
Proceedings of the 2000 Winter Simulation Conference
J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, eds.

DOMAIN-GENERAL SIMULATION AND PLANNING WITH PHYSICAL SCHEMAS

Marc S. Atkin
David L. Westbrook

Paul R. Cohen

Experimental Knowledge Systems Laboratory
Department of Computer Science, 140 Governor’s Drive

University of Massachusetts
Amherst, MA 01003-4610, USA

n
a

i
a
a
a
la
in
o
it
o

is
m
e
,
n

l
a

e

p

a-
ess
an
-

ff
I
nd

ng
d
nd
nd
,
d
ess
ds

,
n
ff
ea

sk
t
rs
e.
uch
e
rr
y

to
ABSTRACT

Physical schemas are representations of simple physica
grounded relationships and interactions such as “move
“push,” and “contain.” We believe they are the conceptua
primitives an agent employs to understand its environme
Physical schemas can be used at varying levels of abstr
tion across a variety of domains. We have designed
domain-general agent simulation and control testbed bas
on physical schemas. If a domain can be described
physical terms as agents moving and applying force, it c
be simulated in this testbed. Furthermore, we show th
physical schemas can be viewed as the basis for abstr
plans and a domain-general planner, GRASP. Our simu
tion and planning system is currently being evaluated
a continuous, dynamic, and adversarial domain based
the game of Capture the Flag. The paper concludes w
an example of how GRASP was applied to the problem
Course of Action generation and evaluation.

1 PHYSICAL SCHEMAS

One of the big open questions in cognitive psychology
how humans come to conceptualize the world around the
How do we learn, for example, that a stuffed animal in th
shape of a cat will typically remain where it was placed
but that a real cat won’t? How do we know that liquids ca
be transported using cups, buckets, or bowls, but not pap
bags? How do we know that any of these objects cou
be used to transport sand, even though we may never h
had experience moving sand with a cup?

In a series of papers, Jean Mandler put forward th
notion that infants acquireimage schemas, preconceptual
redescriptions of their sensory input (Mandler 1988, Mandl
1992). Image schemas are not much more than patte
detectors or filters, but they form the building blocks from
which adult concepts develop. One part of the conce
173
lly
,”
l
t.
c-
a
ed
n
n
t
ct
-

n
h
f

.

er
d
ve

e

r
rn

t

of “cat,” for example, is theanimate-motion schema,
which captures the particular way animals move.

Influenced by Eleanor Rosch’s research on categoriz
tion, Lakoff and Johnson argue that categories are based l
on objective features such as color, size, and shape, th
on interactionalproperties and relationships, such as “gras
pable” and “fits-in-my-mouth,” which characterize how an
agent interacts with its environment (Johnson 1987, Lako
and Johnson 1980, Lakoff 1984). At the same time, A
researchers such as Agre (1988), Chapman (1991), a
Ballard (1989) have argued fordeictic or agent-centered
representations. Lakoff and Johnson make a convinci
case that the primitive interactional knowledge acquire
by infants becomes more elaborate through abstraction a
metaphorical extension as the agent develops (Lakoff a
Johnson 1980). The notion of “grasping,” for example
which is presumably learned very early in life, is abstracte
by adults to the mental realm and then describes the proc
of understanding an idea. Just as grasping with your han
involves getting a good grip on an object, preventing it from
slipping away, and being able to feel its form and texture
grasping an idea involves “getting your mind” around a
abstract concept and getting a feel for its structure. Lako
and Johnson would argue that the notion of grasping an id
is givenmeaningby the more primitive notion of grasping
an object.

Motivated by this research, we gave ourselves the ta
of exploiting the generality and ubiquity of schemas. I
occurred to us some time ago that many of the simulato
we had been writing really were just variations on a them
Physical processes, military engagements, and games s
as billiards are all about agents moving and applying forc
to one another (see, for example, (Tzu 1988) and (Ka
1981)). Even the somewhat abstract realm of diplomac
can viewed in these terms: One government might try
apply pressureto another for some purpose, or intend to
containa crisis before it spreads.
0

Atkin, Westbrook, and Cohen

n

a

t

e
e

i

t

y

t

-
e
)

r

s

r
t
t
y
s
t
t
les
n

l

h
e

b’s
is
In order to simulate and reason in these domains, w
need a set of primitives. We call themphysical schemas.
Like image schemas, they describe basic relationships a
interactions between objects. In order to limit their numbe
and solidify their definition, we require them to all be
grounded in physics, specifically in the processes of movin
and applying force. Examples aremove, push , contain ,
block , or surround . If moving an army is conceptually
no different than moving a robot, both these processes c
be represented with onemove action in a simulator. We
believe that people think and solve problems in terms o
physical schemas. An example: A person notices his sin
is leaking, and considers what to about it. He realize
that there are cracks in the sink. The way to solve th
problem is to plug the cracks. Now confront this person
with a military problem: Hostile forces are moving across
a mountain range into friendly territory. What should be
done about it? If the person understands that military force
can behave like water, and that the cracks are passes in
mountain range, he can prevent the flow by making th
passes untraversable.

2 AFS: THE ABSTRACT FORCE SIMULATOR

To evaluate the feasibility of domain-general schema-base
simulation and planning, we have developed a simulator o
physical schemas, the Abstract Force Simulator (AFS).
operates with a set of abstract agents called “blobs,” whic
have a small set of physical features, including mass, v
locity, friction, radius, attack strength, and so on. Blobs ar
currently circular, but eventually, blobs will be able to take
any shape, and deform and redistribute their mass. A blob
an abstract unit; it could be an army, a soldier, or a politica
entity. Every blob has a small set of primitive actions it can
perform,primitive-move , apply-force (push), and
change-shape . All other schemas are built from these
actions. Simply by changing the physics of the simulator
that is, how mass is affected by collisions, what the friction
is for a blob moving over a certain type of surface, etc.
we can and we did turn AFS from a simulator of billiard
balls into one of unit movements in a military domain.

AFS is a simulator of physical processes. It is tick-
based, but the ticks are small enough to accurately mod
the physical interactions between blobs. Although blob
themselves move continuously in 2D space, for reason
of efficiency, the properties of this space, such as terra
attributes, are represented as a discrete grid of rectangu
cells. Such a grid of cells is also used internally to bin
spatially proximal blobs, making the time complexity of
collision detection and blob sensor modeling no greate
than linear in terms of the number of blobs in the simulator
AFS was designed from the outset to be able to simula
large numbers (on the order of hundreds or thousands)
blobs.
173
e

d
r

g

n

f
k
s
e

s
he
e

d
f

It
h
-

is
l

,

,

el
s
s
n
lar

r
.
e
of

The physics of the simulation are presently defined b
the following parameters:

• Blob-specific parameters:

– shape

– density

– viscosity and elasticity: determines how
blobs interact

– mass: the blob’s effectiveness at applying
force

– position and velocity

– acceleration

– friction on different surfaces

– strength coefficient: a multiplier on mass to
compute the force blob can apply

– resilience coefficient: determines how much
mass a blob loses when force is applied to i

• Global parameters:

– the different types of blobs present in the sim
ulation (such as blobs that need sustenanc
or blobs than can apply force at a distance

– the damage model: how blobs affect each
others’ masses by moving through each othe
or applying force

– sensor model: what information blobs can
collect

AFS is anabstractsimulator; blobs are abstract entities
that may or may not have internal structure. AFS allows u
to express a blob’s internal structure by composing it from
smaller blobs, much like an army is composed of smalle
organizational units and ultimately individual soldiers. Bu
we don’t have to take the internal structure into accoun
when simulating, since at any level of abstraction, ever
blob is completely characterized by the physical attribute
associated with it. Armies can move and apply force jus
like individual soldiers do. The physics of armies is differen
than the physics of soldiers, and the time and space sca
are different, but the main idea behind AFS is that we ca
simulate at the “army” level if we so desire—if we believe
it is unnecessary or inefficient to simulate in more detail.

Since AFS is simulating physics, the top-level contro
loop of the simulator is quite straightforward: On each
tick, loop over all blobs in the simulator and update eac
one based on the forces acting on it. If blobs interact, th
physics of the world will specify what form their interaction
will take. Then update the blob’s low-level sensors, if it
has any. Each blob is assumed to have astate reflector, a
data structure that expresses the current state of the blo
sensory experience. It is the simulator’s job to update th
data structure.
1

Atkin, Westbrook, and Cohen

-
is
e
n
p
p
e

e
r

th
a

y
e
d
s
s

on
e
e
7,

y.
m

le

.
n
C
f

e
ll
t

h
s

g

-
s

r
a
l
io
s
y

e

of

;
y
n

an
lel

ain
n
)
nd
nt
nd

e
es
t’s
to
or
r

s,

-

3 HAC: HIERARCHICAL AGENT CONTROL

HAC (Hierarchical Agent Control) can be viewed as a lan
guage for writing agent actions. HAC also forms the bas
upon which our planner is built. HAC takes care of th
mechanics of executing the code that controls an age
passing messages between actions, coordinating multi
agents, arbitrating resource conflicts between agents, u
dating sensor values, and interleaving cognitive process
such as planning.

HAC organizes the agent’s actions in a hierarchy (se
Figure 1). Control information is passed down, messages a
passed up. The lowest level consists of agent effectors,
middle layer consists of more complex, yet domain-gener
actions calledphysical schemas. Above this level we have
domain-specific actions. As one goes up the hierarch
actions become increasingly abstract and powerful. Th
solve more difficult problems, such as path planning, an
can react to wide range of eventualities. Although action
lower in the hierarchy will tend to be more reactive, wherea
those higher up tend to be more deliberative, the transiti
between them is smooth and completely up to the design
Unlike other architectures, we do not prescribe a pres
number of behavioral levels (Georgeff and Lansky 198
Cohen, Greenberg, Hart, and Howe 1989).

A hierarchy of sensors parallels the action hierarch
Just as a more complex action uses simpler ones to acco
plish its goal, complex sensors use the values of simp
ones. These areabstract sensors. They are not physical,
since they do not sense anything directly from the world
They take the output of other sensors and integrate a
re-interpret it. Abstract sensors are used throughout HA
and our planner, GRASP, to notify actions and plans o
unexpected or unpredictable events.

HAC executes actions by scheduling them on a queu
The queue is sorted by the time at which the action wi
execute. Actions get taken off the queue and executed un
there are no more actions that are scheduled to run at t
time step. Actions can reschedule themselves, but in mo
cases, they will be rescheduled when woken up by messa
from their children.

HAC is a supervenientarchitecture (Spector and
Hendler 1994). It abides by the principle that higher lev
els should provide goals and context for the lower level
and lower levels provide sensory reports and messages
the higher levels (“goals down, knowledge up”). A highe
level cannot overrule the sensory information provided by
lower level, nor can a lower level interfere with the contro
of a higher level. Supervenience structures the abstract
process; it allows us to build modular, reusable action
HAC simplifies this process further by enforcing that ever
action’s implementation take the following form:

1. React to messages coming in from children.
2. Update state.
173
t,
le
-
s

e
e
l

,
y

r.
t

-
r

d

.

il
is
t

es

,
to

n
.

3. Schedule new child actions if necessary.
4. Send messages up to parent.

Figure 1 shows a small part of an action hierarchy. Th
follow action, for example, relies on amove action to
reach a specified location.move will send status reports
to follow if necessary; at the very least a completion
message (failure or success). The only responsibility
the follow action is to issue a new target location if
the agent being followed moves. HAC is an architecture
other than enforcing a general form, it does not place an
constraints on how actions are implemented. Every actio
can choose what messages it will respond to. Actions c
be deliberative or reactive. Parents can run in a paral
with their children or only when the child completes.

Domain-
specific
actions

Physical
Schemas

Primitive
Actions

er
ro

rs
, m

es
sa

ge
s

co
nt

ro
l,

co
nt

ex
t

Mobile Offense

Harass

Follow

Attack

Move

Apply-ForcePrimitive-Move ...

...

Figure 1: An Example Action Hierarchy

4 THE CAPTURE THE FLAG TESTBED

We have been developing a dynamic and adversarial dom
in which to test AFS and HAC. This domain is based o
the game of “Capture the Flag” (CtF). In CtF (see Figure 2
there are two teams; each has a number of movable units a
flags to protect. They operate on a map which has differe
types of terrain. Terrain influences movement speed a
forms barriers; terrain also affects unit visibility. A team
wins when it captures all its opponent’s flags. This gam
appears deceptively simple. The player must allocate forc
for attack and defense, and decide which of the opponen
units or flags he should attack. The player must react
plans that do not unfold as expected, and possibly retreat
regroup. We model limited visibility and inaccurate senso
data. This leads to additional strategies involving feint
sneak attacks, and ambushes.

The following physical schemas are currently imple
mented in CtF:move, attack , block , turn , split ,
clear , damage, defend , destroy , hold , contain ,
follow , hinder , bypass , breach , distract ,
surround , andenvelop .
2

Atkin, Westbrook, and Cohen

its)
sed
se
-
to
.
s

d
e
n
are
If

eed
nt
,

ete

n

le

l,
re
and
he

se,
ut

to
ng
d

rs
P
i-
r

tic
e
l-
ed

ng
f
y
ed
Figure 2: The Capture the Flag Domain

5 GRASP: A MULTI-GOAL PARTIAL
HIERARCHICAL PLANNER

GRASP (General Reasoning using AbStract Physics)
a least-commitment partial hierarchical planner (George
and Lansky 1986). Partial hierarchical planners rely on
library of pre-compiled plan skeletons which may contain
sub-goals and variables that are only bound at plan tim
Such a library of plans helps avoid the enormous branchin
factor a generative planner would face in the CtF domain

Since most plans post sub-goals during their executio
the set of plans form a hierarchy know as thegoal-plan tree.
This hierarchy meshes well with HAC; in fact, GRASP’s
skeletal plans are implemented as HAC actions. They diffe
from simple actions in that they require a “satisfies” clause
a token that allows the planner to match goals to plan
and a “pre-conditions” clause, a function that reduces th
branching factor of the planning process by pruning th
number of plans that are applicable in a given situation
One way to look at plan skeletons is simply as actions th
state the goal they achieve explicitly.

GRASP extends the traditional partial hierarchical plan
ning framework by allowing multiple goals to be associate
with a resource or set of resources. These are not simp
conjunctive goals; instead, goals are prioritized. GRAS
uses heuristics in order to achieve the largest set of hig
priority goals possible.

In CtF, winning involves coordinating multiple sub-
goals: protecting your own flags, thwarting enemy of
fensives, choosing the most vulnerable enemy flag for
17
is
ff
a

e.
g
.

n,

r
,

s,
e
e
.

at

-
d
ly

P
h

-
a

counter-attack, and so on. Each requires resources (un
to be accomplished. Sometimes one resource can be u
to achieve several tasks. For instance, if two flags are clo
together, one unit might protect both. Or, advancing to
wards an opponent’s flag might also force the opponent
retreat, thus relieving some pressure on one’s own flags

Every plan must have associated with it a set of function
to assist in the resolution of multiple goals:

• estimate-resources(plan): what resources is this
plan likely to need?

• goal-congruence(planA, planB): to what degree do
plans A and B achieve the same goal?

• merge-plans(planA, planB): create a new plan that
achieves both of plan A and B’s goals.

GRASP uses these functions and the algorithm outline
in Figure 3 to solve the resource allocation problem in th
presence of multiple goals. Each goal is prioritized, the
plans are generated to achieve each one. Heuristics
used to generate a small number of possible plan sets.
resource problems ariseduringa plan’s execution (because a
resource was destroyed and the plan using it cannot succ
without it, for example), a resource error message is se
to the plan initiator using the HAC messaging mechanism
possibly causing resources to be re-assigned or a compl
replan to take place.

Figure 4 shows an example of the plan generatio
procedure: White is trying to satisfy the goalwin-the-
game. Several top-level plans match this goal; the examp
explores what happens whendefensive-stanceis expanded.
In the context of this plan, defense is considered vita
which is reflected in the task list that is generated. The
are several sets of schemas that achieve these tasks,
many ways to allocate resources to these schemas. T
planner uses heuristics to prune this set. In the first ca
two blobs are allocated to flag defense, and one is sent o
to attack. In the second plan, only one blob is needed
block the mountain pass, thus protecting the flags, leavi
two blobs for the attack. This plan is more likely to succee
and is ranked higher.

When several plans apply, partial hierarchical planne
typically select one according to heuristic criteria. GRAS
instead performs a qualitative simulation on each cand
date plan (or plan set), just like a human military planne
would. Potential plans are simulated forward, then a sta
evaluation function is applied to select the best plan. Th
static evaluation function incorporates such factors as re
ative strength and the number of captured and threaten
flags of both teams to describe how desirable the resulti
world state is. Simulation helps alleviate the problem o
not being able to specify exact post-conditions for ever
plan operator. Uncertainty in the world can be address
33

Atkin, Westbrook, and Cohen
An action or a plan posts a set of goalsG = {g1, g2, ...gn}. This invokes the following process:
1. For every gi :

1.1 Search the list of plans for those that can satisfy gi .
1.2 Evaluate each potential plan’s pre-conditions and keep only those whose pre-conditions match.
1.3 For each remaining plan, estimate its required resources.

2. Sort G by the priority of gi .
3. candidate_plan_sets:= nil.
4. Loop over gi in order of priority:

4.1 If only one plan achieves gi , instantiate it (bind unbound variables) and add it to every plan set in
candidate_plan_sets; otherwise:

4.2 If several plans achieve gi , score each one based on:
• how many resources it uses
• how many other goals in G it (partially) satisfies
• other plan-specific heuristics

4.3 Choose m (m is rarely > 1 to limit combinatorics) of the highest scoring plans: p1, ..., pm

4.4 Loop over remaining gj (j > i): if gi partially satisfies gj , merge gj into p1, ..., pm

4.5 Copy the plan sets in candidate_plan_setsm times; add pk to copy k.
5. Loop over plan_setin candidate_plan_sets:

5.1 Evaluate plan_setusing forward simulation.
6. Execute the plan set (make them child actions of the goal poster) that in simulation, results in a world

state with the highest score.
Figure 3: The Planning Algorithm

Goal: win-the-game

sy
n

ta
ct

ic
 m

a
tc

h

defensive
stance

aggressive
stance

aggressive
stance
(sneak attack)

generate
ranked
task list

1. protect least
 vulnerable flag
2. protect other
 flags
3. attack most
 vulnerable enemy
 flag
...

current world state

...

...

generate
physical
schema
plans

defend flags directly

block pass

forward
simulate
and
evaluate

resulting world
state score: 50

score: 100
(choose this
plan for
execution)

Figure 4: A Planning Example
s

n
e
i

ls
a
y
s
i

de-
e
al
for
al
he
he
ss

d

by Monte Carlo analysis. The world and your opponent(
are simply another set of processes to simulate.

The downside is that simulation is a costly operatio
In order to do it efficiently and thus be able to evaluat
plans quickly, GRASP evaluates plans at a level that
more abstract than the domain being operated in. Th
is much in keeping with Minsky’s original conception of
planning (Minsky 1961). GRASP ignores certain detai
of the domain, such as obstacle avoidance, during pl
evaluation. More importantly, GRASP attempts to identif
the time periods during which no important interaction
between agents are likely to occur and skips over them (Atk
and Cohen 2000).
173
)

.

s
is

n

n

6 PHYSICAL SCHEMA PLANNING

Physical schemas are simple conceptual structures that
scribe how objects and agents commonly interact in th
physical world. One reason we are interested in physic
schemas is because they form a good candidate set
planning operators in a domain-general partial hierarchic
planner. The basic idea is that physical schemas are t
operators that a general goal-plan hierarchy, based on t
manipulation of abstract physical quantities such as ma
and position, ground out in.

For example, there are only so many ways to avoi
colliding with an object that is approaching you: You can
4

Atkin, Westbrook, and Cohen

n
,
u

h
d
r

e
n

g

e

e
a
l
e
d

n
A

e
r
n
t
s
s
e
ly

e
e
A

d
d
n
e

).
o

e

ry

-
th
6).
e
e
e
in
ial
.

st

,
-
er
me
e:

ri-
in
in
e

on-
step out of its way, force it to miss by deflecting it, or force
it to stop. Viewed at this level of abstraction, there are i
turn only a few ways to stop an object: If it is powered
deprive it of its fuel supply; place an obstacle between yo
and the object; change the environment, for example th
terrain, so that it can’t maintain its speed.

Plan skeletons in such a domain-general plan hierarc
use only physical schemas to affect change in the worl
and achieve goals that ultimately relate to changing o
maintaining a physical quantity (for example, “not colliding”
means not having one’s mass or position changed by anoth
agent). We call these plan skeletonsphysical schema plans
because they rely on the set of physical schemas to implem
their policies. They are distilled knowledge, based o
countless interactions with the world, of how to achieve
certain desired states in certain physical situations. By th
phrasephysical schema planningwe simply mean partial
hierarchical planning in a domain of abstract physics, usin
physical schemas as our operator set.

7 USING GRASP FOR COA ANALYSIS

GRASP and HAC were used to evaluate abstract plans call
Courses of Action (COA’s) in the High Performance Knowl-
edge Base project (HPKB). We used our simulator to mod
a military domain and simulated the possible outcomes of
COA using Monte Carlo analysis (see Figure 5). The initia
conditions of a scenario were then varied slightly and th
effect on the overall outcome of the scenario was measure

We used GRASP to fill in gaps in a COA that had bee
sketched by a human planner. An underspecified CO
fails to provide actions and goals for all the units being
controlled, which can happen when an engagement go
in a direction that was not predicted. Adding the planne
serves two purposes: creating more realistic opponents a
aiding human planners. A COA must specify both wha
the friendly units are told to do and what the enemy unit
are likely to do. Rather than being forced to create plan
for both sides, it is much more desirable to use the plann
to create a reactive and intelligent opponent who can tru
test the strength of the COA.

Our goal was to evaluate scripted engagements betwe
Red and Blue forces. We compared four conditions: th
COA as specified, the COA plus the Blue planner, the CO
plus the Red planner, and the COA plus both Red and Blu
planners.

We ran the simulation 100 times, collecting final Red an
Blue mass (an abstract measure of unit strength; a briga
has a mass of around 400), the total time of the simulatio
and the end result. A simulation ended either when on
team won or after 300 time units (12 simulated hours
Each simulation randomized the positions and masses
the units on each side. The basic composition of the forc
of

173
e

y
,

er

nt

e

d

l

.

s

d

r

n

e

e

f
s

Figure 5: AFS Simulating a Military Engagement for
the COA Analysis Experiment

and the tasks specified in the COA were the same in eve
simulation.

As expected, running either planner alone greatly im
proves matters for the side that is planning and running bo
planners moved the averages towards the middle (Figure
We found that even in the “no planning” condition, varianc
in outcome (e.g., final force delta: Red mass minus Blu
mass at the end of a trial) was very large, driving hom
the point that in domains such as this, small differences
the start state can greatly affect the end state. The init
force delta accounts for only 15% of the final force delta
Out of all possible factors, the ability to plan was the be
predictor of success.

On the surface this is not a surprising result. It is
however, a qualitative measure of GRASP’s ability to pro
duce workable plans in a continuous complex domain und
real-time pressure. Furthermore, these plans have the sa
level of quality that plans designed by human planners hav
using the planner, we were able to confirm that one va
ant of the scenario labeled “Red Most Dangerous” was
fact the most dangerous variant for Blue, and that certa
events will lead to Blue’s defeat, for example that a Blu
counterattack must begin before a certain time.

8 SUMMARY AND RELATED WORK

Physical schemas are domain-general actions and relati
ships based on the physics of how agents interact. Out
5

Atkin, Westbrook, and Cohen

g

es
,
to
ct

om

c-
n-
l

h

n

r
t
le
t

al
we

e
ch,
.
-
d

to
es
s
nd
ffi-
of
ce

y

h

n
-

-2500

-2250

-2000

-1750

-1500

-1250

-1000

-750

-500

-250

0

Final Force Delta

Initial Force Delta

high

medium

low

neither
plans

blue
plans

red
plans

both
plan

Figure 6: The Effect of Planning Condition and
Initial Force Delta on Final Force Delta

these schemas we have a built a general simulator, AFS
can be used in any domain that can be described as ag
moving and applying force to one another. We have al
seen how the physics of a domain naturally prescribes
set of plans, and we have introduced a partial hierarchic
planner, GRASP, that takes advantage of these plans.
accordance with our view that physical schemas are a
to describe the world at varying levels of abstraction, w
simulate at a more abstract level to evaluate plans.

The GRASP planner integrates a number of new a
old ideas to deal with continuous and adversarial domains
real-time. It builds upon the established notion of a contr
hierarchy, used in many agent architectures and hierarch
task network planners (e.g., (Wilkins 1988, Currie and Ta
1991)). GRASP extends the partial hierarchical plannin
framework by explicitly representing multiple goals an
integrating the planner into an action hierarchy that hand
resource arbitration and failure recovery. This hierarch
implemented in HAC, allows us to plan with operators tha
are flexible and competent. The HPKB COA evaluatio
experiment provides a qualitative demonstration of GRASP
ability to generate good and timely plans in a realist
application.

The idea of reasoning using procedural knowledge h
also been used in a number of other systems, inclu
ing PRS (Georgeff and Ingrand 1989), PRS-Lite (Mye
1996), resun (Carver and Lesser 1993),phoenix (Co-
hen, Greenberg, Hart, and Howe 1989), the data analy
systemaide (St. Amant 1996), and in languages for reac
tive control such as RAP (Firby 1987),xfrm (McDermott
1992) andpropel (Levinson 1995). Theapex architec-
ture also attempts to manage multiple tasks in comple
uncertain environments, placing particular emphasis on t
problem of resolving resources conflicts (Freed 1998).

Although many systems reason about multiple concu
rent goals, GRASP is unique among partial hierarchic
planners in that it places much of the burden of resolvin
17
. It
ents
so

a
al
In

ble
e

nd
in

ol
ical
te
g

d
les
y,
t
n
’s

ic

as
d-

rs

sis
-

x,
he

r-
al

these goals on the planner, using the availability of resourc
as its primary heuristic. Unlike PRS and RAP, for example
GRASP does not require the designer of actions (tasks)
anticipate every possible event interaction. Plans that rea
to unforeseen events can be kept conceptually separate fr
those that are implementing longer term goals.

HAC and GRASP use the same representation for a
tions at all levels of the hierarchy, and also for plans and se
sors. Contrast this with the majority of current agent contro
architectures, e.g.cypress (Wilkins, Myers, Lowrance,
and Wesley 1995) and RAP (Firby 1996), which distinguis
between procedural low-level “skills” or “behaviors” and
higher level symbolic reasoning. Different systems are ofte
used to implement each level (cypress combines SIPE-2
and PRS, for example).

The evaluation of our claims of domain-generality are
still in progress. While AFS has been used in a numbe
of domains with different underlying physics, we have ye
to show how easily physical schema plans are transferab
from one to domain to another. It is our hope, however, tha
we can establish a general plan hierarchy for any physic
domain based on a general causal model of the physics
are simulating.

ACKNOWLEDGMENTS

We wish to thank General Charley Otstott for his expertis
and enthusiastic advocacy, as well as everyone at Alphate
particularly Eric Jones, for helping run the COA evaluation

This research is supported by DARPA/USAF under con
tract numbers N66001-96-C-8504, F30602-97-1-0289, an
F30602-95-1-0021. The U.S. Government is authorized
reproduce and distribute reprints for governmental purpos
notwithstanding any copyright notation hereon. The view
and conclusions contained herein are those of the authors a
should not be interpreted as necessarily representing the o
cial policies or endorsements either expressed or implied,
the Defense Advanced Research Projects Agency/Air For
Materiel Command or the U.S. Government.

REFERENCES

Agre, P. E. (1988). The dynamic structure of everyda
life. Technical Report 1085, MIT Artificial Intelligence
Laboratory, Cambridge MA.

Atkin, M. S. and P. R. Cohen (2000). Using simulation
and critical points to define states in continuous searc
spaces. To appear inProceedings of the 2000 Winter
Simulation Conference.

Ballard, D. (1989). Reference frames for animate vision. I
Proceedings of the Eleventh International Joint Con
ference on Artificial Intelligenc. Morgan Kaufmann
Publishers, Inc.
36

Atkin, Westbrook, and Cohen

h

n

i
l

g

x

n

.

n
l

t
e

g

e
e

a

a
r

ce

e

al

d

-
rk
-

-
l
s
ts.
g
-
il

t
.

-
-
-

il

-
r

Carver, N. andV. Lesser (1993, November).A planner for t
control of problem solving systems.IEEE Transactions
on Systems, Man, and Cybernetics, special issue
Planning, Scheduling, and Control 23(6): 1519–1536.

Chapman, D. (1991).Vision, Instruction and Action. MIT
Press.

Cohen, P. R., M. L. Greenberg, D. M. Hart, and A. E. How
(1989, Fall). Trial by fire: Understanding the desig
requirements for agents in complex environments.AI
Magazine 10(3): 32–48.Also Technical Report, COINS
Dept, University of Massachusetts.

Currie, K. and A. Tate (1991). O-Plan: The open planni
architecture.Artificial Intelligence 52: 49–86.

Firby, R. J. (1987). An investigation into reactive planning
complex domains. InProceedings of the Sixth Nationa
Conference on Artificial Intelligence: 202–206.

Firby, R. J. (1996). Modularity issues in reactive plannin
In Proceedings of the Third International Conferenc
on Artificial Intelligence Planning Systems: 78–85.

Freed, M. (1998). Managing multiple tasks in comple
dynamic environments. InProceedings of the Fifteenth
National Conference on Artificial Intelligence: 921–
927.

Georgeff, M. P. and F. F. Ingrand (1989). Decision-maki
in an embedded reasoning system. InProceedings of the
Eleventh International Joint Conference on Artificia
Intelligence: 972–978. AAAI Press: Menlo Park, CA

Georgeff, M. P. and A. L. Lansky (1986). Procedural know
edge.Proceedings of the IEEE Special Issue on Know
edge Representation 74(10): 1383–1398.

Georgeff, M. P. and A. L. Lansky (1987). Reactive reasoni
and planning. InProceedings of the Sixth Nationa
Conference on Artificial Intelligence: 677–682. MIT
Press.

Johnson, M. (1987).The Body in the Mind. University of
Chicago Press.

Karr, A. F. (1981). Lanchester attrition processes and thea
level combat models. Technical report, Institute for D
fense Analyses, Program Analysis Division, Arlington
VA.

Lakoff, G. (1984).Women, Fire, and Dangerous Things.
University of Chicago Press.

Lakoff, G. and M. Johnson (1980).Metaphors We Live By.
University of Chicago Press.

Levinson, R. (1995). A general programming langua
for unified planning and control.Artificial Intelli-
gence 76(1-2): 319–375.

Mandler, J. M. (1988). How to build a baby: On th
development of an accessible representational syst
Cognitive Development 3: 113–136.

Mandler, J. M. (1992). How to build a baby: II. Conceptu
primitives. Psychological Review 99(4): 587–604.

McDermott, D. (1992, December). Transformation
planning of robot behavior. Technical Repo
17
e

on

e
n

g

n

.
e

,

g

l

l-
l-

g

er-
-
,

e

m.

l

l
t

YALEU/CSD/RR #941, Yale University, New Haven,
CT.

Minsky, M. (1961). Steps towards artificial intelligence.
Proceedings of the I.R.E. 49: 8–30.

Myers, K. L. (1996). A procedural knowledge approach to
task-level control. InProceedings of the Third Interna-
tional Conference on Artificial Intelligence Planning
Systems: 158–165.

Spector, L. and J. Hendler (1994). The use of supervenien
in dynamic-world planning. In K. Hammond (Ed.),
Proceedings of The Second International Conferenc
on Artificial Intelligence Planning Systems: 158–163.

St. Amant, R. (1996).A Mixed-Initiative Planning Approach
to Exploratory Data Analysis. Ph. D. thesis, University
of Massachusetts, Amherst. Also available as technic
report CMPSCI-96-33.

Tzu, S. (1988).The Art of War. Shambhala Publications.
Wilkins, D. E. (1988).Practical Planning: Extending the

Classical AI Planning Paradigm. Morgan Kaufmann.
Wilkins, D. E., K. L. Myers, J. D. Lowrance, and L. P.

Wesley (1995). Planning and reacting in uncertain an
dynamic environments.Journal of Experimental and
Theoretical AI 7(1): 197–227.

AUTHOR BIOGRAPHIES

MARC S. ATKIN is a graduate student at the Exper-
imental Knowledge Systems Laboratory at the Univer
sity of Massachusetts. He did his undergraduate wo
at Karlsruhe University in Germany, and received his Mas
ters in Computer Science from the University of Mas
sachusetts. He is now pursuing a Ph.D. in artificia
intelligence at the same institution. His research ha
focussed on the design of intelligent embedded agen
Currently, his interests include domain-general plannin
and techniques for efficient control of agents in real
time, continuous, and adversarial domains. His ema
and web addresses are<atkin@cs.umass.edu> and
<eksl.cs.umass.edu/˜atkin> .

DAVID L. WESTBROOK is the Technical Manager
of the Experimental Knowledge Systems Laboratory a
the University of Massachusetts. He received a B.A
in Computer Science from the State University of New
York College at Oswego and an M.S. in Computer Sci
ence from the University of Massachusetts. His cur
rent interests include planning, simulation, agent de
sign, visualization, and game design. His ema
and web addresses are<westy@cs.umass.edu> and
<eksl.cs.umass.edu/˜westy> .

PAUL R. COHEN received his Ph.D. from Stanford Uni-
versity in 1983. He is a Professor of Computer Sci
ence at the University of Massachusetts, and Directo
37

Atkin, Westbrook, and Cohen

e

.
r-

-
nts
ail
of the Experimental Knowledge Systems Laboratory. H
edited the “Handbook of Artificial Intelligence,” Volumes
III and IV with Edward Feigenbaum and Avron Barr
Cohen was elected in 1993 as a Fellow of the Ame
ican Association for Artificial Intelligence, and served
as Councillor of that organization, 1991–1994. His re
search concerns the design principles for intelligent age
and the acquisition of conceptual structures. His em
and web addresses are<cohen@cs.umass.edu> and
<eksl.cs.umass.edu/˜cohen>
1738

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

