Proceedings of the 2000 Winter Simulation Conference
J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, eds.

INTERACTIVE WEB-BASED ANIMATIONS FOR TEACHING AND LEARNING

Michael Syrjakow
Joerg Berdux

Institute for Computer Design and
Fault Tolerance (Prof. D. Schmid)
University of Karlsruhe
76128 Karlsruhe, GERMANY

ABSTRACT

Web-based study resources can be viewed as a basic
requirement in order to remain a competitive player on a
more and more globalised educational market. For that
reason it is getting increasingly important for universities
to supplement offered lectures with additional Web-based
learning material. In this paper we focus on interactive
multimedia elements like computer animations and simula-
tions, which can be used by students for individual experi-
mentation. Such supplementary material represents a
motivating but also a very effective chance to deepen and
to increase the knowledge acquired in the lecture. This
paper gives some general guidelines for building interac-
tive Web-based animations. Beyond that, two of our
developed animations are presented in detail. The first
animation visualizes the search processes of some common
direct global and local optimization strategies. In the
second animation an artificial ecosystem is simulated,
where several autonomous agents have to perform a num-
ber of different actions in order to survive. Our animations
are realized as Java-applets, which have the advantage that
they can be executed within Web browsers anywhere in the
World at any time and without having to install anything.

1 INTRODUCTION

Simulation is a subject of education but also a very power-
ful tool for education. In this paper we address the second
aspect by describing some simulators, which we have
developed, especially for teaching natural and social
science subjects. Previous experiences gathered in the field
of computer aided learning and instruction have shown that
the realisation of illustrative and didactically valuable com-
puter-based learning material usually is very expensive
(Diaz and Fernandez 1996). For that reason an implemen-
tation of such material only makes sense if it is frequently
used over a long period of time. Today the Internet has
established a powerful model for providing information

1651

Helena Szczerbicka

Institute for Computer Science
Fachbereich Mathematik und Informatik
University of Hanover
30167 Hanover, GERMANY

and services to people all over the world. Therefore it is an
obvious decision to use Web technologies like HTML,
XML, and especially Java, the programming language of
the Internet, for implementation of Web-based study
materials. Beside platform independence Java provides the
following advantages (Flanagan 1996)

Java is familiar and simple,

Java is object-oriented,

Java is multi-threaded,

Java provides a powerful set of class libraries.

In this paper we report about our experiences regarding the
design, implementation, and use of interactive Web-based
animations. Section 2 describes how Web-based
animations can be effectively used in teaching, (online-)
learning, and also in research. Subsequently, in Section 3
some general guidelines for the design of Web-based
animations are presented. In Section 4 two of our
developed animations are described exemplarily. Finally,
in Section 5 we summarize and draw some conclusions.

2 USE OF WEB-BASED ANIMATIONS

Interactive Web-based animations can be used for many
purposes. One important application field is teaching and
learning. Here animations can be utilized as follows

to liven up lectures

Lecturers can use interactive animations within
their lectures to better demonstrate and explain the
behavior of complex dynamic systems.

to improve Web pages of lectures

Interactive animations presented in a lecture
should be also offered on the Web. That way the
students get the chance to make experiments by
themselves, which is a motivating but also a very
effective way to deepen and to increase acquired
knowledge.

Syrjakow, Berdux, and Szczerbicka

to expand Computer Based Training applications
CBT applications are mainly intended to check
the personal learning success. For that purpose
they usually offer different kinds of didactically
approved multiple-choice tests. The quality of
such CBT applications can be considerably
increased by interactive animations, which have to
be examined deeply by the learner to be able to
answer the questions.

Beside teaching and learning interactive Web-based
animations can be also excellently used to support
research. Here they can be applied

to acquire fundamental knowledge

Sophisticated animations as presented in Section 4
give deep and illustrative insights into the
behavior of complex dynamic systems. Especially
animations with an appropriate presentation
module may show new and undiscovered aspects
of a dynamic system.

to demonstrate research results

Web-based animations are an excellent means to
demonstrate research results to interested people
all over the world in a way that is also
understandable for non-experts.

More details about the usage of interactive Web-based
animations especially within CBT applications can be
found in (Syrjakow et al. 1999).

3 SOME GENERAL GUIDELINES FOR THE
DESIGN OF WEB-BASED ANIMATIONS

Today the most common and suitable way to realize a
Web-based animation is to implement it as a Java-applet,
which can be executed platform-independently within Web
browsers all over the world. The general architecture of
such an animation applet is shown in Figure 1. Core of the
animation applet is an animation engine, which has the task
to compute state transitions of the animated dynamic
system. Principally, there exist two realization alternatives
for an animation engine

1.) animation engine, which is able to compute all
possible sequences of state transitions of the ani-
mated system. Such a “complete” animation engine
requires a full implementation of the state machine
(algorithm), which drives the animated system.

animation engine, which is able to compute only a
(limited) subset of all possible sequences of state
transitions of the animated system. Such a
“reduced” animation engine has the advantage of
being much cheaper to realize as a complete one.
The great disadvantage however is, that the

2)

1652

resulting animation usually is not very powerful,
expressive, and interactive.

In the following, we will focus on animations with
complete animation engines. In case of very complex
animations, the problem may arise, that the animation
applet cannot be executed on the client any more, because
it would require too much computational resources. This
problem can be solved by executing the animation engine
not within the Java-applet on the client, but on a more
powerful machine on server side. However, when we
expect a PC of today on client side, server side execution is
not required in most cases, because the computational
power of a modern PC is usually sufficient to compute also
demanding Java animations. The rather complex
animations presented in Section 4 for example can be
executed on client side without any problems.

The second important building block of the animation
applet shown in Figure 1 is the presentation module. Out-
going from the data generated by the animation engine the
presentation module has the task to visualize the state tran-
sitions of the animated process on the screen. The realiza-
tion of the presentation module strongly depends on the
kind of the animated system. Sometimes it may be useful
to realize several presentation modules in order to allow
the user different views on the animated system. In some
other cases it is possible to realize a presentation module,
which is generally applicable to a whole class of similar
systems. An example of such a general presentation
module is presented in Section 4.1.

) Java-Applet
user interface

input

v

animation engine

—>

control

v output data v

presentation
module(s)

user interface

output

user interface

Figure 1: General Architecture of an Interactive Web-
Based Animation

The third important component of an animation applet
is its graphical user interface (GUI). Here an intuitive and

Syrjakow, Berdux, and Szczerbicka

user-friendly design is of great importance. As shown in
Figure 1 the graphical user interface consists of the
following three parts:

e input part to define and to parameterize an
animation experiment;

e control part to interactively control (start, stop,
switch into a step mode, etc.) the running
animation process;

e output part to observe the state changes of the
animated system but also to examine statistical
data about the animation after it has finished. As
shown in Figure 1, the quality of the output part
mainly depends on the realization of the
presentation module.

Based on the general design guidelines described above we
have developed several Web-based animations. In the
following Section two of these animations are described in
detail.

4 EXAMPLES

This Section describes two of our developed interactive
Web-based animations. In the first animation the search
processes of some common direct optimization algorithms
are visualized. The second animation simulates an artificial
ecosystem, where adaptive autonomous agents perform a
number of different actions in order to survive. Both ani-
mations are realized as Java-applets, which can be accessed
on the World Wide Web at the following URL: <goethe
.ira.uka.de/people/syrjakow/animations.
html>.

4.1 Animation of Direct Search Algorithms

During the last three decades direct search methods have
gained great importance in optimization. Compared to
traditional mathematical optimization techniques direct
search strategies have the advantage that derivatives or
other auxiliary knowledge about the optimized goal func-
tion is not required. For orientation direct search methods
use nothing but goal function values. This property makes
them general applicable and predestinate to black box
optimization. In our research work direct optimization
algorithms have been applied very successfully to para-
meter optimization of simulation models (Syrjakow and
Szczerbicka 1995; Syrjakow and Szczerbicka 1997).

Some well-known direct optimization methods for
global search are Genetic Algorithms GA (Goldberg 1989;
Michalewicz 1992) and Simulated Annealing SA (Aarts
and Korst 1990). These methods extensively apply proba-
bilistic search operators, which are based on principles of
nature. A well-known representative for direct local
optimization is the Pattern Search algorithm of Hooke and

Jeeves (1961). This very efficient Hill-Climber is solely
based on deterministic search operators.

One big problem of the powerful optimization heuris-
tics described above is that a lot of experience and expert-
ise is needed to successfully apply them to a given optimi-
zation problem, i.e. to find appropriate control parameter
settings for their sophisticated search operators. For getting
the right feeling for such algorithms a visualization of the
search process has been proven to be very helpful. In the
following we describe a Java-applet for animation of the
complex search processes performed by the direct optimi-
zation methods mentioned above. We call this applet an
animation environment because its presentation module is
general applicable to all kinds of direct search algorithms.
The main objectives of this animation environment are

e to gain a better insight into the sophisticated
working mechanisms of direct optimization
methods;

e to offer inexperienced users the possibility to
properly deal with these methods (to get a feeling
for a good parameterization of their search
operators);

e to acquire fundamental knowledge which enables
to further enhance the performance of direct
search methods.

Figure 5 and Figure 6 give an overview of the graphical
user interface of the animation environment. It consists of
the following three parts:

e welcome part (Figure 5)
Here the user can choose an optimization strategy
as well as a goal function to which the
optimization strategy is applied. At the moment
the user can choose between Genetic Algorithms,
Simulated Annealing, and Pattern Search, which
are offered in the right choice menu. After
selection of one of the 13 goal functions offered in
the left choice menu a 3D- and a 2D-
representation of this function is shown below.

e animation part (Figure 6)
This part enables the user to observe and to
control the running animation. More information
about the animation part is available below.

e help part
The help part comprises user instructions for the
animation environment, detailed information
about the animated optimization algorithms and
links to other applets and Web pages about
Genetic Algorithms, Simulated Annealing, and
Pattern Search.

The left frame allows the user to switch between the
different parts of the animation environment.

Syrjakow, Berdux, and Szczerbicka

In the following the animation part is described more
detailed. First of all, it should be mentioned that the under-
lying animation engine consists of complete implementa-
tions of the offered direct optimization algorithms, which
enables the user to exhaustively examine their behavior.
The main task of the animation part is to make the
trajectory (sequence of state changes) of a running direct
optimization process visible on the screen. For that purpose
we have realized a flexible presentation module, which is
generally applicable to all kinds of iteratively working
direct optimization methods (point-to-point as well as
population-based strategies). Population-based methods
like GA generate a set (population) of search points in each
iteration step, whereas point-to-point strategies like SA or
Hill Climbing compute exactly one point. In order to keep
the complexity of the presentation module low we restrict-
ed our considerations to 2-dimensional real parameter
optimization problems with rectangular search spaces. In
that special case the surface of the goal function can be
easily represented by a 2-dimensional density plot. In the
welcome part shown in Figure 5 the chosen goal function
(function 3) is presented as a 3D-plot (on the left) as well
as a density plot (on the right).

For the graphical visualization of the running optimi-
zation process the generated search points are plotted
directly upon the density plot, which represents the playing
ground for the optimization algorithm (see Figure 3, 4, and
6). When the presentation module is applied to point-to-
point methods the generated search points are plotted one
after another without deletion of the former ones. This way
it is possible to observe the development of the whole
optimization trajectory (all generated search points). In
case of population-based search however, where the
quickly growing optimization trajectory soon becomes
very difficult to survey it makes more sense to plot the
generated populations separately.

Besides the graphical visualization of the ongoing
optimization process the animation environment also
provides the user with a textual output, which is printed in
the text area to the left of the density plot. Here detailed
information about the single states of the optimization
process is presented.

The animation can be interactively controlled by the
user through the following buttons:

“Start” button

The search process of the selected optimization
algorithm can be started by pressing the “Start”
button. The “Start” button is also used to induce
the presentation and/or comparison of computed
optimization trajectories (for more details see
“Comparison” button).

“Stop” button

The pressing of the “Stop” button stops a running
search process. That way the wuser can

1654

comprehensively analyze selected states of an
animation for an arbitrary amount of time.
“Continue” button

This button allows to continue a stopped search
process.

“Reset” button

The “Reset” button causes the total suspension of
a started search process.

“Adjustment” button

This button gives the user the opportunity to
manipulate the control parameters of the selected
optimization algorithm.

“Comparison” button

This button enables the user to display and/or to
compare optimization trajectories computed by
the implemented optimization algorithms. When
the “Comparison” button has been pressed, a
window appears that shows, whether optimization
data regarding the currently chosen goal function
is available or not. If a new goal function is
selected all optimization data which has
previously been stored is deleted. The comparison
can be started by pressing the “Start” button.

The optimized goal function and the animated optimization
algorithm can be changed using the two choice menus in
the middle of the animation part. With the scrolling lists on
the right it is possible (with a double click) to vary the
shape and color of the search points, which are painted
onto the density plot.

Now the capabilities of our animation environment are
demonstrated by means of a detailed animation example. In
this example the probabilistic search process of a popula-
tion-based Genetic Algorithm is visualized. The task of the
Genetic Algorithm is to maximize the 2-dimensional goal
function shown in Figure 5.

In the following three different states of a typical
animation run are presented. For parameterization of the
GA we use the settings shown in Figure 2, which are based
on recommendations from literature (Schaffer et al. 1989).

Figure 3 shows the optimization process just after
computation of the initial population. It is easy to see that a
random number generator was used to distribute the 20
individuals of this population randomly all over the search
space.

Figure 4 shows the distribution of the individuals of
the sixth population. Here we can already clearly recognize
convergence towards the region of the global optimum
point which is located at (4,4).

Figure 6 shows the situation after 10 computed
generations. Here more than half of the population is
gathered around the global optimum point. The best search
point of the tenth population, which is distinguished from
the other ones by a little cross already represents a very
accurate approximation of the global optimum point.

Syrjakow, Berdux, and Szczerbicka

. Adjustments For Genetic Algorithm

Make your adjustments for Genetic Algorithm

number of populations 4| | 'l 20
number of individuals 4| | 'l 20

%1 chromosome length €| | | 10

x2 chromosome length f | J 10
crossover probability 4| | | 0.75
mutation probability il | 'l 0.075

pause (in seconds)

[~ reduced textual output

E | Unsigned Java Applet Window

Figure 2: Control Parameter Settings of the GA

Peak: 11.03

Tt

o

S

X2

i

5 9 10
X1
Figure 3: Distribution of the Individuals of the Initial

Population

Summing up, the animation environment described
above gives a detailed insight into the complex search
processes of direct optimization algorithms. It enables the
user

e to thoroughly analyze their behavior (also at
extreme parameterizations);

1655

Peak: 11.03

JtH

X2

o

o @ g

8 9 10
x1
Figure 4: Distribution of the Individuals of the Sixth

Population

to evaluate design alternatives of their search
operators;
to adapt them optimally to specific optimization
problems.

The animation environment is available as a Java-applet on
the World Wide Web at: <goethe.ira.uka.
de/people/syrjakow/anim env3/start envi
ronment.html>.

In our future work we intend to add further
optimization algorithms to our animation environment as
well as to enlarge the set of goal functions. Beside this, we
want to equip the graphical user interface with more
functionality. In this context a worthwhile feature would be
a possibility for visualization of progressing convergence
measures.

4.2 Animation of Artificial Life

Artificial Life (AL) is a rapidly growing field of scientific
research linking biology, computer science, and
engineering. According to the definition of C.G. Langton,
who deeply influenced this field, AL is devoted to
understanding life by attempting to abstract the
fundamental dynamical principles underlying biological
phenomena, and recreating these dynamics in other
physical media - such as computers - making them
accessible to new kinds of experimental manipulation and
testing (Langton 1997). The fundamental algorithms of AL
are learning algorithms (typified by Neural Networks),
evolutionary algorithms (typified by Genetic Algorithms),

Syrjakow, Berdux, and Szczerbicka

Animation of Direct Op!

Fila Edit

View Bo Communicalor

ation Algorithms - Netscape
Help

Back

Fonard

A G 2 W o= & B @

Reload Home Search Metscape Print Securty Shop Stop

J " Bookmarks \Jg Locat\on:lhtlp Algoethe.ira uka.de/~ syrisk o/ anim_eny 3/ stat_environment. bl

&\nslanlMessaga Internet L‘i Laokup

e

] MewkCool

Applet

Welcome
Part

Animation

Part
Help

Instructions

Genetic
Algerithms

Simulated
Annealing

Pattern
Search

Links

Choose a Function and an Algorithm: [Function 3 -||Genetic Aigorithm |

. Peak: 11.03
Function 3
T4
&
T
e &
AR
{zﬁsxc ; ‘2z 4
T =
2 ;fbh’o'o“‘&“‘ ;;.,:3..,';‘ P
OO D
S
BEIGLIG AT ,*xz«.‘w“, -
St
PATaSLet
s «g::}g# 2
T
M

Animation of Direct Dpti

File Edit Wiew Go Communioator

n Algorithms - Netscape
Help

[

Back

Ferizvard

A 4 a2 W S F

Reload Hame Search Metscape Print Security

Shap

i

Stop

J " Bookmarks J; Lacation: |http'/.‘gnelhe ira uka ded~ syrjakow/ anim_env3/start_erwironment html

J%\nstantMessage Internet [’_|" Lookup

[’_|" MNewsCool

Start Stop Continue | Reset |rEtI ~|lcircle =
A | t Adjustment Comparison |Functi0n 1 leeneuc Algorithm j magenta =l |square hd|
pple GENERATION 10 =l
Welcome e x1 x 2 Fitness pl,pZ op Peak: 11.03
Part 1 0101100011 | 0010011011 3,47 1,51 0,71 8,8 5
== z 0101101011 | 011000101l 3,54 3,86 3,89 8,8 § 10
)) 3 0110000010 | 0111111000 3,77 4,92 2,19 7,0 0
Animation 4 1100011011 | 0110000011 7,77 3,78 1,5 6.0 0
Part 5 010101001 | 0010011001 4,15 1,49 0,81 18,2 13
== & 010000011 | 010001l0l0 3,78 2,75 1,28 2,16 13 al
7 0111011110 | 0100011100 4,67 2,77 1,47 20,18 39
He|p & 0110110101 | 0110110100 4,27 4,26 5,50 18,20 9 7
9 0111011011 | 0110000011 4,64 3,78 3,02 12,14 12
| . 10 0101011111 | 0110101010 3,43 4,16 3,03 14,12 12 &
Instructions 11 0L0110100L | 0110011010 3,52 4,00 3,92 g,2 19
lz 0110001011 | 0110011111 3,86 4,05 9,14 2,8 13 x2 & 4
Genetic 13 0111011011 | 0010011110 4,64 1,54 0,83 9,z 17 %,
Algorithms 14 0110001011 | 0110011010 3,86 4,00 9,34 2,3 17 ¢ Qﬁ#”a
15 0111101011 | 0111001011 4,79 4,48 3,46 20,8 3 o o
n 16 0101010111 | 0110110101 3,35 4,27 2,49 8,20 3 5l
M 17 0110001011 | 0110011010 3,86 4,00 9,34 2,0 - o o
Annealin, 18 0111011000 | 0110011100 4,61 4,02 3,52 12,13 6 5
1l 0111011011 | 0110100011 4,64 4,09 3,43 12,8 18 L
Pattern 20 0101101011 | 0ll0lllolo 3,54 4,32 3,36 8,12 18 p
Search
total: 72,56 average: 3,62 ninimal: 0,71 naximal: 3,34 o
Link crossovers: 8 mutations: 27
Links o T 2 3 4 5 6 P8 9 10
X1
Infe
1]
[P (=B \

Figure 6:

GUI of the Animation Environment for Direct Search Algorithms (Animation Part)

1656

Syrjakow, Berdux, and Szczerbicka

and cellular automata. AL also very intensively deals with
building adaptive agents living in complex dynamic
environments where they have to act autonomously in
order to reach certain goals (Adami 1998).

Undoubtedly computer models play an entirely
significant role in the interdisciplinary field of Artificial
Life. On the one hand they are required by researchers to
achieve research results. On the other hand they are an
important tool for passing on the results to non-experts.
The AL animation which is presented in the following
mainly addresses the second aspect. It simulates an
artificial ecosystem, where several autonomous agents
perform a number of different actions in order to survive.
The goal of each agent is to get as old as possible and
beyond that, to reproduce itself as often as possible. For
that purpose agents are first of all looking for food and
secondarily for sexual partners. In particular, agents can
carry out the following basic actions:

1.) look around in order to generate a local map of
the environment,

2.) move in order to change the position within the
ecosystem,

3.) eat in order to increase the energy level,

4.) sleep in order to save energy,

5.) reproduce in order to pass on the own genetic
information to subsequent generations.

£ %@‘ﬁ&%&&% [World [Poputation | Agent [Edit | Settings [History |

The environment in which the agents live consists of
rectangular regions, which can be of the following three
kinds: empty regions (desert), regions overgrown with
food, which can be eat by the agents in order to increase
their energy level (grass), and finally regions, which cannot
be walked on by the agents (barriers).

Figure 7 shows the graphical user interface of the AL
animation. The rectangle on the left represents the artificial
ecosystem being occupied by a population of agents
evolving in it. Our AL animation is realized as a Java-
applet. It can be accessed on the World Wide Web at the
following URL: <goethe.ira.uka.de/people/
syrjakow/agents/EcoSystemApplet.html>.
The applet allows the user

e to initialise and to edit the ecosystem (add/delete
agents, desert, grass or barrier blocks),

e to start/stop/continue animation runs,
to vary the animation speed,

e to observe the evolving population as a whole
(macro view),

e to observe the life cycle of single individuals
(micro view),

e to interactively change environmental parameters
(food growth rate, life expectancy of the agents,
etc.) during a simulation run.

a& fid - |
& g8 d. Last 200 Cycles

100 %

Y e]
0 %

Last 40000 Cycles

100 %
0 %

green: plant fields

red: occupied fields

Slow Fast

New World

Figure 7: GUI of the Artificial Ecosystem Animation

1657

Syrjakow, Berdux, and Szczerbicka

Our AL applet represents a good means for getting a
first impression of how artificial life implementations may
look like. It allows to observe how primitive artificial
organisms are forming rather complex communities while
evolving and adapting themselves to their environment. In
Figure 7 a snapshot of such an evolving community of
autonomous agents is presented.

Our applet can be used within lectures but also as
supplementary interactive Web-based study material
allowing students to make experiments by themselves. At
the moment we are developing a distributed and a more
complex AL animation in order to obtain more realistic
artificial life scenarios, where the agents have more
behavioural possibilities like capacity to learn, more
sophisticated acting rules, etc.).

5 CONCLUSIONS

Today the creation of modern and demanding study
material becomes more and more important. This material
must be interactive, user-friendly, and available on the
World Wide Web. In this paper some general guidelines
for the design and development of interactive Web-based
animations were presented. We focused on animations with
complete animation engines being able to compute all
possible sequences of state transitions of the animated
system. In order to show how well designed interactive
animations may look like two examples were presented.
The first animation visualizes the search processes of some
common direct optimization algorithms. The second
animation simulates an artificial ecosystem, where adaptive
autonomous agents perform a number of different actions
in order to survive. These animations, which are realized as
Java-applets can be used by lecturers to liven up their
lectures but also by students for consolidation and rework
of lecture contents. Another important application field of
these animations is research. Here they can be used to
acquire fundamental knowledge but also for an illustrative
demonstration of research results.

Finally, one last advice for all those who now intend to
build their own Web-based animations: Before you start
you should thoroughly search the Web because the
animation you want to develop may already exist. Such
tiresome searches as well as unnecessary developments of
already existing animations could be easily avoided
through the establishment of an open online
library/repository, where Web-based learning material is
gathered and administered.

ACKNOWLEDGMENTS

We want to thank Prof. D. Schmid for his encouragement
and support of our work. We also thank our students,
especially C. Bentz, Matthias Lieflinder, and Dietmar
Piittmann for their engagement and contributions.

1658

REFERENCES

Aarts, E., and J. Korst. 1990. Simulated annealing and
Boltzmann machines. Wiley.

Adami, C. 1998. Introduction to artificial life. Springer
Verlag.

Diaz de Ilarraza Sanchez, A., and 1. Fernandez de Castro
(eds.). 1996. Proceedings of the Third International
Conference on Computer Aided Learning and
Instruction in Science and Engineering, CALISCE’96,
San Sebastian, Spain, July 29-31.

Flanagan, D. 1996. Java in a nutshell. A Nutshell
Handbook. O’Reilly.

Goldberg, D.E. 1989. Genetic algorithms in search,
optimization and machine learning. Addison-Wesley.

Hooke, R.A., and T.A. Jeeves. 1961. Direct search solution
for numerical and statistical problems. Journal ACM,
8:212-221.

Langton, C.G. (edt.). 1997. Artificial life: an overview.
Bradford Books.

Michalewicz, Z. 1992. Genetic algorithms + data
structures = evolution programs. Springer Verlag.
Schaffer, J.D., R.A. Caruana, L.J. Eshelman, and R. Das.

1989. A study of control parameters affecting online
performance of genetic algorithms for function
optimization. In Proceedings of the Third
International Conference on Genetic Algorithms, June

4-7, George Mason University, pp. 51-60.

Syrjakow, M., and H. Szczerbicka. 1995. Simulation and
optimization of complex technical systems. In
Proceedings of the 1995 Summer Computer
Simulation Conference (SCSC’95), Ottawa, Ontario,
Canada, July 24-26, pp. 86-95.

Syrjakow, M., and H. Szczerbicka. 1997. Efficient methods
for parameter optimization of simulation models. In
Proceedings of the 1" World Congress on Systems
Simulation (WCSS’97), Singapore, Republic of
Singapore, September 1-3, pp. 54-59.

Syrjakow, M., and H. Szczerbicka. 1999. Java-based
animation of probabilistic search algorithms. In
Proceedings of the 1999 International Conference on
Web-based Modeling and Simulation, part of the
Western MultiConference (WMC’99), San Francisco,
USA, January 17-20, pp. 182-187.

Syrjakow, M., J. Berdux, H. Szczerbicka, B. Zimmermann,
and A. Otto. 1999. A flexible Java-based authoring
system for building multimedia-enriched CBT
applications. In Proceedings of the 13th European
Simulation ~ Multiconference (ESM’99), Warsaw,
Poland, June 1-4, Volume I, pp. 324-328.

AUTHOR BIOGRAPHIES

MICHAEL SYRJAKOW was born in 1964 in the Federal
Republic of Germany. He received the Dipl.-Inform.

Syrjakow, Berdux, and Szczerbicka

degree from the University of Karlsruhe, Germany in 1991.
Since then he has been with the professional group
Performance Modelling at the Institute for Computer
Design and Fault Tolerance at the University of Karlsruhe.
In February 1997 he received the Ph.D. in Computer
Science from the University of Karlsruhe. His email and
Web addresses are <syrjakow@ira.uka.de> and
<goe the.ira.uka.de/people/syrjakow/>.

JOERG BERDUX was born in 1966 in the Federal
Republic of Germany. He received the Dipl.-Inform.
degree from the University of Karlsruhe, Germany in 1995.
In 1996 he worked as a freelance in the field of
Multimedia/Internet. Since then he has been a research
assistant at the Institute for Computer Design and Fault
Tolerance. His email and Web addresses are <berdux(@
ira.uka.de> and <goethe.ira.uka.de/
people/berdux/>.

HELENA SZCZERBICKA was born in Poland. She
received the M.Sc. in applied Mathematics and the Ph.D. in
Computer Science from the Technical University of War-
saw, Poland, in 1974 and 1982, respectively. In July 1985
she joined the Faculty of Computer Science at the Univer-
sity of Karlsruhe, Germany. In May 1994 she became a
professor in computer science at the University of Bremen,
Germany. Since May 2000 she has been a professor at the
University of Hanover, Germany. Her email address is
<hsz@informatik.uni-hannover.de>.

1659

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

