
Proceedings of the 2000 Winter Simulation Conference
J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, eds.

HOW SHOULD WE TEACH SIMULATION?

Ingolf Ståhl

Department of Managerial Economics
Stockholm School of Economics

Box 6501
SE-113 83 Stockholm, SWEDEN

ABSTRACT

This paper deals with the issue of how one can teach
simulation in the most time-efficient way. We first distin-
guish between different types of student as regards their
background and future needs. We next look at reasons for
studying simulation at a business school. Next we compare
animation oriented simulators with simulation languages.
We then study a list of desirable criteria for simulation
software, in particular simulation languages, that should be
used in education. We finally answer the question if there
is any system that fulfills all of these criteria.

1 INTRODUCTION

Simulation, in particular discrete-event simulation, is no
doubt a very important tool that can be used in a very large
area of applications. Simulation has proved to be a very
powerful tool, not only in engineering, but also in business
administration. Against this background it is surprising that
most business schools and quite a few engineering schools
do not give their students any substantial amount of
teaching in simulation. In the opinion of many experts,
simulation is far away from being as broadly used and
taught, as it should rightfully be.

One reason seems to be the following �Catch 22�: A
widespread usage of simulation requires that many people
have knowledge about simulation technology. However,
there is a substantial cost of learning simulation and many
potential students will set this in relation to the probability
that the acquired simulation knowledge will be used in the
future. If students find that simulation is not used much in
practice, they believe that they are not likely to get their
invesment in time of learning simulation paid back and they
will then not learn simulation. There will then not be so
many simulation experts to expand the usage of simulation.

It is therefore very important to cut down the cost, in
particular in terms of time, of learning simulation. Student
time is an increasingly scarce resource in a very crowded
curriculum. Often only a handful of hours can be spent on
16
simulation. How one can teach simulation in a time-
efficient manner is hence the main topic of this paper.

2 MAIN DETERMINING FACTORS

When starting to analyze how simulation education can
become more effective, it is important to take the following
three factors into account:

1. The knowledge background, in particular with
regard to programming and statistics. One must
here distinguish between the following three main
groups of university students that appear to be the
main target groups of simulation courses:

a. Computer science majors, who have a strong

knowledge of programming and a fairly good
background in statistics.

b. Other types of engineering students, e.g. of
production or transportation (logistics,
material handling etc.). They have probably
taken a programming course earlier, but are
not experienced in programming. They have
a reasonably good knowledge of statistics.
With regard to the specificity of their
simulation usage to be discussed below, I
shall distinguish between two groups:
�production students�, focussing on
manufacturing planning, in particular in
engineering shops, like in automobile
production, and �logistics students�, aiming
at a broader, more general, usage of
simulation, in logistics, transport planning,
supply chain management, inventory
planning etc. There are of course other types
of engineering students studying simulation,
in areas like communication networks, but I
think the distinction above will be enough for
our later discussion of software.
02

Ståhl
c. Business students, who generally have no
knowledge of computer programming and are
also fairly weak in statistics. (This is my
experience from having taught 5000 business
students in Sweden and the U.S.)

2. The future envisaged use of simulation by the

students. Are they likely to work many months in
the future doing simulation or will they rather be
intelligent buyers of simulation services, at most
doing some rapid, �quick and dirty�, simulation
prototyping?

3. The total teaching time that can be spent on
simulation: Is it months or just a handful of hours?

There is a correlation between points 1 and 2. For

business students, but also many logistics students, the
focus will be on learning to make a rough model, a rapid
prototype, to be the basis for discussions with the
simulation specialist. The knowledge of simulation is also
important for making reasonably realistic time assessments
of the work of the simulation specialist. The focus is on
creating informed buyers of simulation services. Know-
ledge of some rapid simulation prototyping is also impor-
tant for being able to �sell� the idea of making a larger
simulation project to top-management. The computer
science major will on the other hand in the future be the
specialist from whom the other parties mentioned above
would buy the simulation modeling efforts.

There is probably also a strong correlation between
points 1 and 3. At least when it comes to the teaching of
simulation in more basic years, like in compulsory courses,
or at least courses expected to be taken by a large part of
all students, the time that can be spent by computer science
majors is most likely considerably longer than the time that
can be spent by business students and also by most types of
engineering students. Simulation will for most business
students most likely be part of a much more general course,
including e.g. simulation in spreadsheets with @Risk or
Crystal Ball, or be focused on a major project work in a
corporation. Only a minor part of the course can be spent
on learning a simulation language or package.

As regards business and logistics students, the time
available in the curriculum can vary; sometimes only 2 - 4
classroom hours will be available, sometimes 10,
sometimes a whole course of 25 - 30 hours. It is my strong
belief that as long as at least four classroom hours are
available, one should try to teach some basic simulation
modeling. The alternative is a very broad overview,
without allowing for any �hands on� experience. Most
teachers with this approach believe that the learning of a
simulation language or package would take too much time.
If any computer is used, it is limited to the input of data
into an already existing model. This �black-box� approach
has several drawbacks compared to allowing the students
16

to actually work with a simple simulation package. Only
by doing some kind of simulation modeling, a student can
get some idea about both the potentials and restrictions of
simulation. As discussed below, students can learn to do
quite interesting models within four hours.

If at least 10 classroom hours and at least 40 hours of
individual work are available, I would recommend that the
students get a chance to work their way through the whole
simulation process as regards some concrete problem. In
this way, the student can actively learn the whole process
of doing simulation for a problem, from delimiting the
actual problem, formulating the question to be answered by
simulation, gathering data, outlining the simulation pro-
gram graphically, coding the program, verifying, validating
and documenting the program, running the program a
sufficient number of times, doing a statistical analysis for
drawing significant conclusions, and presenting the results
in a form suitable for a potential user, with a focus on
getting the results implemented.

If only the minimum times indicated above are available,
one should allow the students to do a small simulation project
on a system that they are familiar with, like �the hospital I
worked in last summer�. The students should make a
reasonably valid simulation model of the present set-up. They
should gather input data (on items like arrival and service
times) from the real system and then compare the output data
(e.g. on the length of waiting lines) from the tentative model
with this real data. Finally, the students should provide and
test a suggestion for an improvement of the system.

If more time is available, like in a full course of 25 - 30
classroom hours, the ambition of the project can be raised. I
have in such courses had good experience of students in
groups of two or three doing project work in different
Swedish corporation, for example in banking, tele-
communications and retailing. Quite a few projects have dealt
with �sales support simulation models� where the simulation
model is run on a laptop and the program is run interactively
with a client, regarding e.g. the optimal configuration of a
corporate telephone exchange system. Many of the project
programs have had continued use in the corporations.

3 WHY SIMULATION AT A

BUSINESS SCHOOL?

Before starting a discussion about what kind of software is
suitable in the educational process, I must first answer a
question that I am often asked, especially by people from
other disciplines: Why do you teach discrete-event simula-
tion at a business school? Why are you not content by just
simulating financial flows in a spreadsheet? Discrete-event
simulation, implying dynamic stochastic simulation, is of
great importance for the following four reasons:

1. Replacement of other areas in Management

Science: Many teachers, including myself, have
03

Ståhl
had simulation replace, or at least complement,
other Management Science methods, such as
queuing theory, inventory theory and PERT/CPM.
The students have appreciated this, since this has
implied a greater focus on solving problems, and
fewer methods to be learnt (and forgotten).

2. Importance of physical flows and of production
economics: At many business schools there has in
the opinion of many leaders of industry been too
great an emphasis on the financial aspects of the
firm. The students have lacked an understanding of
the physical flows that constitute the reality behind
these financial flows and of the importance of
manufacturing and the economics of production.
Simulation is one way of giving business students
an introductory understanding of some of the
problems in the areas of production economics,
material handling, inventory management, etc.

3. Importance of the relationship between physical
flows and financial flows: Closely connected to
this interest in production economics is a desire to
demonstrate the connection between physical and
financial flows in a company. With this I want to
stress that we are here interested not only in
manufacturing operations as such, but also in
some kind of modeling that allows the student to
see the connection between the physical activities
in the firm and the consequential financial flows.
For this kind of simulation, a general-purpose
simulation system is of greater interest than a
system focused entirely on manufacturing.

4. Importance of stochastic dynamic simulation for
financial planning: Uncertainty is the core of
financial theory. We can just think of how we
want to answer the following questions: How
much will we sell next year: 100,000 units for
certain or 80,000 - 120,000 units? When will this
customer pay: Within 30 days for certain or with
80 percent probability within 60 days? How many
DM will buy a dollar a year from now: 2.00 for
certain or between 1.60 and 2.40? In all cases, the
last answer, indicating uncertainty, seems more
reasonable.

In fact, if all future payments could be forecast with

certainty, all corporate debt would be as safe as govern-
ment bonds. There would then be no need for different
types of financial instruments, such as convertibles and
options, and hence no need for financial theory. Against
this background, it seems strange that most simulation of
the future financial position of a corporation, e.g. cash
forecasts, is done using deterministic simulation, without
any uncertainty, by ordinary spreadsheets. Instead most
financial simulation should be stochastic.
16

The need for dynamic simulation, allowing us to

follow each major payment, regardless of when it takes
place, can be illustrated by two graphs of a cash forecast of
a small corporation, where Figure 1 presents the cash
position only at the end of the month.

These diagrams have been produced by a simple GPSS
simulation program for cash forecasting, presented as pro-
gram 50 on <webgpss.hk-r.se> and in Ståhl (1996).
The program deals with an importer that buys and sells
certain machines. It pays the foreign producer in cash
directly for each unit, but provides the customers with
credit. Orders arrive according to an exponential distribu-
tion, while customers� payment times vary according to an
Erlang distribution. Our students can write this type of
programs after about seven hours of study.

We see that the two graphs give completely different
impressions. From Figure 1 it appears that there would be
enough cash for the corporation and hence not any liquidity
problems. The financial problems, with negative cash a
great many times in the future, are clearly seen in Figure 2,
where we can follow payment by payment. In Figure 1
these problems are not perceived at all, since it by chance
happens that there is a cash surplus at each time-point that
we regard as the end of the month. This clearly illustrates
the need for a dynamic, discrete-events approach to
corporate financial planning. As discussed in Ståhl (1993),
the need for this type of dynamic simulation for cash flow
forecasts is especially large, when a couple of hundred
large payments constitutes more than half of the payments
of the company. This is true for many smaller corporations
in areas such as mechanical engineering and construction.

The question then arises why this has to be done in a
language for discrete-event simulation and not in a
spreadsheet, which business students are used to. The root
of the problem is that while a simulation language like
GPSS is �forward directed�, a spreadsheet is �backward
directed�. In a simulation system we can schedule the
payment of a sales transaction made on January 3 to come

Figure 1: Static Cash Graph
04

Ståhl

Figure 2: Dynamic Cash Graph

after a sampled time of e.g. 57 days, i.e. on March 1. In a
spreadsheet we have to write in the cell, denoting the day of
repayment, from which earlier day it shall take the sales
transaction that on this later day leads to a payment. The
correct scheduling of every payment for sales of random
amounts when payment time is also a random variable is
then impossible without using complicated macros. If we
have the payment of each day point at some stochastic
earlier date, it might very well happen that some sales are
never paid for and some sales paid for several times.
Without going into the details, which are presented in Ståhl
(1993), it can be mentioned that for the simple case when all
sales on a specific day are supposed to be paid on the same
future day, but payments possibly can be delayed for up to a
year and we want to follow payments day-by-day, simula-
tion in a spreadsheet requires at least a 365 x 365 matrix.

4 SOFTWARE FOR TEACHING SIMULATION

The type of software to be learnt will also no doubt differ
for the four types of students discussed above.

For the simulation specialist, a general purpose com-
puter language, like C++ or Java, to be combined with
special add-on packages for simulation, like e.g. Yansl or
Silk, might be the best software. Closely connected to such
GPLs, but with the simulation more integrated, there are
text-based simulation languages, like MODSIM III, SLX or
Simula. The computer science student, who most likely has
a considerable experience with C++ and/or Java before
starting in simulation, can hence proceed fairly rapidly with
learning the details of a simulation system, which are gen-
erally hidden in the systems that are discussed below. Since I
have little experience in teaching to this kind of students, I
shall here leave this group for others to comment on.

For the production engineering students, the teaching is
often focused on a specific special purpose system, often
called an animation oriented simulator, like e.g.
16

WITNESS. We shall below call this an AOS. Here one
focuses on one specific type of usage. The model is built up
graphically by choosing building blocks consisting of icons
representing e.g. machines or conveyors and locating them
on an area representing the system to be modeled. By
clicking on an icon, a menu is provided by which one can
input the specific characteristics of the process of the
machine. The learning time of the system is limited, since
the area of application is narrow. Most of these systems also
come with animation, in particular when it comes to produc-
tion planning. The major limitation is that the learning and
modeling effort increases rapidly when one starts to get
outside of the area of application for which the software is
intended. For students narrowly focussed on a specific type
of application, like production planning in the automobile
industry, this limitation is not so serious and the teaching of
an animation oriented simulator is a natural choice.

For the business students, but to some extent also for
the logistic students, a more general-purpose system is
often preferred. However, the general type of programming
languages discussed for the computer science majors above
would imply too long a learning time in relation to the
value, both due to the background of the student and the
more limited type of future work. For these students, a
preferred choice has for many years been a simulation
package in the form of a simulation language, below
referred to as a SL, like GPSS, SIMAN and SLAM. These
languages have reached a high degree of maturity and are
applicable in a wide area of applications. The language
elements are on a higher level of abstraction than those of
the AOS. The SLs are thereby general purpose and make
simulation programming easy for the user by providing
automatic management of events, updating of the
simulation clock and gathering of statistics. The user can
concentrate on the actual model. For the visualization of
results, many simulation languages provide special inter-
faces to animation systems. A SL requires some amount of
learning, but generally much less than a GPL requires. Up
to recently, simulation languages have had the disadvan-
tage of being mainly text based, requiring the students to
work with an editor for the input of the programs. For
students used to working in the GUI environment of
Windows this has been a problem.

While the choice of a GPL or GPL-based system is the
natural starting point for computer science students and the
AOS for the production planning students, the choice of a
SL for the business and logistics students would need to be
further discussed. Many people would claim that a modern
AOS is always preferable when starting to learn simula-
tion, since one could in a very short time get started with a
very simple simulation model of a production system that
would allow also for some form of simple animation.

In order to compare the SL with the AOS, it is
important to give some further characteristics of the two
types of system.
05

Ståhl
In the SL, the world consists of temporary entities, like
customers, being served by permanent service stations, like a
barber. In most AOS systems the worldview is similar, but
with the permanent servers being more in focus. There is a
difference between the two types of systems as regards with
which type of entities you start the detailed modeling. In the
AOS you usually start placing the permanent servers, while
you in the SL start with the temporary entities, in particular
by deciding on how and when they come into the system.
 The difference of the greatest importance is, however,
that in the AOS each permanent server is in principle only
represented once, since it in the animation work space, rep-
resenting e.g. the factory floor, must be in only one place. In
the SL a permanent server can be represented in many
different places, since we here follow the temporary entities
and, if different entities use the same machine, this usage of
the machine can take place in different parts of the program.

This difference is important when it comes to
establishing what kind of models students will be able to
write on their own after a certain amount of learning time.
For the AOS certain simple systems are very easy to
model, namely when each server only serves one type of
temporary entity and only does so once. Hence a system
where each product has its own machines, each visited
once, is easy to model. You just place the machines in the
work area and draw the paths from the entry source
through the machines to the exit. For each machine you
just input the processing times. If one machine, however,
processes more than one product, modeling becomes
considerably more complicated. You must then have rules
for determining which processing time applies to which
product and which path, leading from the machine, each
product should take. It becomes even more complicated if
a product comes to a machine several times.

This can be illustrated by the following problem, �the
Boris vodka shop�, where we instead of machines have
humans and instead of products have customers: �At a store
customers arrive at rate of 7 + 3 minutes (assume a uniform
distribution for all time data). In the store there are two
people working, Boris and Naina. Customers first go to
Boris, choose the good and find out how much they have to
pay. This takes between 3 and 7 minutes. Next they go to
Naina to pay for the goods and obtain a receipt. This also
takes between 3 and 7 minutes. Finally, they return to Boris
to pick up their goods after presenting the receipt, which is
then stamped. This takes between 1 and 3 minutes. They
then leave the store. There is one waiting line in front of
Boris and one in front of Naina. Customers returning to
Boris to pick up the goods have to start at the end of this line
again. The program should be written so that times spent by
customers in the store can be easily measured. Assume that
the store is closed after eight hours and that the mentioned
statistics refer to customers having left the store at closing
time. Calculate by repeated runs whether there is any
160

significant risk (e.g. happening in one out of ten cases) that a
customer has to spend more than an hour in the store�.

This example has been used in two experiments for
comparisons between AOS and SL systems.

The first experiment was carried out in September
1996 with a class of Latvian students at the Riga Technical
University, with no prior experience of simulation. First
they had four full hours of an AOS (WITNESS), then four
hours of a SL (micro-GPSS, a streamlined, easy-to-learn
version of GPSS, see Ståhl 1996). At the end of each of
these sessions they were asked to solve the Boris problem.
While none of the AOS students could write a program
solving this problem, all the SL students could do so.

The second experiment was carried out with a number
of vendors at the Winter Simulation Conferences of 1995
and 1996. The vendors of different systems were asked to
solve the Boris problem using their own system. While the
vendors of SLs could solve this problem in around five
minutes, all of the vendors of different AOSs required
more than 30 minutes to do so. It is hence not surprising
that the AOS students could not solve this problem.

Since one does not want to restrict all modeling to very
simple problems of the type �each machine has its own pro-
ducts visiting it only once�, one will in case of a limited
learning time allow much more flexibility when it comes to
project work if one chooses to teach a SL rather than an
AOS. It should also be mentioned that also other factors im-
ply that an AOS allows less flexibility than a SL. The build-
ing blocks of the AOS allow for a lower degree of abstrac-
tion than is possible with a SL. Presently available building
blocks like machines, conveyors, etc., can only with difficul-
ty be used for general service systems. To be suitable for the
education discussed here, these simulators would require
new types of building blocks (Herper and Ståhl, 1999).

For business students there will furthermore be a
greater need than for the production students to handle
repeated runs of the model and have an automatic statisti-
cal analysis, as well as a good graphical representation of
the results of these multiple runs. In particular, when it
comes to simulations involving financial streams, such as
cash flows, the handling of uncertainty is very important
and many runs are needed. This also poses a stronger
requirement on the execution speed of the software than is
the case with many production systems, for which a few
runs is often sufficient. In an AOS the focus is often more
on qualitative understanding and less on numbers. An
animation is, also for pure time reasons, seldom run several
times for the same set up of decision variables. In many
cases only one run is done. It is then also more natural that
fewer stochastic variables are introduced into the model. In
many cases, one is in reality limiting the use of animation
to problems where stochastic factors are of relative minor
importance, as can e.g. be the case of factory layout pro-
blems. SLs are, in contrast, more often used for problems
where random variations are important and one wants to
6

Ståhl
know within which limits the �universal� average of a
result variable lies with e.g. 95 percent probability. Due to
the importance of this, several SLs have superior facilities
for making repeated runs and carrying out a statistical
analysis of the results of these runs.

Another factor speaking for using a SL rather than an
AOS is the possibility of good documentation. This is very
important for the teacher when debugging, correcting and
marking the student program. As regards documentation,
some SLs have the advantage of providing both a compact
and readable text version of the program as well as an easy-
to-read block diagram presenting the logic of the model. One
can start by looking at the main structure of the block
diagram, before looking at the details of the program syntax.
When it comes to AOS, the documentation is generally not
as clearly coupled to the way in which the model was origin-
ally constructed. In some AOS systems a document is
obtained that contains code that will often appear completely
unfamiliar to the student who has built the model by making
selections in a great number of different windows.

5 ANIMATION

The main sacrifice involved in a choice of a SL instead of an
AOS is that one will get inferior animation possibilities.
Some SLs allow for animation, but generally of lower qual-
ity or with more effort than in the case of an AOS. It is in
this context of interest to determine what the purpose of the
animation is. We can here distinguish between four main
types of purpose:

1. Verification and debugging of the program, i.e.
allowing the model producer to control that the
model is functioning as intended and, if not,
pinpointing where the error is occurring.

2. Validation of the model, implying that one uses the
animation to do an �ocular check� that the
simulation model seems to be a reasonable
representation of the real system being modeled.
This validation can be done by the modeler, the
user of the simulation model or a third party, e.g.
the sponsor of the simulation project.

3. Demonstration of �the message of the simulation�,
often implying that one with the animation
demonstrates the benefits of a certain set-up or
procedure that one wants to implement in the real
system. An interesting example of this is given in
(Savén 1995), on how one in ABB used simulation
with WITNESS to persuade the labor union to
accept certain new production methods.

4. Teaching of simulation principles. Animation can
be used to show simulation students how different
160

simulation constructs work and thus make the
simulation package less of a black box than
otherwise.

What can be regarded as the most suitable form of

animation will vary depending on which of these different
purposes is given priority. For the purpose of validation, in
particular when someone else than the modeler does this, a
fair amount of face resemblance between the animation
and the actual system is required. Here the AOS is superi-
or. For the demonstration purpose, a more fancy animation
is often required. It is in this case often of importance to
impress the viewers of the animation. Also here the AOS is
superior. For verification and debugging, especially when
done by the modeler herself, the focus is more on closeness
between the animation and the simulation program and the
need for �picture closeness� to the simulated system is
much smaller. Here the SL can match the AOS. For the
purpose of teaching simulation principles, it is also impor-
tant that the animation is close to the simulation model, in
particular with regard to how the model is executed step by
step. There is also a need for simplicity, so that the student
can clearly comprehend the animation. Also with regard to
this goal a SL can give the AOS a match.

It should also be noted that for many types of
problems in business, like service systems, the animation is
not as interesting as for manufacturing systems. In the ani-
mation of manufacturing systems there is a constant time
compression factor c, i.e. the animated time t is always cT,
where T is the real time. In the animation of the systems of
services, business processes, inventories, cash flows, etc.,
i.e. simulation systems more typical for business students,
such constant time compression is seldom possible. Take a
simple animation of a doctor�s office, where the average
service time is 10 minutes per patient and the time of the
movement of the patient from the door to the doctor is 5
seconds. A system with constant time compression would
either be very jumpy (e.g. if c=0.01) or very boring (e.g. if
c=1). For this reason, �fancy� animation systems is often of
less interest for business students. The main interest of
animation here lies in the verification of the model. For this
type of purpose, much simpler forms of animation, e.g.
block diagram based ones, can be of greater interest.

6 CRITERIA FOR SIMULATION SOFTWARE

TO BE USED IN EDUCATION

I shall below give a number of criteria for what I regard as
a suitable software to be used for teaching simulation to the
last two types of students discussed, the logistics and the
business students. I shall, based on the discussion in
Section 4 above, focus on a SL, i.e. a simulation language,
although several of the criteria outlined below would also
have helped me in deciding on a SL instead of an AOS.
The criteria are meant to be helpful on the following three
7

Ståhl
time-levels of teaching, defined according to the
approximate number of available classroom hours:

1. A 4-hour rapid introduction to simulation
modeling, leading to models on the level of the
Boris example.

2. An 8 - 10 hour part of a course, leading to the
level of the cash flow example above and a little
beyond (see e.g. the 52 program examples at
<webgpss.hk-r.se>).

3. A 25 - 30 hour course, going slightly beyond the
material under point 2 above, but involving a
substantial simulation project in a corporation,
aimed at being implemented, and covering all the
aspects of simulation. A great amount of time
should hence be left for the issues of collection
and evaluation of input data, the principles of
experimental design, statistical analysis of the
output, aspects of implementation, etc., i.e. issues
that are left out in many courses where all time is
spent on the mechanics of a difficult-to-learn
simulation language.

6.1 (A) Ease of Learning

A1. The learning should not presuppose any pre-know-

ledge of programming, except possibly some very
elementary (Visual) BASIC.

A2. As we want the students to focus on modeling (and
experimentation), and not on syntax detail, the lan-
guage should be such that one in the course does not
have to learn a new concept every time that a new
and different thing shall be done. It is from a
pedagogical point of view often preferable that the
new aspects can be handled using already known
concepts, even if the program thereby becomes
slightly longer. One should very carefully restrict
the number of concepts used in the language. The
motto is: �Less rather than more�.

A3. The simulation language should be fun to learn. It
should in itself provide incentives for learning. It is
here important that the language provides a possibil-
ity for the students to do interesting things after only
a very short period of learning. Preferably the
students should already after one or two classroom
hours be able to write some non-trivial simulation
programs, i.e. students should be able to do simple
things in a very simple fashion. One should not
sacrifice the ease of introduction for the sake of
having sophisticated features for the advanced user;
for example one should not have separate modules
for the model and the experiment (i.e. contrary to
Zeigler 1976), since this has proved to be confusing
to the novice. It is important to �encourage users to
forge ahead and experiment rather than present
160

barriers that lead to discouragement� (Banks 1995).
Such a positive aspect of learning will, according to
my experience, give the simulation course, and its
teacher, favorable student ratings.

A4. One should furthermore restrict unnecessary details,
e.g. avoid commas that are not absolutely essential.

A5. When students frequently make the same mistake,
one must always consider the alternative of
changing the language instead of forcing them to
learn strange features which, for example, might
depend on hardware limitations of computers in the
60�s or on pure mistakes made by early developers.
The language should not be bound to compatibility
with earlier versions of the software. Such
compatibility is of interest to old users who have
already done a lot of programming in earlier
versions of the language, but it is of no interest to
the novice who desires to have as easy a learning
process as possible with regard to the goal of being
able to do a certain kind of simulation.

A6. The system must provide most necessary statistics
automatically, since the novice does not know what
kind of statistics is of interest and should not have to
spend time in the beginning of the simulation course
on learning different print commands.

A7. The language should be such that it can be
completely covered in a pedagogical manner, with
many examples etc., in a book of reasonable size (a
maximum of 400 pages) and hence with a moderate
price. The student should not have any need for an
unpedagogic manual in order to find features not
covered in the textbook or in class. According to my
experience, many students have run into great
difficulties in their project work when they have
attempted to use features that are not covered in the
textbook and in class. It is therefore of utmost
importance that the textbook covers every aspect of
the language.

A8. The simulation language should facilitate the
teaching in computer labs as well as self-studies in
front of the computer, instead of being mainly
aimed at having lectures in ordinary classrooms or
textbook studies as the prime teaching mode. In this
connection it is important that the system allows
several programs to be run in a stream, with both
program listing and different types of output
presented one screen at a time, without the student
having to leave the simulation system.

A9. To facilitate learning, in particular self-studies, the
system itself must be supplemented with program
examples, tutorial lessons and help pages.

A10. When being projected on the screen by a LCD
projector, e.g. in a PC lab, it is important that all
important aspects on the projected screen picture is
readable by the students. This, in turn, implies that
8

Ståhl
one must avoid having a lot of small details on the
computer screen picture.

A11. The language should make it easy to learn to use
different kind of functions, not the least to allow for
the easy definition of an empirical random
distribution by a number of value pairs. For discrete
random functions, in each such pair, one value
should be the function value and the other value just
the number of observations of this function value.
The system should then translate this into a
cumulative function of the traditional type,
something which students appear to find very
difficult to learn to do.

A12. In order that interesting modeling, e.g. on the effect
of uncertainty on queuing behavior, should be
possible already for the novice, e.g. within a few
class room hours, it should be very easy to learn to
do some simple modeling of different degrees of
uncertainty. Is should also be easy to stop the sim-
ulation both after a certain time or a certain number
of customers or a combination of these factors.

6.2 (B) Ease of Input

B1. It should be very easy to input the program. The

main form of input should be in form of a Graphical
Users Interface, where one from a menu of symbols
can choose the (building) blocks of the program.
One should, whenever this is a reasonably efficient
method, work using a mouse. One should also allow
for �short cuts� using keystrokes when this can be
more efficient.

B2. The choice of symbols should be done using either a
�drag-and-drop� or a �point-and-click� method. In
drag-and-drop, one first clicks on the symbol that one
wants to move to the block diagram. One then drags
this symbol to the desired place in the block diagram.
At this place, one clicks again to release the symbol.
In point-and-click, one will just click on a symbol and
it will then immediately appear in the block diagram
at the place desired by the user. An �insert marker�,
usually determined automatically, denotes the
location where the next block is to be placed.

The �point-and-click� approach appears to be
the best one when a block can be placed in only a
limited number of possible positions. Furthermore,
drag-and-drop is unnecessarily time-consuming. For
each symbol to be input, one has to move back and
forth between the symbol menu and the block
diagram part of the screen. This time loss is large, if
one follows what we consider the preferable method
when modeling a simulation model in block
symbols, namely a �top-down� approach. This
implies that we first draw the general structure of
the model, relying only on the block symbols. First,
160

when the full structure has been drawn, it is time to
give the values to the operands of the blocks. With
this approach, one can with point-and-clock in most
cases outline the whole model without the cursor
leaving the symbol menu.

B3. The number of symbols in the symbol menu should
be strictly limited so that the student can directly
find a block symbol without having to do any
scrolling.

B4. For inputting the operands of a block, one should be
able to click on an individual block in the block
diagram to open a dialog for inputting the operands
of this block. In order to diminish the need of a
manual, this dialog should reveal the syntax of the
block operands. It should also be possible to write
the values of the operand directly into the block.
After having used a block several times, many
students are likely to prefer this faster direct input.

B5. It should also be possible to input the program as
text, by using a simple editor of the Notepad type in
a text edit window of the GUI. This editor should
translate a block diagram to text, and vice versa.
There are several reasons for such a text editor.
Advanced students might find it faster to input the
whole program directly in text format. All students
will save time by using the text editor for smaller
changes in a program originally built in the GUI. In
text format, the language must have a completely
free format so that students need not worry about
starting certain words in a certain column. No
distinction should be made between upper and lower
case letters.

B6. It is important that the length of the program does
not become unnecessarily long. A small block
diagram and a short program are generally
preferable. One should, for example, not have to
define the capacity of servers that can serve only
one transaction of a time. This saving might lead to
around 7 percent shorter programs (Ståhl 1993b).

6.3 (C) Ease of Reading Output

C1. It must be easy to read the output. The system

should not provide a lot of advanced output that the
novice does not know how to read and would find
confusing.

C2. It should also be easy to read the extended program
listing provided by the system, with an automatic
line-up of operators and operands, so that a neat and
easy-to-read program listing is obtained regardless of
the appearance of the original code. A clear, readable
and compact program listing, with short comments, is
essential for making it easy for the teacher to correct
and mark the student programs.
9

Ståhl
C3. One should also be able to complement the program
listing with the block diagram, which should also be
directly obtainable from the program in text format.
Block diagrams also make it easy for students to
study, discuss and document the logic of a program.
Block symbols should be clearly distinguishable from
each other, but block types that are related to each
other should be similar, e.g. �mirror pictures�, to
facilitate the understanding of the program logic.
Because of the importance of block diagrams, it is
essential that every block type has a corresponding
block symbol.

C4. The output should contain graphs and histograms
that are clear and easy to understand.

C5. A simple form of animation, facilitating program
verification as well as the understanding of how the
simulation program works, is essential. This
animation can for these short student programs be
limited to post-processing animation, allowing the
student to see symbols for various transaction types,
such as customers, move through the block diagram.

6.4 (D) Ease of Doing Replications and Experiments

D1. Since it is very important that the students

understand that the simulation programs should be
run several times with different random streams, it
is essential that it is very easy to make replications
of the runs by just one command, easily available in
the GUI.

D2. It is also desirable that the simulation system can
automatically carry out a statistical analysis of these
repeated runs, e.g. to calculate, using Student�s t-
distribution, the limits within which the universal
average lies with e.g. 95 percent probability.

D3. It is also desirable to have some form of very simple
optimization, even if it is only done in one
dimension for a finite number of alternatives.

6.5 (E) Safe Programming

E1. Closely related to ease of learning, but also to ease of

use, is the principle of safe programming. We want
to minimize the risk of logical errors, i.e. that the
program produces unwanted and erroneous output. In
this way a great amount of student time spent on
debugging can be saved. If the simulation language is
made as safe as possible with regard to logical errors,
this also reduces the need for an extensive debugging
system which, in turn, requires a lot of student time to
learn. To secure safe programming, we want to stress
the �Lead us not into temptation� principle, implying
that the simulation language should not be excessively
permissive, allowing constructions that with a
significant probability lead to logical errors. It is better
161

that an unsuitable construction leads to a syntax error
message and execution stops right away than have it
lead to a difficult-to-find logical error.

E2. Closely connected with the idea of E1 is the aim that
students should not run into surprises and
unexpected logical errors due to not having learnt
the full language. It is of special importance that the
language does not have any reserved words, in
particular reserved words that lead to strange logical
errors. (We must avoid problems such as that SEIZE
XID1 and SEIZE XJD1 in GPSS/H lead to
completely different results. The student who does
not know that XID1 is a reserved word with special
meaning in GPSS/H can make a serious logical
error.)

E3. It is also important that the simulation language has
an extensive error trapping system with as clear
error codes as possible. The best way to develop
such a system is to have all students report on errors
with no, or an unclear, error message.

E4. Even if points E1 - E3 are fulfilled, the language
must have some simple, very easy-to-learn, system
for debugging and program verification, e.g. in the
form of the block based animation mentioned under
C5, where one, moving forwards in time, event by
event, can see which transactions move, where and
when, in the system. One can also have a simple text
based tracing system.

E5. It is important that the simulation system itself is
thoroughly debugged and that the internal
mechanisms of the system can be subject to
scientific scrutiny (like in Schriber and Brunner
1998).

6.6 (F) Efficiency

Although efficiency is not of primary importance,
execution times must not become excessively long so that
students get discouraged. Execution time is important not
the least to encourage sufficiently many replications from a
statistical point of view.

6.7 (G) Availability

G1. It is desirable that the simulation language is

available on many computers and that it works in
the same way on these computers so that programs
developed on one computer also runs on other kind
of computers. Because of the wide availability of
the Macintosh and Linux, it is important to also
have versions for these systems.

G2. It is highly desirable that a system to be used in
education is available at a very low cost, so that
students can afford to buy their own copy of the
0

Ståhl
software. Of course, availability of some version
free of charge is ideal.

G3. It is also desirable that the educational simulation
software is available over the Web for the following
three reasons:

1. The students can always be assured of using the

latest version of the software. The school need
not worry about constantly updating the
software.

2. The students can after leaving university be
sure of getting access to the software wherever
they are later going to work. The future
employer might not allow the software to be
loaded on the hard disk of a computer on the
company�s network.

3. In many cases, a student or a teacher might
want to have a first look at a software without
having to go to the risk and troubles connected
with downloading it.

G4. It is desirable that there are many textbooks and

many program examples for the system.

6.8 (H) Advancement Potential

It is sometimes desirable that the student, after having
worked some time with the educational system, can very
rapidly move on to some similar system used more widely.

7 DOES SUCH A SYSTEM EXIST?

We have above given a list of desirable features of a system
for teaching simulation to students of business and logistics.
It is quite a long list. The reader probably wonders if there is
any system that fulfils all of these features. The answer is
that there is at least one such system and that it is available
free on the Web, namely WebGPSS at the site <webgpss.
hk-r.se>. Virtually the same system is available as a
stand-alone version in Windows (WinGPSS) and systems
for Linux and the Mac (LinGPSS and MacGPSS) are in the
pipeline. They are all based on the same simulation engine,
micro-GPSS, available for many years on DOS and several
other systems (Ståhl 1990). It should be mentioned that the
animation system mentioned under C5 and presented in
Ståhl (2000) is at present only available on the PC, but its
transfer to the Web is under way.

Micro-GPSS is a streamlined, easy-to-learn version of
GPSS (the General Purpose Simulation System), which, at
least five years ago, was still the most widely used simula-
tion software (McHaney 1996). Micro-GPSS is based on
the feedback from teaching GPSS for more than 20 years
to more than 5000 students. In the process many compli-
cated and redundant syntax features have been eliminated.
Thus micro-GPSS has only 22 block types, compared to
16

the 70+ block types of other GPSS versions. Thanks to
these simplifications, we have now in ten hours been able
to cover the same material that required 22 hours when
using traditional GPSS. Yet micro-GPSS is almost as
powerful. We have been able to rewrite 99 percent of the
programs in leading GPSS textbooks with virtually the
same amount of code. For example, for the 29 programs in
Schriber�s �red book� from 1974 the average number of
blocks used is virtually the same (18.6 in Standard GPSS
and 18.8 in micro-GPSS).

In order to give just one idea of what micro-GPSS
looks like, I shall present the program that solves the Boris
problem presented in Section 4.

 simulate 10

 qtable store,0,10,7
 generate 7,3
 arrive store
 seize boris
 advance 5,2
 release boris
 seize naina
 advance 5,2
 release naina
 seize boris
 advance 2,1
 release boris
 depart store
 terminate
 generate 480
 terminate 1
 start 1
 end

Figure 3: Micro-GPSS Program for Boris Vodka Shop

In order to give an idea of the WebGPSS GUI, I

present it for the case of the famous Joe�s barbershop.

Figure 4: WebGPSS GUI with Joe�s Barbershop

It should finally be mentioned that every WebGPSS

program can be translated into a GPSS/H program.
WebGPSS can hence provide a GUI for producing
11

Ståhl
GPSS/H models. Thus one can e.g. in the case of very long
repeated runs utilize the superior speed of GPSS/H.

The whole of micro-GPSS is presented in Ståhl
(1990). The easiest way to start learning GPSS is to turn to
the site <webgpss.hk-r.se>. Here GPSS is
supplemented with 52 program examples, a score of
tutorial lessons and a large set of help pages.

REFERENCES

Banks, J. 1995. Semantics of simulation software. OR/MS

Today, December 1995, pp. 38 - 40.
Herper, H. and I. Ståhl. 1999. Micro-GPSS on the Web and

for Windows: A tool for introduction to simulation in
high schools. In Proceedings of the 1999 Winter
Simulation Conference, eds. P. Farrington, H.
Nembhard, D. Sturrock and G. Evans. Piscataway,
NJ: Institute of Electrical and Electronics Engineers.

McHaney, R. 1996. Simulation project success and failure:
Some survey findings. Working paper, Dept. of
Management, Kansas State University, Manhattan.

Savén, B. 1995. Verksamhetsmodeller för beslutsstöd och
lärande - En studie av diskret produktionssimulering
vid Asea/ABB 1968-1993. Linköping Studies in Science
and Technology. Dissertation No. 371. Linköping.

Schriber, T. 1974. Simulation Using GPSS. N.Y.: Wiley.
Schriber, T. J. and D. T. Brunner. 1998. How discrete-event

simulation software works. In J. Banks (ed.) Handbook
of Simulation. New York: Wiley-Interscience.

Ståhl, I. 1990. Introduction to Simulation with GPSS: On
the PC, Macintosh and VAX. Hemel Hempstead, U.K.:
Prentice Hall International.

Ståhl, I. 1993. Discrete-event simulation for corporate
financial planning. In Proceedings of the 1993 Winter
Simulation Conference, eds. G. Evans, M.
Mollaghasemi, E. Russell and W. Biles. Piscataway,
NJ: Institute of Electrical and Electronics Engineers.

Ståhl, I. 1993b. GPSS will prevail - Some reasons for the
resilience of the GPSS simulation ideas. In GPSS-
Users� Group Europe -Gruendungsveranstaltung.
Magdeburg: ASIM.

Ståhl, I. 1996. Simulation Made Simple with micro-GPSS:
A Short Tutorial with Eight Lessons. Stockholm:
Stockholm School of Economics.

Ståhl, I. 2000. Automatic animation with a block based
simulation language. In T. Schulze, P. Lorenz und V.
Hinz (Hrsg) Simulation und Visualisierung 2000.
Erlangen: SCS - ASIM.

Zeigler, B.P. 1976. Theory of Modeling and Simulation.
New York: Wiley.

161

AUTHOR BIOGRAPHY

INGOLF STÅHL is a Professor at the Stockholm School of
Economics, Stockholm, and has a chair in Computer Based
Applications of Economic Theory. He was visiting Professor,
Hofstra University, N.Y., 1983-1985 and leader of a research
project on inter-active simulation at the International Institute
for Applied Systems Analysis, Vienna, 1979-1982. He has
taught GPSS for twenty years at universities and colleges in
Sweden and the USA. Based on this experience, he has led
the development of the micro-GPSS and WebGPSS systems.
He is also consultant in simulation to Swedish banks and
industry. His email address is <ingolf.stahl@hhs.se>
and the web address for WebGPSS is <webgpss.hk-
r.se>.
2

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

