
Proceedings of the 2000 Winter Simulation Conference
J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, eds.

A SIMULATION TEST-BED TO EVALUATE MULTI-AGENT
CONTROL OF MANUFACTURING SYSTEMS

Robert W. Brennan
William O

Department of Mechanical and Manufacturing Engineering

University of Calgary
2500 University Drive N.W.

Calgary, AB T2N 1N4, CANADA

ABSTRACT

Current research in the area of manufacturing planning and
control has moved away from traditional centralized
solutions towards distributed architectures that range from
hierarchical to heterarchical. Between these two extremes
of the control architecture spectrum lies the holonic
manufacturing systems paradigm, where partial dynamic
hierarchies of agents cooperate to meet global system
objectives in the face of disturbances. This paper describes
a simulation test bed for the evaluation of a distributed
multi-agent control architecture for holonic manufacturing
systems that integrates discrete-event simulation software
into its design to allow the control architecture to be evalu-
ated with a variety of emulated manufacturing systems.

1 INTRODUCTION

To meet the requirements of agile manufacturing, various
distributed control architectures have been proposed that
span a spectrum from hierarchical to non-hierarchical (or
heterarchical) control architectures (Dilts et al. 1991).
These various architectures are intended to enhance a
control system�s adaptability and flexibility against
disturbances such as machine failure or uncertain
processing times.

At the heterarchical end of the control architecture
spectrum, the most commonly used distributed scheduling
and control approach is the contract-net (Smith 1982)
�auction-based bidding� protocol to allocate manufacturing
resources to jobs.

With this approach, when a job arrives, it will request
machines in the system to submit bids for its first
operation. Upon receiving the job�s request, machines that
can perform the operation will evaluate their task agenda,
then reply the job with a message containing information
like the earliest time they can start/finish the operation,
and/or the number of jobs already reserved the usage of the
174
machines. The job will then evaluate all the responses
based on some criteria and choose a machine to reward the
operation to it. The job will confirm with the selected
machine about the reservation, so that the machine can
allocate a time slot in its task agenda for the job. The job
will repeat the aforementioned procedures to find a
machine for its remaining operations.
 Due to the fact that in a heterarchical control system,
agents use purely localized information and all forms of
hierarchy are eliminated, heterarchical control results in
problems with global optimization and predictability of
system behaviors. In an attempt to combine the best
features of hierarchical (�top down�) and heterarchical
(�bottom up�, �cooperative�) control structures, some
researchers (Bongaerts et al. 1998, Brennan and Norrie
1999, Brennan 2000, Van Brussel et al. 1998, Zhang and
Norrie 1999) have proposed the Holonic Manufacturing
concept to preserve the stability of hierarchy while
providing the dynamic flexibility of heterarchies.

Valckenaers et al. (1997) have defined the Holonic
Manufacturing System (HMS) as �system components of
autonomous modules and their distributed control. A
holonic manufacturing architecture shall enable easy self-
configuration, easy extension and modification of the
system, and allow more flexibility and a larger decision
space for higher control level.� (Van Brussel et al. 1998)

The following list of definitions are developed by the
HMS consortium to help understand and guide the
translation of holonic concepts into a manufacturing setting
(Van Brussel et al. 1998):

• Holon: An autonomous and co-operative building
block of a manufacturing system for trans-
formation, transporting, storing and/or validating
information and physical objects. The holon
consists of an information processing part and
often a physical processing part. A holon can be
of another holon.
7

Brennan and O
• Autonomy: The capability of an entity to create
and control the execution of its own plans and/or
strategies.

• Co-operation: A process whereby a set of entities
develops mutually acceptable plans and executes
these plans.

• Holarchy: A system of holons that can co-operate
to achieve a goal or objective. The holarchy
defines the basic rules for co-operation of the
holons and thereby limits their autonomy.

Although numerous researchers have investigated

distributed (multi-agent) or holonic control systems, most
studies are based on architectural issues, and few have
investigated how these modular control entities (agents or
holons) can be built, distributed (across a network) and
integrated into a production control system.

In this paper, we use a distributed control approach
based on holonic concepts to build a shop floor control
system, and simulate the (distributed) control and
production processes.

In the next section, the design of the distributed
control system is discussed. In Section 3, a description of
the implementation of the experimental model is given
which includes a description of the test production system,
the distributed control system interface with the discrete-
event simulation model and an example of the distributed
control software. Finally, results and conclusions drawn
from the authors� work with the test bed are presented in
Section 4 and future plans with this model are discussed in
Section 5.

2 DISTRIBUTED CONTROL SYSTEM DESIGN

The experimental manufacturing system used for this
research is developed using the Arena discrete-event
simulation package (Kelton et al. 1998, Pegden et al.
1995). This system is integrated with a distributed multi-
agent system for shop-floor scheduling and control
developed in C++ (Ellis and Stroustrup 1990) that utilizes
Component Object Model (COM) and Distributed-COM
(DCOM) technology (Li and Economopoulos 1998).

The discrete-event simulation model contains a
number of manufacturing resources, which include
workstations and machines as well as a number of jobs to
be processed by the system. In this section we describe the
multi-agent system that is used to control this emulated
manufacturing system. First, we describe the various
agents that make up the control system, then we describe
the methodology used to distribute these agents across
multiple computers.

17

2.1 The Control Agents

One of the goals of this research is to develop a multi-agent
control system that shares many of the characteristics of a
holonic manufacturing system described previously. As a
result, the four basic agents used in the control system
reported here each correspond closely to the basic holons
that are used in the PROSA architecture developed by Van
Brussel et al. (1998):

• job agent,
• station agent,
• machine agent, and
• mediator agent.

Each job in the discrete-event simulation model is

represented by a job agent, which is responsible for
initiating the auction-based bidding process to find the
resources for the job�s operations, and monitoring the job�s
production progress.

Since a workstation can contain a number of
homogeneous machines, a station agent�s responsibilities
are to assign tasks to the machines it manages, to monitor
the production progress of the machines and to response to
the job agent�s bidding request.

It was pointed out in (Dilts et al. 1991) that the
functional limitations of some commercially available low-
level controllers can prevent the application of intelligent
subordinate. Therefore in our experimental model, we
define two types of machine agents, namely machSimp
(the simple machine) agent and machIntel (the intelligent
machine) agent.

As was discussed in the previous section, in order to
carry out the resource bidding process, each resource must
have the capability to respond to a job agent�s bidding
request. The machIntel agent represents the machine with
the controller that has the information processing and
communication capability to participate in a bidding
process, and bears similar responsibilities as a station
agent. The machSimp agent represents the machine with a
controller that can only perform simple operation recording
duties. As we will see in the later, the machSimp agents are
usually aggregated with the station agent to form a
workstation.

The mediator agent is similar to the Yellow Page agent
defined by Shen et al. (1999) or the staff holon defined by
Van Brussel et al. (1998). It is responsible for registering
the manufacturing resources in the system, and responding
to the job agent�s query regarding which resource in the
system can perform a particular type of operation.

48

Brennan and O

2.2 Representing the Agents as COM Objects

Referring to the holon definition stated previously, a holon
consists of an information processing part and often a
physical processing part. In our experimental model, the
information processing part of a holon is represented by a
COM object, and the physical part is represented by the
corresponding entity in the simulated production system in
Arena. The COM diagram for the 5 agents mentioned above
are shown in Figures 1-5.

Component Object Model (COM) is a platform-
independent, distributed object-oriented standard for
creating binary objects that can interact.

The essence of COM is an agreed binary interface that
based on the Remote Procedure Call (RPC) technology with
some wrappers that form the concept of objects and
interfaces between the objects.

Conventionally, the interface on the top of Figures 1-5
represents the IUnknown interface, which is the base
interface inherited by all other COM interfaces. The
IUnknown interface provides three functions (methods),
namely AddRef(), Release() and QueryInterface(). AddRef()
and Release() are reference counting mechanisms for COM
objects to manage their lifetimes.

SetAttribute()

AddResources()

FindResources()

IMediator

MEDIATOR

Figure 1: The Mediator COM Diagram

SetAttribute()

AddProcess()

AddMediator()

NextProcess()

StartTask()

EndTask()

JOB

IJobAttribute

IJobControl

IJobMonitor

Figure 2: The Job COM Diagram
174

SetAttribute()

Quote()

AddJob()

StartTask()

EndTask()

MachIntel

IMachAttribute

IResControl

IResMonitor

Figure 3: The MachIntel COM Diagram

SetAttribute()

RecStartTime()

RecEndTime()

MachSimp

IMachSimp

Figure 4: The MachSimp COM Diagram

SetAttribute()

AddMach()

Quote()

AddJob()

StartTask()

EndTask()

IStAttribute

IResControl

IResMonitor

STATION

Figure 5: The Station COM Diagram
9

Brennan and O
Each COM object has an internal counter that holds
the number of users referencing the component. As
suggested by its name, QueryInterface() is used by a client
to query if a COM server supports a particular interface. If
it does, a pointer to the required interface will be returned
to the client.

Since all COM interfaces are based on IUnknown,
they must also implement the AddRef(), Release() and
QueryInterface() methods. Therefore, given any interface
pointer to an COM object, a client should also be able to
obtain any other interface supported by the object by
calling QueryInterface() on the existing interface pointer.
 DCOM (Distributed COM) extends COM so that
COM clients and servers can all run on a single machine or
distributed across a wide area network.

3 EXPERIMENTAL MODEL IMPLEMENTATION

Each agent in the distributed control system (except the
mediator agent) represents the controller of a
corresponding manufacturing entity in the Arena model. In
this section, we will present an example to demonstrate the
interaction model of the agents and the production
processes.

In our example, the production system, shown in
Figure 6, contains the following resources and job types:

1) a workstation (Station 100) contains 2 machines

(Mach 10 and Mach 20 of MachSimp type) and
can provide the drilling operation,

2) a single machine (Mach 200 of MachIntel type)
that can perform the milling operation,

3) a single machine (Mach 300 of MachIntel type)
that can perform the cutting operation, and

4) three job types (each job has 2 with no precedence
constraints).

3.1 The Simulation Interface

At the beginning of the simulation, a mediator COM object
is created. Next, a station and two machIntel COM objects
are created. The attributes of the station and the machIntel
objects (such as resource number, function type) are set via
the SetAttribute method. As one can see for the station
object, there is an AddMach method in its IStAttribute
interface, this is for creating and initializing the
(MachSimp) machines that it contains.

The instantiated station and machIntel objects register
with the mediator via the AddResources method of its
IMediator interface, so that the mediator will know what
resources are available in the system, and what function
each resource can offer.
17

Q
U
E
U
E

Q
U
E
U
E

Q
U
E
U
E

ENTER

 EXIT

Mach 10 Mach 20

Station 100

Mach 200 Mach 300

Figure 6: The Production Plant Layout

A job COM object is created for each of the jobs
introduced into the system. Since a job has to contact the
mediator to query about the resource that can perform its
operations, a job is informed about the existence of the
mediator via the AddMediator method of its IJobAttribute
interface.

After the jobs and the manufacturing resources are
instantiated, each of the jobs will start finding the resources
for their operations. From hereon, we will regard the
above-mentioned COM objects as agents. The resource
reservation bidding processes are as follows:

1) To find a resource for its next operation, the job
agent will ask the mediator agent (via the
FindResource method of its IMediator interface)
which resource can do the selected operation type.

2) The mediator agent answers the job agent with the
corresponding resource address. The job agent
then contacts the resource (station or machIntel
agent) for a quote (when can it start the operation,
how many queuing jobs are there now).

3) Since the processing sequence is not important for
a job, a job agent will try to do an operation that
can start on a resource earliest. Therefore, the job
agent repeats steps 1 and 2 for all remaining
operations, then select an operation with the
resource that has the best quote (can process the
job earliest).

4) The job agent contacts the selected resource to
add itself to the resource�s reservation list.

5) The job moves to the selected resource�s location.

Referring to Figures 3 and 5, we can see that each
station and machIntel COM object has to support an
50

Brennan and O

IResControl interface which provides the Quote and
AddJob methods for a job COM object to request for a
quote and confirm the resource reservation, respectively.

When the mediator agent answers the job agent with
the address of the resource, the job agent doesn�t need to
know what the type of the resource is. It will contact the
resource through the same method (with the same
parameters) of the same interface (IResControl). This
provides the robustness for using different types of
resource controllers. As long as the controllers support the
IResControl interface, how they implement the Quote and
AddJob methods is irrelevant.

When it�s time for a machine to start processing a job
in the simulated production system, the corresponding
station/machIntel agent will be notified. The
station/machIntel agent will then notifies the job agent via
its IJobMonitor interface about the start of the operation
(so that a job agent can keep track of its production
progress).

For a machIntel agent, it will then record the start time
of the operation (for statistics collection). After contacting
the job agent, the station agent delegates the operation
recording duty to its selected, contained machine
(machSimp) agent.

Since the (machSimp) machine agent (or controller)
has the capability to record the operation time, it is
reasonable for the station agent to delegate this task to its
contained machSimp agent (each machine contained in a
workstation is represented by a machSimp agent) via the
RecStartTime method of its IMachSimp interface.

175
The same procedures are carried out when a machine
finishes an operation in the production system. Once again,
one can see that both the station and machIntel objects
have to support the IResMonitor interface, so that when the
Arena application notifies the station/machIntel agent
about the start/end operation event, it doesn�t need to know
what type of resource it is communicating with, even
though the station and machIntel agents implement the
StartTask/EndTask methods in different ways.

3.2 Distributing the Control Agents

In the previous section, we have shown how the different
agents can interact with each other to carry out the control
of the production processes. After developing the COM
objects, we distribute them over the network, and have
them interact with each other as described above to
simulate the communication and co-operation of the actual
controllers distributed in a production plant.

Figure 7 shows the layout of our networking model. In
our model, the Arena application was run on the same
computer as the mediator, job and mach 200 agents. The
mach 300 and station 100 agents were distributed to
another computer that was connected to the Arena
computer.
 The production simulation worked in the same way as
described previously. To monitor the status of the agents,
we have each agent log all its activities in a local database.

MACH 200

MEDIATOR JOB

MACH 300

STATION 100

MACH 10 MACH 20

ARENA COMPUTER OTHER COMPUTER

Figure 7: The Layout for the Networking Model
1

Brennan and O
Since the job, machIntel, and machSimp agents all keep
records of the operation start/end times, we have each of
the agents record the times in a local file (local database).
This local data provides a channel for someone (such as
centralized staff controller) to check on the status of these
agents at any instant of time and at any location by viewing
the data through a browser.

For example, to view the status of the mach 300 and
station 100 agents from the Arena computer, we launch an
internet browser to view what resources are running on the
�other computer� as shown in Figure 8. Then to view the
status of the station 100, we just choose the WStation item.

Figure 8: The Manufacturing Resources on a Network
Computer

Figure 9 shows the status of the station 100 at time 0.
As can in this figure, at time 0, job 4 first joined the
station, and the machines of the station were idle at that
time (JX indicates no job is loaded on the machine). Then
job 4 was loaded to mach 10 and job 3 arrived. Then job 3
was loaded to mach 20 and job 1 joined the station. Since
no machine was available at that time, job 1 stayed in the
queue. In our example, two jobs of types A, B and C were
created.

4 PERFORMANCE RESULTS

Current research in multi-agent heterarchical control
systems usually implement �part driven� real-time
scheduling algorithms, where part agents use an auction-
bidding resource reservation protocol to explore the routing
or process sequencing flexibility in real-time (Parunak
1987, Duffie and Prabhu 1994). Alternatively, traditional
dispatching control systems usually implement �resource
driven� scheduling (dispatching) algorithms, where the
resource controllers (agents) use dispatching rules to
sequence the processing of the arriving jobs, and the
routing decisions are usually determined in advance.
Although quantitative results are available for bidding-

17

Figure 9: The Status of Station 100 at Time 0

based scheduling and there is a wealth of literature on
scheduling heuristics and dispatching rules, few
researchers have compared the performance of these
alternative approaches on a common platform.

In this section we present an example of some of the
performance analysis that has resulted from the model
described in this paper to investigate the impact of the
dynamic job routing and job sequencing decisions on the
control system�s performance and adaptability against
disturbances. The tested control systems will have varying
production volumes (to model the production system with
looser/tighter schedules) and disturbance frequencies, so
that the impact of the job routing and sequencing decisions
in various manufacturing environments can be evaluated.
In our experimental models, routing flexibility is
introduced into the production system by providing jobs
with a flexible processing order for their operations. That
is, there is no technological constraint on the processing
sequence of the operations of the jobs.

4.1 Experimental Models

The shop floor layout chosen for the experiments is the
generic machining system proposed by Cavalieri et al.
(1999) to serve as a common benchmark platform for
comparing multi-agent control systems. The production
system consists of four types of machines, and two
machines per type are present. Although it is proposed that
the transport system is modeled as a set of serial
transporters (AGVs), these AGVs are assumed always
available and transport times are set equal to zero.
Therefore for these experiments, the transportation entities
and transport times are not modeled in order to simplify the
system.
52

Brennan and O

Two types of job shop problem are proposed by
Cavalieri et al. (1999). For the first problem, products have
fixed process plan constituted by four non-preemptive
operations (one for each machine type), and the third
machine to be visited is the bottleneck resource (last-
longing operation). The second problem is similar to the
first one, except that in this problem, routing flexibility is
introduced into the system. That is, products have a
flexible processing order of their operations (a bottleneck
resource is still present, but not necessary the third one to
be visited). This second problem is used for the
experiments reported in this paper. More detailed
descriptions of the production system and performance
measures are covered in (Cavalieri et al. 1999).

To evaluate the impact of dynamic job routing and job
sequencing decisions in various manufacturing
environments, the following control strategies are
implemented in our experimental models:

(a) AUC_BID (AUCtion-BIDding) - In this control
approach, the job control agents use the contract
net auction-bidding protocol to collect bids from
the workstations to explore the process
sequencing/routing flexibility. Job sequencing
will not be implemented in this control approach.
That is, to decide which operation to process next,
for each of the job�s remaining unprocessed
operations, the job agent will contact the system
mediator to find out which workstation is
responsible for that type of operation. Then the
job agent will contact the corresponding
workstation agent to see when the workstation can
start the operation. Since job sequencing is not
implemented, the workstation agent will rank the
incoming jobs on the First-Come-First-Serve
(FCFS) basis, and respond to the job agent with
the answer that states the earliest possible start
time for that operation. After receiving responses
from all the workstations that can process its
remaining unprocessed operations, the job agent
will evaluate all the responses and pick the
operation whose corresponding workstation can
start the job soonest to be processed next.

(b) JSEQ (Job SEQuencing) � In this control
approach, the workstation control agents use the
adopted priority dispatching rule to sequence the
incoming jobs, and the jobs do not explore the
routing flexibility. That is, even though there is no
technological constraint for the operations of the
jobs, the job agents will not explore the routing
flexibility, and will have their operations
processed in some predetermined order (the order
that is originally stated in their process plan).
When a job enters a workstation, the workstation
agent will rank the incoming jobs based on some
1753
adopted priority rules. In our experiments, the
Least Work Remaining (LWKR) heuristic priority
dispatching rule will be used. This is because the
performance measure of our experiments is the
minimization of the mean flow time, and the
empirical experimental results conducted by other
researchers (Conway et al. 1967) have suggested
that the LWKR rule can help minimize the mean
flow time.

(c) AUC + JSEQ � In this control approach, while the
job agents will use the auction bidding mechanism
as stated in (a) to explore the routing flexibility,
the workstation agents will sequence the incoming
jobs based on the dispatching rules as stated in
(b). That is, to decide which operation to process
next, the job agents will collect bids from the
workstations that correspond to its remaining
unprocessed operations. Unlike in (a), when a
workstation agent receives a bid request from a
job agent, instead of quoting the job�s earliest
possible start time based on the First-Come-First-
Serve rule, the workstation agent will try to insert
the job into its queue and quote the job with the
earliest possible start time that is based on the
adopted priority dispatching rule as stated in (b).
After receiving the response from all the
workstations that correspond to its remaining
unprocessed operations, the job agent will
evaluate all the responses and pick the operation
whose corresponding workstation can start the job
soonest to be processed next.

(d) COMT+AUC+JSEQ (COMmitmenT + AUC +
JSEQ) � One of the problems regarding the
control approach stated in (c) is the role of
commitment in the auction-bidding processes. In
deciding which operation to be processed next,
the job agent will make the decision based on the
returned �earliest start time� quote of the
workstations that correspond to its remaining
unprocessed operations. The returned quoted start
time represents that the workstation is willing to
commit some of its resource capacities to process
the job at certain times. But when the workstation
agents use the LWKR rule to sequence the
incoming jobs, the workstation agents might
violate some of the previous commitments that it
has made to some jobs. In this control approach,
when the workstation agents insert a new job into
its queue, the affected jobs will be notified so that
they can explore other routing opportunities. For
the affected job agents, if no other workstations
can start their other remaining operations sooner,
then they will decide to stay in the original
workstation. Otherwise, they will change the
workstation (and the process sequence).

Brennan and O

The process plan for the job types that will be used in
the experimental models is shown in Table 1 below. The
notation used for operations in this table is: process time
(in minutes) / operation type.

Table 1: Process Plan of the Various Job Types

4.2 Experimental Results

4.2.1 No Machine Failures

In this experiment, we evaluate the performance of the four
control strategies described in §4.1 in control systems with
no disturbances. Each of the four control strategies is
implemented in control systems with varying production
volumes, so that the impact of the alternative control
approaches in control systems with various degree of
tightness of schedules can be evaluated. In each test, equal
amounts of each of the job types described in Table 1
above will be produced. The results of the tests are shown
in Figure 10.

4.2.2 Machine Failures

In this experiment, we increase the machine failure
disturbances by having both the machines in workstation

Operation (proc. time (min)/operation type)
Job ID 1 2 3 4

J1 6/1 8/2 13/3 5/4
J2 4/1 3/2 8/3 3/4
J3 3/4 6/2 15/1 4/3
J4 5/2 6/1 13/3 4/4
J5 5/1 3/2 8/4 4/3
175
WS1 down for 30 minutes after they have done their first
operation, and both machines in workstation WS2 down
for 30 minutes after the production has run for half an
hour. It should be noted that since the operations of the
jobs are non-preemptable, when the scheduled downtime is
reached and a machine is operating on a job, the failure of
the machine would be initiated after the job is finished. The
results of the tests are shown in Figure 11.

4.3 Discussion

As can be seen in Figure 10, the control strategies that
incorporate the MWKR dispatching rule (i.e., incorporate
JSEQ) outperform the auction-bidding approach using
FCFS (i.e., AUC_BID). This result is most evident when
the dispatching rule is used in combination with auction-
bidding and when congestion increases.
 Figure 11 illustrates how the opportunistic behaviors
of the job agents can help them avoid the bottleneck
workstation (workstation with down machines) while
making the routing decisions. As can be seen, the
AUC_BID policy can help improve the system
performance, but only in manufacturing environments with
production volumes under certain limits. This is because as
the manufacturing system�s production volume increases,
each workstation will be occupied by more jobs at any
instant of time, and thus a job agent will have lesser chance
to find an alternative workstation that can start processing
its other operation sooner. As resulted, in control systems
with high system congestion, even when there are
disturbances, job sequencing can better improve the control
systems performance than the routing flexibility control
mechanism.

30

80

130

180

230

0 20 40 60 80

Numbe r of Jobs

M
ea

n
Fl

ow
 T

im
e

(m
in

)

AUC_BID JSEQ COMT+AUC+JSEQ AUC+JSEQ

Figure 10: Mean Flow Time Performance for the No Machine Failures Scenario
4

Brennan and O

30

80

130

180

230

0 20 40 60 80

Numbe r o f Jobs

M
ea

n
Fl

ow
 T

im
e

(m
in

)

AUC_BID JSEQ COMT+AUC+JSEQ AUC+JSEQ

Figure 11: Mean Flow Time Performance for the Machine Failures Scenario

5 CONCLUSION

In this paper, we have discussed how to develop the
different control roles (or agents) into COM modules
(objects) that can be easily distributed over a network of
computers. As one can see in the previous sections, it
doesn�t matter who takes what role. But for a controller
(agent) to take a particular role, the controller must have
the capability to fulfill the responsibilities of the role.

This provides for flexibility and robustness. For
example, by having various controllers (servers) that
support the same interface, other controllers (clients) can
communicate with these controllers via the same interface
without having to differentiate their types. As well,
different controllers can implement the responsibilities in
different ways.

It is also relatively easy to modify an entity�s
(controller�s) responsibilities by having it support or not
support certain interfaces. The station and machSimp
objects demonstrate this software reusable advantage
wherein, we can create an object that uses some of the
functionality of an existing object without duplicating that
functionality in the new object.

With the help of object-oriented analysis and design
technique (Larman 1997), we can identify the roles and
responsibilities in a manufacturing control system, and
then assign the roles to the entities that have the
capabilities to fulfill the corresponding responsibilities.
These (control) entities can be easily developed into COM
objects, which can then be distributed to work with
whatever applications that need them (or distributed to
17
other researchers that might need to use or test the objects).
�Rather than write large monolithic object-oriented
applications, you can write applications as small
independent components that can slot together to make a
complete application. With a little extra work, your C++
objects can become COM objects. As COM objects, they
are not as tightly tied to one running process or computer
as a conventional C++ object would be.� (Bates 1999)

The other advantage of developing the manufacturing
(control) entities as COM objects is that some large
industrial vendors such as GE Industrial System and Sisco,
Inc. already have the automation and control products that
support the COM/DCOM technology. Therefore, by using
the COM/DCOM approach, we can close the gap between
the academic field and the manufacturing industry, and can
also minimize the times and facilitate the process for
shifting from the design phase to the implementation.

Our current research is concerned with evaluating the
performance of the multi-agent control approach described
in this paper. In future studies, the modular nature of the
test bed design will allow us to evaluate this control
approach with various manufacturing systems, emulated in
Arena, as well as investigate the interactions between the
agents that comprise the control model.

ACKNOWLEDGMENTS

The authors wish to thank the Natural Sciences and
Engineering Research Council of Canada for their generous
support of this research under grant OGP-019-7339.
55

Brennan and O
REFERENCES

Bates, J., 1999. Creating lightweight components with

ATL. Indianapolis: SAMS Publishing.
Bongaerts, L., L. Monostori, D. McFarlane, and B. Kadar.

1998. Hierarchy in distributed shop floor control. In
the Proceedings of the 1st International Workshop on
Intelligent Manufacturing.

Brennan, R. W. 2000. Performance comparison and
analysis of reactive and planning-based control
architectures for manufacturing. Robotics and
Computer Integrated Manufacturing 16(2-3): 191-200.

Brennan, R. W. and D.H. Norrie. 1999. The performance
of partial dynamic hierarchies for manufacturing. In
the Proceedings of the 2nd International Workshop on
Intelligent Manufacturing Systems, ed. H. Van Brussel
and P. Valckenaers, 5-13.

Cavalieri, S., L. Bongaerts, M. Macchi, M. Taisch, J.
Wyns. 1999. A benchmark framework for
manufacturing control. In the Proceedings of the 2nd
International Workshop on Intelligent Manufacturing
Systems, ed. H. Van Brussel and P. Valckenaers, 225-
236.

Conway, R. W., W. L. Maxwell, and L. W. Miller. 1967.
Theory of Scheduling, Addison-Wesley.

Dilts, D. M., N. P. Boyd, and H. H. Whorms. 1991. The
evolution of control architectures for automated
manufacturing systems. Journal of Manufacturing
Systems 10(1): 79-93.

Duffie, N. A. and V. V. Prabhu, 1994. Real-time
distributed scheduling of heterarchical manufacturing
systems. Journal of Manufacturing Systems 13(2): 94-
107.

Ellis, M. and B. Stroustrup. 1990. The annotated C++
reference manual. Reading: Addison-Wesley.

Kelton, W. D., R. P. Sadowski, and D. A. Sadowski. 1998.
Simulation with arena. New York: McGraw-Hill.

Larman, G. 1997. Applying UML and patterns, an
introduction to object-oriented analysis and design.
Upper Saddle River: Prentice Hall.

Li, S. and P. Economopoulos. 1998. Professional COM
applications with ATL. Wrox Press.

Parunak, H. V. D. 1987. Manufacturing experience with
the contract net. In Distributed Artificially
Intelligence, ed. M. N. Huhns, 285-310.

Pegden, C. D., R. E. Shannon, and R. P. Sadowski. 1995.
Introduction to simulation using SIMAN. New York:
McGraw-Hill.

Shen, W., D. H. Norrie, and R. Kremer. 1999. Developing
intelligent manufacturing systems using collaborative
agents. In the Proceedings of the 2nd International
Workshop on Intelligent Manufacturing Systems, ed.
H. Van Brussel and P. Valckenaers, 157-166.
17

Smith, R. G. 1982. The contract net protocol: high-level

communication and control in a distributed problem
solver. Defence Research Establishment Atlantic
D.R.E.A. Report 80/1. Dartmouth, Nova Scotia.

Valckenaers, P., H. Van Brussel, L. Bongaerts, J. Wyns.
1997. Holonic manufacturing systems. Integrated
Computer Aided Engineering 4: 191-201.

Van Brussel, H., J. Wyns, P. Valckenaers, L. Bongaerts,
and P. Peeters. 1998. Reference architecture for
holonic manufacturing systems: PROSA. Computers
in Industry 37: 255-274.

Zhang, X. and D. H. Norrie. 1999. Holonic control at the
production and controller levels. In the Proceedings of
the 2nd International Workshop on Intelligent
Manufacturing Systems, ed. H. Van Brussel and P.
Valckenaers, 215-224.

AUTHOR BIOGRAPHIES

ROBERT W. BRENNAN is an Assistant Professor in the
Department of Mechanical and Manufacturing Engineering
at the University of Calgary. He holds B.Sc. and Ph.D.
degrees from the University of Calgary. He is a member of
INFORMS, IIE, and SME. His interests manufacturing
systems control, holonic manufacturing, and project
management. His email and web addresses are
<brennan@enme.ucalgary.ca> and <isg.enme.
ucalgary.ca>.

WILLIAM O is an M.Sc. candidate in the Department of
Mechanical and Manufacturing Engineering at the
University of Calgary. His interests object-oriented
analysis and design and holonic manufacturing. His email
and web addresses are <wio@ucalgary.ca> and
<isg.enme.ucalgary.ca>.
56

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

