
Proceedings of the 2000 Winter Simulation Conference
J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, eds.

AN AGENT-BASED FRAMEWORK FOR
LINKING DISTRIBUTED SIMULATIONS

Linda F. Wilson
Daniel Burroughs

Jeanne Sucharitaves
Anush Kumar

Thayer School of Engineering
8000 Cummings Hall
Dartmouth College

Hanover, NH 03755–8000, U.S.A.

e
ic
re

r
te

u
g
e

ic
o
ly
n

,
n
m

r
-
te
-
u

n
d

g
to
es
s,

ly

t
es
s
ed
.
e
io
ABSTRACT

Simulations often operate on static datasets and data sourc
but many simulations would benefit from access to dynam
data. This paper describes our work developing a softwa
agent-based framework for dynamically linking distributed
simulations and other remote data resources. The framewo
allows independently-designed simulations to communica
seemlessly with noa priori knowledge of the details of other
simulations and data sources. In this paper, we discuss o
architecture and current implementation developed usin
the D’Agents mobile agent system. To demonstrate th
feasibility of our system, we present a prototype for a
hypothetical search and rescue mission.

1 INTRODUCTION

Operational simulations are typically designed to use stat
datasets and data sources. Many simulations would pr
duce more-accurate results if they could access dynamical
changing data from other sources. Furthermore, many i
teractive simulations require dynamic data, possibly from
multiple sources. From the perspective of one simulation
other simulations are data resources, producing informatio
possibly relevant to the past, present, or future of the syste
being modeled.

This paper presents the fundamental framework fo
using software agent technology to link distributed simu
lations. Specifically, we use software agents to coordina
distributed operational simulations and efficiently communi
cate data between simulations and other data resources. S
simulation agents will allow simulations to enter and exit a
global simulation “cloud” (Figure 1) asynchronously with-
out requiring recompilation and constant re-coordinatio
among all participating sites and datasets. The networke
171
s,

k

r

-
-
-

ch

Figure 1: Cloud Linking Various Simulation and Data Re-
sources

data and simulation cloud consists of dynamically changin
data and computational resources available on a network
one or more simulations. Note that the networked resourc
may consist of other simulations, datasets, active probe
and sensors.

Each simulation in the cloud is designed independent
with little or no knowledge of the other simulations in the
cloud. While a simulation must be able to specify wha
resources it needs and what it provides to the cloud, it do
not need to know any specifics about the other simulation
(e.g. language, file formats, etc.). Instead, our agent-bas
framework provides the interface for linking the simulations

Simulations and other resources may join or leave th
cloud at any point in time. For example, consider a scenar
in which some of the communication within the cloud
occurs via a wireless network. A forest fire simulation
3

Wilson, Burroughs, Sucharitaves, and Kumar

l
t
a

o

h
n
a
r

n

d

g

n

o
e

e

n
r
e
t

i

e

a

e

f
e
n
c
n
f

ed
be
d,
t

e
t

e
of
o,
r,
ily

to
d
is

t

c
ric
nt.
ut
or
o a
t
s
th
nt

d
e

te

ser
s
e

could communicate with various sensors out in the fie
as well as with a weather simulation running at a remo
site. Naturally, sensors located in hostile environments m
communicate sporadically with the rest of the network.

In this paper, we describe the software architecture f
our system and discuss a prototype example involving
hypothetical search and rescue operation. A discussion
some of the challenges involved with this system can b
found in Wilson, Cybenko, and Burroughs (1999).

2 RELATED WORK

Perhaps the greatest challenge in this project lies in t
desire to have multiple independently-designed simulatio
be able to comprehend the data that they are passing b
and forth between one another. In describing a framewo
for communications between intrusion detection system
Kahn et. al. state three conditions that must be met for stro
interactivity between independently-developed systems.

1. Configuration interoperability, which refers to the
ability of two systems to discover one another an
communicate data back and forth.

2. The ability to parse the data being transferred (e.
agree on data types, byte ordering, etc.).

3. Inter-comprehension, or agreement on the meani
and definition of the data descriptors.

When all of these conditions are met, it is possible for tw
independently-developed systems to interact closely ev
though they were designed independently.

One approach to solving this problem is to requir
that all participants in the simulation cloud be designe
to a strict specification. This is the approach used in th
High Level Architecture (HLA) (Dahmann, Fujimoto, and
Weatherly 1998). As described in various specificatio
documents on the HLA web page, HLA defines the structu
of objects in the simulation, grouping of objects, and th
communication between these objects. This leads to a se
highly reusable and interactive simulation objects. Howeve
the disadvantage of such a system is that all participants
the system must be written to meet the specifications. Wh
a well-designed specification will not pose a great burde
to the development of new software, rewriting old softwar
to a new specification may be undesirable or impossible

Another approach to this problem is to require that th
inputs and outputs of the system be described in a predefin
manner, without any specifications for the internal operatio
of the software. The advantage of this approach is th
existing systems could have their data translated into th
common format without a great deal of modification to th
existing software. In order to accomplish this, a robus
system for communicating and describing data is require
17
d
e
y

r
a
of
e

e
s
ck
k
s,
g

.

g

n

d
e

e

of
r,
in
le
n

.
e
ed
n
t

is

t
d.

Knowledge Interchange Format (KIF), a development o
the Logic Group at Stanford as part of the ARPA Knowledg
Sharing Effort, is an attempt to develop this. KIF is based o
first order logic with extensions to support non-monotoni
reason and definitions (Finin et al. 1994). As described i
the draft proposal, KIF is designed for the interchange o
knowledge in disparate computer systems. It is not design
as a human interaction language, nor is it designed to
the internal representation of data within a system. Instea
KIF is designed to facilitate the independent developmen
of software that will eventually communicate.

Another product of theARPA Knowledge Sharing Effort
is KQML (Finin et al. 1994). This is described as a “languag
that is designed to support interactions among intelligen
software agents” (KIF draft proposed standard). KQML
is concerned with knowing who to talk to and how to
maintain a conversation. This includes the ability to initiate
a conversation. It is designed to control the structure on th
conversation while tools such as KIF define the language
the conversation. It enables programs to identify, connect t
and exchange information with other programs. Howeve
the meaning and description of the data is not necessar
defined by KQML.

3 FRAMEWORK ARCHITECTURE

3.1 Overview

We have developed an agent-based software framework
facilitate the dynamic exchange of data between distribute
simulations and other data resources. The goals of th
framework are to allow existing simulations to join the
cloud with a minimal amount of code modification and to
provide a system where simulations can interact withou
any a priori knowledge of each other’s interfaces.

The architecture of our system consists of four basi
components: user objects (e.g. simulation entities), gene
local agents, mobile helper agents, and a broker age
The user objects are often described as simulations b
can actually be any producers or consumers of data. F
example, a sensor that generates data used as input t
simulation would be a data producer. Visualization tools tha
are used to collect and display output of various simulation
would be consumers. Simulations, of course, can be bo
producers and consumers of data. The generic local age
(GLA) is a user object’s interface to the simulation cloud, an
all communications and commands are routed through th
object’s GLA. Thus, the user object needs to communica
directly only with its GLA. Within the simulation cloud,
the broker establishes the necessary links between the u
objects by connecting their GLAs. Finally, the helper agent
(HAs) are mobile agents which are used to minimize th
network traffic by performing computations at the data
14

Wilson, Burroughs, Sucharitaves, and Kumar

s

in

ll
ld
e
ty
n
t

t
r
e

a

t
.

h

r
se

,
.

-
s

t

d
ut
-
n
t
.
s

r

t
d

e
e
,

d
r

l

e

source. The various components in this system are shown
Figure 2 and described in detail in the following subsection

Broker

GLA

User Objects
(Simulation Entities)

Sockets

AgentJava
Interface

AgentJava
Interface

S5 S6 S7 S8

S1 S2 S3 S4

GLAGLAGLA

Sockets

User Objects
(Simulation Entities)

GLAGLAGLAGLA

HA

Figure 2: Basic Framework Connecting the Components
the Cloud

3.2 User Objects and GLAs

In order to participate in the simulation cloud, a user objec
(such as a simulation) needs some basic functionality. A
a minimum, the user object must be able to connect to an
disconnect from the simulation cloud. Data producers wi
also need to advertise their services to the outside wor
Data consumers will need to be able to discover advertis
services and invoke those services. Other functionali
includes the ability to generate and use helper agents a
respond to changes in the availability of other user objec
in the simulation cloud.

The basic functionality is provided to the user objec
through its generic local agent (GLA). The GLA is the use
object’s sole connection to the simulation cloud, and ther
171
in
.

t
t
d

.
d

d
s

is a one-to-one relationship between a user object and
GLA. The user object, through commands sent to and from
the GLA, has the ability to connect to the cloud, disconnec
from it, advertise its services, and look up available services
Essentially, the GLA is the front end of the user object.
However, the user object must be able to communicate wit
its GLA. This communication capability may be built into
the simulation or provided via a separate interface. Ou
prototype system described in Section 5 discusses the u
of such an interface.

The architecture of the GLA can be described with
three main components: the agent communication system
the command interpreter, and the dynamic command table
(These components are shown in Figure 3, which is dis
cussed in Section 5.) The communication system control
all communication between the GLA and other objects in
the simulation cloud, including the local simulation, other
GLAs, and the broker. We use sockets for communication
since they provide a platform- and language-independen
method for communication.

Any incoming messages are passed to the comman
interpreter, which processes the messages and carries o
their instructions as appropriate. Messages fall into two gen
eral categories: broker interaction commands and executio
commands. Broker commands cause the GLA to interac
with the broker, either to advertise or discover services
Execution commands cause the GLA to execute function
from the local simulation or invoke commands on a remote
GLA. Broker interaction functions are built into the GLA,
are static, and are identical across all GLAs. Execution
commands, on the other hand, are dynamic in nature.

The abilities available to a GLA are determined by
what services it has advertised to the simulation cloud o
discovered from the broker. That is, the GLA knows what
services or functions are provided by the local user objec
(simulation) and what remote services have been requeste
by the local simulation.

The dynamic command table provides a data structur
for maintaining the necessary information regarding thes
abilities. This information includes the name of the service
a detailed description of the service, a description of the
service’s input and output parameters, and the location an
execution method of the service. When a service is eithe
advertised or discovered, its specifics are written into the
GLA’s dynamic command table. Once the service is listed
in the GLA’s table, the GLA can access that service without
going through the broker.

For an advertised service (one provided by the loca
user object), the execution request will come from a remote
GLA that needs information from the local service. For a
discovered service (provided by a remote user object), th
execution request will originate from the local simulation.

Finally, the GLA provides the ability for a user object
to disconnect itself from the simulation cloud. The GLA
5

Wilson, Burroughs, Sucharitaves, and Kumar

o

to

a
it
u

f
s

n
l
h

n
e

i
e

h
e

l
n

r

re

h

e

a

e
tral
at

a

in

r
ata

it
e
m
f

ge
e
e
is
e
nt
e

In

le
g
r
s
e
s
r
if
nt
ld
r

rns
er
s

t
r

ble

m
.

e

of the disconnecting object reports this to the broker (wh
reports the disconnection to other remote GLAs) and the
terminates itself. Note that the simulation may continue
run even though it no longer participates in the cloud.

In our current system, the GLAs support only blocking
requests from a simulation. When a simulation passes
execution command to its GLA, the simulation must wa
until this command has been completed before contin
ing. Alternatively, it must provide its own mechanism for
generating the request in a separate thread and polling
the completion of the request. In future implementation
non-blocking requests will be allowed, and the GLA will be
able to interrupt or otherwise inform the simulation whe
a request is completed. In certain situations, the GLA wi
also be able to prefetch data before it is needed by t
simulation.

3.3 The Broker

The broker acts as a database for cloud participants a
their advertised services. When a user object advertis
a service to its GLA, the GLA reports this advertisemen
to the broker. Later, when a remote user object search
for a particular service, its GLA will query the broker.
Upon finding a match for the query, the broker will inform
the remote GLA of the name, location, parameter list, an
execution method of the service. This information will be
transfered to the remote GLA, who will write it into its
dynamic command table. Once the remote GLA has th
entry, it can directly access the local GLA of the servic
without any further communication through the broker.

In the case where a desired service is not found,
will be possible for a user object to tell its GLA to leave
a standing request at the broker. If at some future time t
service does become available, the broker will inform th
appropriate GLA of this, and the GLA will in turn inform
the simulation.

A similar approach is used when an incomplete servic
is found. If the broker later finds a better match, it wil
inform the GLA of this change in the state of the simulatio
cloud, and the GLA can begin using the new service.

If multiple matches are found for a query, the broke
will inform the GLA of all possible matches so the GLA can
determine which source is most appropriate. Furthermo
the GLA will be able to use a second source if the connectio
to the primary source is lost.

A central part of the brokering system is the ability
to describe services accurately and unambiguously so t
consumers and producers of data can be matched correc
This difficult problem is fundamental to the desire to hav
various simulations and data resources interacting seemles
through the cloud. We are currently investigating sever
paths for solving this problem, and we will report our work
in future papers.
171
n

n

-

or
,

l
e

d
s

t
es

d

s

it

e

e

,
n

at
tly.

sly
l

In order to be scalable and robust, the broker should b
designed as a distributed system rather than as a large cen
database. For example, a group of user objects located
one facility could have their own broker. This broker would
know the locations of other brokers, and upon receiving
request which it could not fulfill, it would simply pass this
request to another broker. This system is similar to doma
name server (DNS) lookup, in which a higher-level DNS
is queried only when a query to the local DNS fails.

3.4 Helper Agents

The final component of the simulation cloud is the helpe
agent, which is used to extract or generate the desired d
while minimizing network traffic. Since a producer does
not necessarily know the exact needs of its consumers,
is unrealistic to expect the producer to provide all possibl
forms of its data. Thus, data may need to be collected fro
the producer and then manipulated to fulfill the needs o
the local consumer.

For example, suppose one simulation needs the avera
value of a set of data provided by a remote producer. On
possibility is to send all of the data from the remote sourc
to the simulation and then compute the average. This
inefficient in terms of network usage since it requires a larg
amount of data to be transferred when only a small amou
(i.e. the average) is required. A better approach would b
to perform the averaging calculation at the data source.
order to do this, we introduce the helper agent.

In our software architecture, a helper agent is a mobi
agent capable of traveling to a remote location and executin
there. Through its GLA, a simulation may create a helpe
agent which travels to the remote GLA in order to preproces
the data before transferring it over the network. From th
remote GLA’s viewpoint, the fact that the helper agent ha
moved itself across the network is invisible. The helpe
agent and the GLA communicate over a socket just as
they were still on remote machines. In fact, the helper age
issues the same commands to the remote GLA that wou
have been sent from the originating GLA. Once the helpe
agent collects the results, it processes them and then retu
the final result across the network. Figure 2 shows a help
agent transferring data between the GLAs for simulation
S4 and S8.

The two primary goals of this architecture are to allow
existing simulations to join the cloud with a minimal amoun
of code modification and to provide a system where use
objects can interact without anya priori knowledge of
each other’s interfaces. By using a standard, platform
and language-independent protocol, sockets, we are a
to provide an interface to which it is relatively easy to
connect. Furthermore, by decoupling the user objects fro
one another, there is a great deal of flexibility in the system
A user object is not required to know anything about th
6

Wilson, Burroughs, Sucharitaves, and Kumar

t

n

n

l

e
-

t
-
r
-
e

is
s

t-

,
o
e
o
e
e
.

s

s:
r,
-
to
n
d
g
es

e
st
d
n
ch
e
ly.

ives
all
he
of
h
ch
other user objects; it needs only to talk with its local GLA,
and all further communication is handled through the agen
system.

4 CURRENT IMPLEMENTATION

We have developed an initial implementation to demonstra
the concept of using an agent-based system to exchange d
dynamically between simulations. This section describe
the basics of our implementation, while the next sectio
discusses a search-and-rescue prototype which demonstra
the operation of our system.

We are using Agent Java from the D’Agents system
(D’Agents web page, Brewington et al 1999). Our curren
implementation provides basic functionality for the generic
local agents (GLAs). Implementation of the broker system
is part of our future work.

As discussed earlier, every simulation has its own GLA
Each GLA is developed as a Java application providing end
to-end connectivity with certain built-in functionality, and
the GLAs communicate with each other through sockets
Note that sockets shield the programmer from the low-leve
details of the network, like media types, packet sizes, pack
re-transmission, network addresses, and many other lowe
level implementation details. Most importantly, sockets
allow platform-independent communication.

At a minimum, each GLA provides five standard func-
tions that are invoked through commands sent from a sim
ulation to its GLA. The commands are as follows:

• Lookup: With this command, the GLA takes the
function name and function description (which can
possibly include expected input and output parame
ters) from the simulation and sends this information
to the broker. The broker searches the simulatio
cloud to find a match and then returns the contac
information for the entity (simulation, sensor, etc.)
that provides the requested service.

• Advertise: This command is used by an entity
in the simulation cloud to advertise its producer
capabilities. When an entity invokes this command
it supplies the name of the function or service it
can execute along with a description of the service

• Execute: A consumer in the simulation cloud in-
vokes the execute command to initiate a reques
for data. The consumer provides the local function
name and description to its GLA. If a match is
found in the GLA’s table, the request will be pro-
cessed by the appropriate producer and the resu
will be channeled back to the consumer via the
respective GLAs. If a match is not found, the GLA
contacts the broker to find a match. If no match is
found by the broker, the GLA tells the consumer
that it will not be able to satisfy the request.
171
t

e
ata
s

tes

t

.
-

.
l

et
r-

-

-

t

,

.

t

ts

• Table: The table command is used to access th
contents of the dynamic table data structure main
tained by each GLA. This table is an integral par
of the system because it is involved in the exe
cution of each command. When a user object o
entity first advertises its capabilities to the simula
tion cloud, the capabilities are recorded in the tabl
by its GLA. The table entry includes the function
name and location, where the location is “local”
for an advertisement. When a lookup command
invoked by an entity, the broker checks the table
of the other GLAs in the cloud, finds a match, and
sends the appropriate information to the reques
ing GLA. In this case, the table entry includes the
local function name, the location of the service
and the remote function name of the service. t
be invoked) in the table. Upon encountering th
execute command, the GLA checks the table t
see if a match already exists; if it does then th
request is channeled to the location specified in th
table. Otherwise, the broker tries to find a match

• Disconnect: This command is used by an entity to
exit from the simulation cloud. The GLA informs
the broker of the disconnection and then terminate
itself. Note that the simulation may continue to
execute after it leaves the simulation cloud.

The agent system has two communication interface
the internal interface between each GLA and the broke
and the external interface between the GLA and its sim
ulation or simulation interface. Java sockets are used
implement both the internal and external communicatio
interfaces. With different simulations entering the clou
from different platforms and using various programmin
languages, the platform-independent Java socket provid
the communication flexibility for interoperability.

Communication error control is handled through the us
of acknowledgments. When the simulation sends the fir
command to the GLA, the GLA validates the command an
sends back a “valid” acknowledgment. Once the simulatio
receives an acknowledgment, it sends other information su
as the function name and function description. All of th
commands and descriptions are acknowledged individual

5 SEARCH AND RESCUE EXAMPLE

5.1 Description

Suppose that a Coast Guard search and rescue unit rece
calls for help on an unpredictable (random) basis. Each c
indicates the estimated location and time of an accident. T
Coast Guard needs to obtain a forecast of the trajectory
the survivors. The information must be sufficient to dispatc
a vessel from one or more locations and deploy a sear
7

Wilson, Burroughs, Sucharitaves, and Kumar

e
t

e

h
r

e

n

u

h

l

-
s
h
n
n

e
n
e

a
n

s

y

i

n

e
h
e

g

d

d
,
e
e

e

s
e

r

e

s
e

e
s,

t

e

pattern in and around the predicted trajectory. Furthermor
the temperature history along that trajectory is needed
determine the likelihood of survival. Since the probability
of survival depends on the number of accumulated degre
hours, survivors must be intercepted before they accumula
too much exposure to cold.

Coincidentally, Dartmouth’s Numerical Methods Lab-
oratory (NML) provides an ocean forecasting service whic
archives the latest forecasts for ocean velocity and tempe
ture. Given a suitable request in terms of estimated locatio
and time, the service can compute a trajectory (i.e. locatio
and temperature vs. time). This is exactly the service need
by the Coast Guard unit.

To demonstrate the basic idea of using a software age
based system to exchange data between remote simulatio
we developed a simple prototype for this search and resc
scenario. The Coast Guard simulation can be visualize
as a client or consumer that is making requests, and t
ocean forecasting service is the server or producer that
servicing these requests dynamically. The communicatio
is facilitated by our agent-based system and is complete
transparent to both simulations.

5.2 Implementation

For this prototype, we developed GLAs with basic capa
bilities and basic communication interfaces for the Coa
Guard and ocean simulations. However, the broker whic
is responsible for linking the simulations has not yet bee
developed; thus, the broker’s functionality is hard-coded i
the prototype.

Our prototype consists of four basic components: th
Coast Guard simulation, the ocean forecasting simulatio
the NML server interface for the ocean simulation, and th
individual GLAs. The components are shown in Figure 3
and described in the following paragraphs.

The Coast Guard implementation in this prototype is
Java application that enables the user to enter the comma
to the GLA as if they were sent from a simulation. This
application is similar to the interface that a simulation need
to implement to be able to join the simulation cloud and
talk to its GLA. The Coast Guard simulation and its GLA
are shown in the left side of Figure 3.

The ocean forecasting simulation was developed b
Dartmouth’s Numerical Methods Laboratory (NML) without
any knowledge of our simulation cloud or GLAs. By itself,
the simulation knows only to take an input file containing
the required parameters and generate the correspond
trajectory. Thus, we created a simple interface called th
NML server to handle communication betwen the ocea
simulation and its GLA. The NML server interface receives
the request from the GLA, creates the formatted input fil
needed by the ocean simulation, and sends the file to t
simulation to execute. The interface then waits for th
171
,
o

-
te

a-
n
n
d

t-
ns,
e
d
e
is
n
y

t

,

ds

ng
e

e

result and sends it back to the GLA. Since the NML server
is necessary for the ocean simulation’s participation in the
simulation cloud, we consider the “user object” to be the
ocean simulation and its NML server interface. The right
side of Figure 3 shows the ocean simulation/NML server
combination and the corresponding GLA.

In our prototype, we can visualize the GLA acting as a
client or a server, depending on the command issued, usin
sockets to listen to port 1610. The GLA listens to this port for
incoming requests from consumers and also for processe
results from producer entities. A single listening socket is
used to handle requests from the local simulation object an
from other objects internal to our system (e.g. other GLAs
brokers, etc.). The socket can therefore be viewed as a pip
transporting streams of data between various GLAs and th
entities. The NML server listens to port 2812 for incoming
requests from its GLA, communicates with the simulation,
and sends the required result set back to the GLA, who
then sends it to the remote GLA that needs the data. Th
port numbers are chosen arbitrarily.

During an advertise operation, the GLA takes the func-
tion name and description of the service the simulation
would like to provide and stores it in the dynamic function
table with a “local” service location. In Figure 3, the ocean
simulation advertises that its service named Proc1 take
parameters X, Y, and Z and returns an output T. Thus, th
local service Proc1 is listed in its GLA table. In future im-
plementations containing a functional broker, the advertise
function will be responsible for sending this information
to the broker to store in the broker’s database for furthe
lookups.

During a typical lookup operation, the consumer gives
its GLA the description and local function name (to be
used in the GLA’s table), and the GLA calls the broker’s
lookup method to find a match. In this prototype, the
broker’s lookup method returns hard-coded information on
the producer’s location (i.e. we have simulated the broker’s
actions). Given the producer’s information, the GLA enters
the local function name, remote service location, and remot
function name into its dynamic function table. In Figure 3,
the Coast Guard simulation requests information for three
services that it labels Func1, Func2, and Func3. Matche
for these services were apparently found since all three ar
listed in the GLA table. Note that the Coast Guard GLA’s
table shows the local name for each service along with th
remote location and remote name for each service. Thu
the first entry confirms that Func1 is executed by calling
Proc1 on the NML machine. The entries for Func2 and
Func3 are for demonstration purposes only; they were no
used in the prototype.

When an execute operation occurs, the GLA takes th
function name and description, looks it up in the dynamic
function table, and continues only if the function exists in
the table. If the function is a local service, the GLA will
8

Wilson, Burroughs, Sucharitaves, and Kumar
Command

Interpreter

GLAGLA@@CoastGuardCoastGuard

Dynamic Command Table:

Func1 NML Proc1

Func2 machine2 Proc5

Func3 machine3 Proc9

incoming

GLAGLA@NML.@NML.dartmouthdartmouth..eduedu

Consumer: Coast Guard SimulationConsumer: Coast Guard Simulation

Func1: X, Y, Z / T

Func2: A, B, C / D

Func3: F / G, H

Proc1: X, Y, Z / T

Built-In Commands:

Lookup

Advertise

Execute

Table

Disconnect

 Dynamic Command Table:

 Proc1 Local

Built-In Commands:

Lookup

Advertise

Execute

Table

Disconnect

outgoing
Internal Agent

Communication

 incoming

outgoing

 socket

 socket

Internal Agent

Communication

socket

Command

Interpreter

Producer: Ocean Simulation / NML Server

Figure 3: Search and Rescue Prototype Implementation
,
ult
an
f
e,
e

ill

s

a-

.
n

p

e
at
e
d
s
e

open a connection with its local simulation or interface
send the information, wait for the result, and send the res
back to the enquirer. In Figure 3, a request to the oce
simulation GLA to execute Proc1 will result in execution o
the local Proc1 service. If the function is a remote servic
the GLA will open a connection with the appropriate remot
GLA object and ask that GLA to execute this function. In
Figure 3, a request to the Coast Guard GLA for Func1 w
cause a request to the ocean simulation GLA for Proc1.

A sample run of our prototype can be visualized a
follows:

1. The Coast Guard simulation and the ocean simul
tion/NML server enter the simulation cloud. The
GLAs are activated and wait for incoming requests

2. The NML server performs an advertise operatio
to inform its GLA of its capabilities. Information
on Proc1 is stored in the GLA’s table.

3. The Coast Guard simulation performs a looku
operation for the function that it will need to execute
when a rescue call occurs. The broker returns th
name and location of the required procedure th
matches the criteria, and this information (i.e. th
NML location, etc.) is entered into the Coast Guar
GLA’s table. Note that Func1 is the Coast Guard’
name for the service named Proc1 located at th
NML machine.
1719
4. The Coast Guard simulation then issues an execute
operation whenever it needs information from the
ocean forecasting simulation. The GLA verifies
that the required functionality is present, and the
Coast Guard simulation gives its GLA the necessary
parameters to be passed to the ocean simulation.

5. The Coast Guard’s GLA then sends the data pro-
vided by the Coast Guard simulation to the ocean
simulation’s GLA.

6. The ocean simulation’s GLA receives the execute
command and parameters from the Coast Guard’s
GLA and sends the information to the NML server
which acts as an interface between the GLA and
the ocean simulation.

7. The ocean simulation receives this information
from the NML server and runs the required exe-
cutable to produce the output data file.

8. This output file is then sent to the ocean simulation’s
local GLA, which then sends it to the Coast Guard’s
GLA, which in turn sends it to the Coast Guard
simulation.

9. The Coast Guard simulation uses the trajectory
information to find and rescue the survivors.

Using a real-world scenario, our prototype demonstrates a
transparent, dynamic, and real-time integration of simula-
tions using an agent-based framework.

Wilson, Burroughs, Sucharitaves, and Kumar

s
o
h

f

t
le
e

e
e

n
e

n
n
y
.

e
s
r
l
u
d

,
n

l
e
i
g

-
ll

a

.

t

6 CONCLUSIONS

We have presented the framework and initial implementatio
of our agent-based system for linking distributed simulation
Our simple prototype, though incomplete with respect t
the development of all the components, demonstrated t
effectiveness of using an agent framework to link simulation
together dynamically at run time. In addition, it showed
that an existing simulation written with no knowledge o
our system can be added to it.

In order to enter the simulation cloud, an entity mus
have an interface to the GLA. This interface is the sing
component which must be customized at the end-user lev
We have kept this interface as simple as possible so th
minimal effort will be required on the entity’s part to use
our system. For the ocean forecasting simulation, we add
a simple server interface to enable communication betwe
the ocean simulation and its GLA.

In the traditional approach involving interaction betwee
different entities, any simulation wishing to communicat
with another simulation or data provider must know in
advance where and when it will be required to do so. In man
cases, such communication requires that the participati
simulations be written to meet a given standard. In additio
a considerable amount of network bandwidth is typicall
used in order to transfer data from one entity to another

Our approach allows an entity to request data dynam
ically at any time through its local GLA. The broker will
facilitate the matching and the resulting data will be trans
ferred to the requesting entity. Although our system requir
some overhead in the form of the broker and local GLA
this overhead places little burden on the CPU and memo
systems. The network bandwidth used will be comparab
to the traditional approach, and the performance of o
system will increase when a mobile helper agent is use
The fact that the simulations can request information o
the fly, without being aware of the location of the provider
overrides the minimal overhead incurred by the simulatio
cloud.

When it is developed, the broker will play the centra
role in making the system dynamic at run time. We ar
currently investigating various approaches to develop th
module and also the use of a universal description langua
by which every entity can describe what it produces an
consumes without any ambiguity.

Our agent-based framework for linking distributed sim
ulations opens new avenues of possibilities to dynamica
integrate simulation systems and data providers at run tim
We look forward to developing more-advanced implemen
tations that include a full-fledged broker agent, sensors
data producers, etc.
172
n
.

e
s

l.
at

d
n

y
g
,

-

-
s
,
y
e
r
.

n

s
e

d

y
e.
-
s

ACKNOWLEDGMENTS

This work is supported by National Science Foundation
KDI Grant 9873138. We would like to thank Daniel R.
Lynch and Miroslaw (Mirek) Kiczko for their work with
the ocean forecasting simulation.

REFERENCES

Brewington, B., R. Gray, K. Moizumi, D. Kotz, G. Cy-
benko, and D. Rus. 1999. Mobile agents in distributed
information-retrieval. In Matthias Klusch, editor,In-
telligent Information Agents, Spring-Verlag.

D’Agents Web Page. <http://agent.cs.
dartmouth.edu>

Dahmann, J. S., R. M. Fujimoto, and R. M. Weatherly.
1998. The DoD high level architecture: An update.
Proceedings of the 1998 Winter Simulation Conference,
pp 797–804.

Finin, T., R. Fritzson, D. McKay, and R. McEntire. 1994.
KQML as an agent communication language.Proceed-
ings of the Third International Conference on Informa-
tion and Knowledge Management, pp 456–463.

High level architecture web page.<http://hla.dmso.
mil>

Kahn, C., P. Porras, S. Staniford-Chen, and B. Tung. A
common intrusion detection framework. Submitted to
the Journal of Computer Security.

Knowledge interchange fFormat, draft proposed Amer-
ican National Standard (dpANS) NCITS.T2/98-
004. <http://logic.stanford.edu/kif/
dpans.html>

Knowledge sharing effort web page.<www.cs.umbc.
edu/kse/>

Wilson, L. F., G. Cybenko, and D. Burroughs. 1999. Mobile
agents for distributed simulation.Proceedings of the
High Performance Computing Symposium (HPC ’99),
pp 53–58.

AUTHOR BIOGRAPHIES

LINDA F. WILSON is the Clare Boothe Luce As-
sistant Professor of Engineering at Dartmouth College
She received her BS degree from Duke University and
MSE and PhD degrees from the University of Texas a
Austin. Her email and web addresses are<Linda.F.
Wilson@dartmouth.edu> and <http://thayer.
dartmouth.edu/˜lwilson> .

DANIEL BURROUGHS is a PhD student at Dartmouth
College. He received his BS degree from the Univer-
sity of Central Florida in 1995. His email address is
<Daniel.Burroughs@dartmouth.edu> .
0

Wilson, Burroughs, Sucharitaves, and Kumar

t-

f

JEANNE SUCHARITAVES is a master’s student at Dart-
mouth College. She received her AB degree from Dar
mouth College in 1999. Her email address is<Jeanne.
Sucharitaves@dartmouth.edu> .

ANUSH KUMAR is a master’s student at Dart-
mouth College. He received his BE degree from
Venkateshwara College of Engineering (University o
Madras, India) in 1999. His email address is
<Anush.Kumar@dartmouth.edu> .
1721

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

