 
the purpose of the study is not only more costly to build, 
but is also undesirable. An overly detailed model is 
difficult to verify, expensive to modify/maintain, and most 
importantly, takes significantly longer to run, a factor that 
generally leads to fewer replications. The gains achieved 
from the improved model accuracy are more than offset by 
decreases in statistical accuracy resulting from fewer 
replications of the model. 
 As we look to the future in simulation, one of the 
promising ideas is the concept of having pre-built models 
or model components that can be plugged together to form 
a model of our system. The idea is that we simply select 
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these components from a library and use them directly. For 
example, we might build a model of our entire supply 
chain by simply connecting together pre-built, generic 
models of our plants, distribution centers, and 
transportation centers. The goal is to build each model 
component once, verify its operation, and then make it 
available in a library to be used in many different 
applications. 
 There are some significant problems that must be 
addressed to create a framework that supports the idea of 
composing models from pre-built, generic 
models/components. One critical issue is model fidelity. 
 To make this concept work, we need to rethink 
completely the concept of a purpose-built model. Our 
generic model components must be built without knowing 
the specific questions that they will be used to answer. 
How do we decide on the level of detail to incorporate into 
these generic models? If we build a highly detailed model 
of our plant, then it will be useful for accurately predicting 
our plant system performance, but much too detailed for 
incorporation into an enterprise-wide supply chain model. 
On the other hand, if we build a rough-cut capacity model 
of our plant, it will be useful in our enterprise-wide supply 
chain model, but useless for predicting detailed plant 
system performance. 
 The challenge is to build model components that have 
multiple levels of fidelity that can be changed by the user 
based on the purpose of the model. The generic model 
must include high-level representations as well as detailed 
representations of the same system. When a model or 
model component is selected, the user specifies the level of 
detail required, which causes the appropriate model 
representation to be used. 
 To accomplish this, we must anticipate and 
accommodate a wide range of questions that might be 
asked using the generic model that we are building. Our 
task is shifted from developing a single purpose-built 
model to one of building a generic model that is multi-
purpose built. 
 The basic idea of composing large models from pre-
built components is compelling. However, there are some 
significant issues to address to make this work in practice. 
One of these is the challenge of supporting multi-purpose 
models. 
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