
Proceedings of the 2000 Winter Simulation Conference 
J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, eds. 

 
 
 

A SIMULATION TEST-BED TO EVALUATE MULTI-AGENT  
CONTROL OF MANUFACTURING SYSTEMS 

 
 

Robert W. Brennan 
William O 

 
Department of Mechanical and Manufacturing Engineering 

University of Calgary 
2500 University Drive N.W.  

Calgary, AB T2N 1N4, CANADA 
 
 
 

ABSTRACT  
 
Current research in the area of manufacturing planning and 
control has moved away from traditional centralized 
solutions towards distributed architectures that range from 
hierarchical to heterarchical. Between these two extremes 
of the control architecture spectrum lies the holonic 
manufacturing systems paradigm, where partial dynamic 
hierarchies of agents cooperate to meet global system 
objectives in the face of disturbances. This paper describes 
a simulation test bed for the evaluation of a distributed 
multi-agent control architecture for holonic manufacturing 
systems that integrates discrete-event simulation software 
into its design to allow the control architecture to be evalu-
ated with a variety of emulated manufacturing systems. 
 
1 INTRODUCTION 
 
To meet the requirements of agile manufacturing, various 
distributed control architectures have been proposed that 
span a spectrum from hierarchical to non-hierarchical (or 
heterarchical) control architectures (Dilts et al. 1991). 
These various architectures are intended to enhance a 
control system�s adaptability and flexibility against 
disturbances such as machine failure or uncertain 
processing times.  

At the heterarchical end of the control architecture 
spectrum, the most commonly used distributed scheduling 
and control approach is the contract-net (Smith 1982) 
�auction-based bidding� protocol to allocate manufacturing 
resources to jobs.  

With this approach, when a job arrives, it will request 
machines in the system to submit bids for its first 
operation. Upon receiving the job�s request, machines that 
can perform the operation will evaluate their task agenda, 
then reply the job with a message containing information 
like the earliest time they can start/finish the operation, 
and/or the number of jobs already reserved the usage of the 
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machines. The job will then evaluate all the responses 
based on some criteria and choose a machine to reward the 
operation to it. The job will confirm with the selected 
machine about the reservation, so that the machine can 
allocate a time slot in its task agenda for the job. The job 
will repeat the aforementioned procedures to find a 
machine for its remaining operations.  
 Due to the fact that in a heterarchical control system, 
agents use purely localized information and all forms of 
hierarchy are eliminated, heterarchical control results in 
problems with global optimization and predictability of 
system behaviors. In an attempt to combine the best 
features of hierarchical (�top down�) and heterarchical 
(�bottom up�, �cooperative�) control structures, some 
researchers (Bongaerts et al. 1998, Brennan and Norrie 
1999, Brennan 2000, Van Brussel et al. 1998, Zhang and 
Norrie 1999) have proposed the Holonic Manufacturing 
concept to preserve the stability of hierarchy while 
providing the dynamic flexibility of heterarchies. 

Valckenaers et al. (1997) have defined the Holonic 
Manufacturing System (HMS) as �system components of 
autonomous modules and their distributed control. A 
holonic manufacturing architecture shall enable easy self-
configuration, easy extension and modification of the 
system, and allow more flexibility and a larger decision 
space for higher control level.� (Van Brussel et al. 1998) 

The following list of definitions are developed by the 
HMS consortium to help understand and guide the 
translation of holonic concepts into a manufacturing setting 
(Van Brussel et al. 1998): 
 

• Holon: An autonomous and co-operative building 
block of a manufacturing system for trans-
formation, transporting, storing and/or validating 
information and physical objects. The holon 
consists of an information processing part and 
often a physical processing part. A holon can be 
of another holon.  
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• Autonomy: The capability of an entity to create 
and control the execution of its own plans and/or 
strategies. 

• Co-operation: A process whereby a set of entities 
develops mutually acceptable plans and executes 
these plans. 

• Holarchy: A system of holons that can co-operate 
to achieve a goal or objective. The holarchy 
defines the basic rules for co-operation of the 
holons and thereby limits their autonomy. 

 
Although numerous researchers have investigated 

distributed (multi-agent) or holonic control systems, most 
studies are based on architectural issues, and few have 
investigated how these modular control entities (agents or 
holons) can be built, distributed (across a network) and 
integrated into a production control system.  

In this paper, we use a distributed control approach 
based on holonic concepts to build a shop floor control 
system, and simulate the (distributed) control and 
production processes. 

In the next section, the design of the distributed 
control system is discussed. In Section 3, a description of 
the implementation of the experimental model is given 
which includes a description of the test production system, 
the distributed control system interface with the discrete-
event simulation model and an example of the distributed 
control software. Finally, results and conclusions drawn 
from the authors� work with the test bed are presented in 
Section 4 and future plans with this model are discussed in 
Section 5. 

 
2 DISTRIBUTED CONTROL SYSTEM DESIGN  
 
The experimental manufacturing system used for this 
research is developed using the Arena discrete-event 
simulation package (Kelton et al. 1998, Pegden et al. 
1995). This system is integrated with a distributed multi-
agent system for shop-floor scheduling and control 
developed in C++ (Ellis and Stroustrup 1990) that utilizes 
Component Object Model (COM) and Distributed-COM 
(DCOM) technology (Li and Economopoulos 1998). 

The discrete-event simulation model contains a 
number of manufacturing resources, which include 
workstations and machines as well as a number of jobs to 
be processed by the system. In this section we describe the 
multi-agent system that is used to control this emulated 
manufacturing system. First, we describe the various 
agents that make up the control system, then we describe 
the methodology used to distribute these agents across 
multiple computers. 
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2.1 The Control Agents 
 
One of the goals of this research is to develop a multi-agent 
control system that shares many of the characteristics of a 
holonic manufacturing system described previously. As a 
result, the four basic agents used in the control system 
reported here each correspond closely to the basic holons 
that are used in the PROSA architecture developed by Van 
Brussel et al. (1998): 
 

• job agent, 
• station agent, 
• machine agent, and 
• mediator agent. 

 
Each job in the discrete-event simulation model is 

represented by a job agent, which is responsible for 
initiating the auction-based bidding process to find the 
resources for the job�s operations, and monitoring the job�s 
production progress. 

Since a workstation can contain a number of 
homogeneous machines, a station agent�s responsibilities 
are to assign tasks to the machines it manages, to monitor 
the production progress of the machines and to response to 
the job agent�s bidding request. 

It was pointed out in (Dilts et al. 1991) that the 
functional limitations of some commercially available low-
level controllers can prevent the application of intelligent 
subordinate. Therefore in our experimental model, we 
define two types of machine agents, namely machSimp 
(the simple machine) agent and machIntel (the intelligent 
machine) agent.  

As was discussed in the previous section, in order to 
carry out the resource bidding process, each resource must 
have the capability to respond to a job agent�s bidding 
request. The machIntel agent represents the machine with 
the controller that has the information processing and 
communication capability to participate in a bidding 
process, and bears similar responsibilities as a station 
agent. The machSimp agent represents the machine with a 
controller that can only perform simple operation recording 
duties. As we will see in the later, the machSimp agents are 
usually aggregated with the station agent to form a 
workstation.  

The mediator agent is similar to the Yellow Page agent 
defined by Shen et al. (1999) or the staff holon defined by 
Van Brussel et al. (1998). It is responsible for registering 
the manufacturing resources in the system, and responding 
to the job agent�s query regarding which resource in the 
system can perform a particular type of operation. 
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2.2 Representing the Agents as COM Objects 
 
Referring to the holon definition stated previously, a holon 
consists of an information processing part and often a 
physical processing part. In our experimental model, the 
information processing part of a holon is represented by a 
COM object, and the physical part is represented by the 
corresponding entity in the simulated production system in 
Arena.  The COM diagram for the 5 agents mentioned above 
are shown in Figures 1-5.  

Component Object Model (COM) is a platform-
independent, distributed object-oriented standard for 
creating binary objects that can interact. 

The essence of COM is an agreed binary interface that 
based on the Remote Procedure Call (RPC) technology with 
some wrappers that form the concept of objects and 
interfaces between the objects. 

Conventionally, the interface on the top of Figures 1-5 
represents the IUnknown interface, which is the base 
interface inherited by all other COM interfaces. The 
IUnknown interface provides three functions (methods), 
namely AddRef(), Release() and QueryInterface(). AddRef() 
and Release() are reference counting mechanisms for COM 
objects to manage their lifetimes.  

SetAttribute()

AddResources()

FindResources()

IMediator

MEDIATOR

 
Figure 1:  The Mediator COM Diagram  

 

SetAttribute()

AddProcess()

AddMediator()

NextProcess()

StartTask()

EndTask()

JOB

IJobAttribute

IJobControl

IJobMonitor

 
Figure 2:  The Job COM Diagram 
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StartTask()

EndTask()

MachIntel

IMachAttribute

IResControl

IResMonitor

 
Figure 3:  The MachIntel COM Diagram 
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RecEndTime()

MachSimp

IMachSimp

 
Figure 4:  The MachSimp COM Diagram 
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AddJob()
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IResControl
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STATION

 
Figure 5:  The Station COM Diagram 
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Each COM object has an internal counter that holds 
the number of users referencing the component. As 
suggested by its name, QueryInterface() is used by a client 
to query if a COM server supports a particular interface. If 
it does, a pointer to the required interface will be returned 
to the client.  

Since all COM interfaces are based on IUnknown, 
they must also implement the AddRef(), Release() and 
QueryInterface() methods. Therefore, given any interface 
pointer to an COM object, a client should also be able to 
obtain any other interface supported by the object by 
calling QueryInterface() on the existing interface pointer.  
 DCOM (Distributed COM) extends COM so that 
COM clients and servers can all run on a single machine or 
distributed across a wide area network. 
 
3 EXPERIMENTAL MODEL IMPLEMENTATION 
 
Each agent in the distributed control system (except the 
mediator agent) represents the controller of a 
corresponding manufacturing entity in the Arena model. In 
this section, we will present an example to demonstrate the 
interaction model of the agents and the production 
processes.  

In our example, the production system, shown in 
Figure 6, contains the following resources and job types: 

 
1) a workstation (Station 100) contains 2 machines 

(Mach 10 and Mach 20 of MachSimp type) and 
can provide the drilling operation, 

2) a single machine (Mach 200 of MachIntel type) 
that can perform the milling operation, 

3) a single machine (Mach 300 of MachIntel type) 
that can perform the cutting operation, and 

4) three job types (each job has 2 with no precedence 
constraints).  

 
3.1 The Simulation Interface 
 
At the beginning of the simulation, a mediator COM object 
is created. Next, a station and two machIntel COM objects 
are created. The attributes of the station and the machIntel 
objects (such as resource number, function type) are set via 
the SetAttribute method. As one can see for the station 
object, there is an AddMach method in its IStAttribute 
interface, this is for creating and initializing the 
(MachSimp) machines that it contains. 

The instantiated station and machIntel objects register 
with the mediator via the AddResources method of its 
IMediator interface, so that the mediator will know what 
resources are available in the system, and what function 
each resource can offer. 
17
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Figure 6:  The Production Plant Layout 
 

A job COM object is created for each of the jobs 
introduced into the system. Since a job has to contact the 
mediator to query about the resource that can perform its 
operations, a job is informed about the existence of the 
mediator via the AddMediator method of its IJobAttribute 
interface. 

After the jobs and the manufacturing resources are 
instantiated, each of the jobs will start finding the resources 
for their operations. From hereon, we will regard the 
above-mentioned COM objects as agents. The resource 
reservation bidding processes are as follows: 
 

1) To find a resource for its next operation, the job 
agent will ask the mediator agent (via the 
FindResource method of its IMediator interface) 
which resource can do the selected operation type. 

2) The mediator agent answers the job agent with the 
corresponding resource address. The job agent 
then contacts the resource (station or machIntel 
agent) for a quote (when can it start the operation, 
how many queuing jobs are there now).  

3) Since the processing sequence is not important for 
a job, a job agent will try to do an operation that 
can start on a resource earliest. Therefore, the job 
agent repeats steps 1 and 2 for all remaining 
operations, then select an operation with the 
resource that has the best quote (can process the 
job earliest). 

4) The job agent contacts the selected resource to 
add itself to the resource�s reservation list.  

5) The job moves to the selected resource�s location.  
 

Referring to Figures 3 and 5, we can see that each 
station and machIntel COM object has to support an 
50
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IResControl interface which provides the Quote and 
AddJob methods for a job COM object to request for a 
quote and confirm the resource reservation, respectively.  

When the mediator agent answers the job agent with 
the address of the resource, the job agent doesn�t need to 
know what the type of the resource is. It will contact the 
resource through the same method (with the same 
parameters) of the same interface (IResControl). This 
provides the robustness for using different types of 
resource controllers. As long as the controllers support the 
IResControl interface, how they implement the Quote and 
AddJob methods is irrelevant.  

When it�s time for a machine to start processing a job 
in the simulated production system, the corresponding 
station/machIntel agent will be notified. The 
station/machIntel agent will then notifies the job agent via 
its IJobMonitor interface about the start of the operation 
(so that a job agent can keep track of its production 
progress).  

For a machIntel agent, it will then record the start time 
of the operation (for statistics collection). After contacting 
the job agent, the station agent delegates the operation 
recording duty to its selected, contained machine 
(machSimp) agent.  

Since the (machSimp) machine agent (or controller) 
has the capability to record the operation time, it is 
reasonable for the station agent to delegate this task to its 
contained machSimp agent (each machine contained in a 
workstation is represented by a machSimp agent) via the 
RecStartTime method of its IMachSimp interface.  
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The same procedures are carried out when a machine 
finishes an operation in the production system. Once again, 
one can see that both the station and machIntel objects 
have to support the IResMonitor interface, so that when the 
Arena application notifies the station/machIntel agent 
about the start/end operation event, it doesn�t need to know 
what type of resource it is communicating with, even 
though the station and machIntel agents implement the 
StartTask/EndTask methods in different ways. 

 
3.2 Distributing the Control Agents 
 
In the previous section, we have shown how the different 
agents can interact with each other to carry out the control 
of the production processes. After developing the COM 
objects, we distribute them over the network, and have 
them interact with each other as described above to 
simulate the communication and co-operation of the actual 
controllers distributed in a production plant.  

Figure 7 shows the layout of our networking model. In 
our model, the Arena application was run on the same 
computer as the mediator, job and mach 200 agents. The 
mach 300 and station 100 agents were distributed to 
another computer that was connected to the Arena 
computer.  
 The production simulation worked in the same way as 
described previously. To monitor the status of the agents, 
we have each agent log all its activities in a local database.   
 

MACH 200

MEDIATOR JOB

MACH 300

STATION 100

MACH 10 MACH 20

ARENA COMPUTER OTHER COMPUTER

 
Figure 7:  The Layout for the Networking Model 
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Since the job, machIntel, and machSimp agents all keep 
records of the operation start/end times, we have each of 
the agents record the times in a local file (local database). 
This local data provides a channel for someone (such as 
centralized staff controller) to check on the status of these 
agents at any instant of time and at any location by viewing 
the data through a browser.  

For example, to view the status of the mach 300 and 
station 100 agents from the Arena computer, we launch an 
internet browser to view what resources are running on the 
�other computer� as shown in Figure 8. Then to view the 
status of the station 100, we just choose the WStation item.  

Figure 8:  The Manufacturing Resources on a Network 
Computer 
 

Figure 9 shows the status of the station 100 at time 0. 
As can in this figure, at time 0, job 4 first joined the 
station, and the machines of the station were idle at that 
time (JX indicates no job is loaded on the machine). Then 
job 4 was loaded to mach 10 and job 3 arrived. Then job 3 
was loaded to mach 20 and job 1 joined the station. Since 
no machine was available at that time, job 1 stayed in the 
queue. In our example, two jobs of types A, B and C were 
created. 

 
4 PERFORMANCE RESULTS 
 
Current research in multi-agent heterarchical control 
systems usually implement �part driven� real-time 
scheduling algorithms, where part agents use an auction-
bidding resource reservation protocol to explore the routing 
or process sequencing flexibility in real-time (Parunak 
1987, Duffie and Prabhu 1994). Alternatively, traditional 
dispatching control systems usually implement �resource 
driven� scheduling (dispatching) algorithms, where the 
resource controllers (agents) use dispatching rules to 
sequence the processing of the arriving jobs, and the 
routing decisions are usually determined in advance. 
Although quantitative results are available for bidding-  
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Figure 9:  The Status of Station 100 at Time 0 
 
based scheduling and there is a wealth of literature on 
scheduling heuristics and dispatching rules, few 
researchers have compared the performance of these 
alternative approaches on a common platform.  

In this section we present an example of some of the 
performance analysis that has resulted from the model 
described in this paper to investigate the impact of the 
dynamic job routing and job sequencing decisions on the 
control system�s performance and adaptability against 
disturbances. The tested control systems will have varying 
production volumes (to model the production system with 
looser/tighter schedules) and disturbance frequencies, so 
that the impact of the job routing and sequencing decisions 
in various manufacturing environments can be evaluated. 
In our experimental models, routing flexibility is 
introduced into the production system by providing jobs 
with a flexible processing order for their operations. That 
is, there is no technological constraint on the processing 
sequence of the operations of the jobs.  

 
4.1 Experimental Models 
 
The shop floor layout chosen for the experiments is the 
generic machining system proposed by Cavalieri et al. 
(1999) to serve as a common benchmark platform for 
comparing multi-agent control systems. The production 
system consists of four types of machines, and two 
machines per type are present. Although it is proposed that 
the transport system is modeled as a set of serial 
transporters (AGVs), these AGVs are assumed always 
available and transport times are set equal to zero. 
Therefore for these experiments, the transportation entities 
and transport times are not modeled in order to simplify the 
system.  
52
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Two types of job shop problem are proposed by 
Cavalieri et al. (1999). For the first problem, products have 
fixed process plan constituted by four non-preemptive 
operations (one for each machine type), and the third 
machine to be visited is the bottleneck resource (last-
longing operation). The second problem is similar to the 
first one, except that in this problem, routing flexibility is 
introduced into the system. That is, products have a 
flexible processing order of their operations (a bottleneck 
resource is still present, but not necessary the third one to 
be visited). This second problem is used for the 
experiments reported in this paper. More detailed 
descriptions of the production system and performance 
measures are covered in (Cavalieri et al. 1999). 

To evaluate the impact of dynamic job routing and job 
sequencing decisions in various manufacturing 
environments, the following control strategies are 
implemented in our experimental models: 
 

(a) AUC_BID (AUCtion-BIDding) - In this control 
approach, the job control agents use the contract 
net auction-bidding protocol to collect bids from 
the workstations to explore the process 
sequencing/routing flexibility. Job sequencing 
will not be implemented in this control approach. 
That is, to decide which operation to process next, 
for each of the job�s remaining unprocessed 
operations, the job agent will contact the system 
mediator to find out which workstation is 
responsible for that type of operation. Then the 
job agent will contact the corresponding 
workstation agent to see when the workstation can 
start the operation. Since job sequencing is not 
implemented, the workstation agent will rank the 
incoming jobs on the First-Come-First-Serve 
(FCFS) basis, and respond to the job agent with 
the answer that states the earliest possible start 
time for that operation. After receiving responses 
from all the workstations that can process its 
remaining unprocessed operations, the job agent 
will evaluate all the responses and pick the 
operation whose corresponding workstation can 
start the job soonest to be processed next.  

(b) JSEQ (Job SEQuencing) � In this control 
approach, the workstation control agents use the 
adopted priority dispatching rule to sequence the 
incoming jobs, and the jobs do not explore the 
routing flexibility. That is, even though there is no 
technological constraint for the operations of the 
jobs, the job agents will not explore the routing 
flexibility, and will have their operations 
processed in some predetermined order (the order 
that is originally stated in their process plan). 
When a job enters a workstation, the workstation 
agent will rank the incoming jobs based on some 
1753
adopted priority rules. In our experiments, the 
Least Work Remaining (LWKR) heuristic priority 
dispatching rule will be used. This is because the 
performance measure of our experiments is the 
minimization of the mean flow time, and the 
empirical experimental results conducted by other 
researchers (Conway et al. 1967) have suggested 
that the LWKR rule can help minimize the mean 
flow time.  

(c) AUC + JSEQ � In this control approach, while the 
job agents will use the auction bidding mechanism 
as stated in (a) to explore the routing flexibility, 
the workstation agents will sequence the incoming 
jobs based on the dispatching rules as stated in 
(b). That is, to decide which operation to process 
next, the job agents will collect bids from the 
workstations that correspond to its remaining 
unprocessed operations. Unlike in (a), when a 
workstation agent receives a bid request from a 
job agent, instead of quoting the job�s earliest 
possible start time based on the First-Come-First-
Serve rule, the workstation agent will try to insert 
the job into its queue and quote the job with the 
earliest possible start time that is based on the 
adopted priority dispatching rule as stated in (b). 
After receiving the response from all the 
workstations that correspond to its remaining 
unprocessed operations, the job agent will 
evaluate all the responses and pick the operation 
whose corresponding workstation can start the job 
soonest to be processed next.  

(d) COMT+AUC+JSEQ (COMmitmenT + AUC + 
JSEQ) � One of the problems regarding the 
control approach stated in (c) is the role of 
commitment in the auction-bidding processes. In 
deciding which operation to be processed next, 
the job agent will make the decision based on the 
returned �earliest start time� quote of the 
workstations that correspond to its remaining 
unprocessed operations. The returned quoted start 
time represents that the workstation is willing to 
commit some of its resource capacities to process 
the job at certain times. But when the workstation 
agents use the LWKR rule to sequence the 
incoming jobs, the workstation agents might 
violate some of the previous commitments that it 
has made to some jobs. In this control approach, 
when the workstation agents insert a new job into 
its queue, the affected jobs will be notified so that 
they can explore other routing opportunities. For 
the affected job agents, if no other workstations 
can start their other remaining operations sooner, 
then they will decide to stay in the original 
workstation. Otherwise, they will change the 
workstation (and the process sequence).  
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The process plan for the job types that will be used in 
the experimental models is shown in Table 1 below.  The 
notation used for operations in this table is: process time 
(in minutes) / operation type. 

 
Table 1:  Process Plan of the Various Job Types 

 
4.2 Experimental Results 
 
4.2.1 No Machine Failures 
 
In this experiment, we evaluate the performance of the four 
control strategies described in §4.1 in control systems with 
no disturbances. Each of the four control strategies is 
implemented in control systems with varying production 
volumes, so that the impact of the alternative control 
approaches in control systems with various degree of 
tightness of schedules can be evaluated. In each test, equal 
amounts of each of the job types described in Table 1 
above will be produced. The results of the tests are shown 
in Figure 10. 
 
4.2.2 Machine Failures 
 
In this experiment, we increase the machine failure 
disturbances by having both the machines in workstation 

Operation (proc. time (min)/operation type) 
Job ID 1 2 3 4 

J1 6/1 8/2 13/3 5/4 
J2 4/1 3/2 8/3 3/4 
J3 3/4 6/2 15/1 4/3 
J4 5/2 6/1 13/3 4/4 
J5 5/1 3/2 8/4 4/3 
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WS1 down for 30 minutes after they have done their first 
operation, and both machines in workstation WS2 down 
for 30 minutes after the production has run for half an 
hour. It should be noted that since the operations of the 
jobs are non-preemptable, when the scheduled downtime is 
reached and a machine is operating on a job, the failure of 
the machine would be initiated after the job is finished. The 
results of the tests are shown in Figure 11. 
 
4.3 Discussion 
 
As can be seen in Figure 10, the control strategies that 
incorporate the MWKR dispatching rule (i.e., incorporate 
JSEQ) outperform the auction-bidding approach using 
FCFS (i.e., AUC_BID). This result is most evident when 
the dispatching rule is used in combination with auction-
bidding and when congestion increases. 
 Figure 11 illustrates how the opportunistic behaviors 
of the job agents can help them avoid the bottleneck 
workstation (workstation with down machines) while 
making the routing decisions. As can be seen, the 
AUC_BID policy can help improve the system 
performance, but only in manufacturing environments with 
production volumes under certain limits. This is because as 
the manufacturing system�s production volume increases, 
each workstation will be occupied by more jobs at any 
instant of time, and thus a job agent will have lesser chance 
to find an alternative workstation that can start processing 
its other operation sooner. As resulted, in control systems 
with high system congestion, even when there are 
disturbances, job sequencing can better improve the control 
systems performance than the routing flexibility control 
mechanism. 
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Figure 10:  Mean Flow Time Performance for the No Machine Failures Scenario 
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Figure 11:  Mean Flow Time Performance for the Machine Failures Scenario 

 
5 CONCLUSION 
 
In this paper, we have discussed how to develop the 
different control roles (or agents) into COM modules 
(objects) that can be easily distributed over a network of 
computers. As one can see in the previous sections, it 
doesn�t matter who takes what role. But for a controller 
(agent) to take a particular role, the controller must have 
the capability to fulfill the responsibilities of the role.  

This provides for flexibility and robustness. For 
example, by having various controllers (servers) that 
support the same interface, other controllers (clients) can 
communicate with these controllers via the same interface 
without having to differentiate their types. As well, 
different controllers can implement the responsibilities in 
different ways.  

It is also relatively easy to modify an entity�s 
(controller�s) responsibilities by having it support or not 
support certain interfaces. The station and machSimp 
objects demonstrate this software reusable advantage 
wherein, we can create an object that uses some of the 
functionality of an existing object without duplicating that 
functionality in the new object.  

With the help of object-oriented analysis and design 
technique (Larman 1997), we can identify the roles and 
responsibilities in a manufacturing control system, and 
then assign the roles to the entities that have the 
capabilities to fulfill the corresponding responsibilities. 
These (control) entities can be easily developed into COM 
objects, which can then be distributed to work with 
whatever applications that need them (or distributed to  
17
other researchers that might need to use or test the objects). 
�Rather than write large monolithic object-oriented 
applications, you can write applications as small 
independent components that can slot together to make a 
complete application. With a little extra work, your C++ 
objects can become COM objects. As COM objects, they 
are not as tightly tied to one running process or computer 
as a conventional C++ object would be.� (Bates 1999) 

The other advantage of developing the manufacturing 
(control) entities as COM objects is that some large 
industrial vendors such as GE Industrial System and Sisco, 
Inc. already have the automation and control products that 
support the COM/DCOM technology. Therefore, by using 
the COM/DCOM approach, we can close the gap between 
the academic field and the manufacturing industry, and can 
also minimize the times and facilitate the process for 
shifting from the design phase to the implementation. 

Our current research is concerned with evaluating the 
performance of the multi-agent control approach described 
in this paper. In future studies, the modular nature of the 
test bed design will allow us to evaluate this control 
approach with various manufacturing systems, emulated in 
Arena, as well as investigate the interactions between the 
agents that comprise the control model. 
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