
Proceedings of the 2000 Winter Simulation Conference
J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, eds.

DISTRIBUTED WEB-BASED SIMULATION OPTIMIZATION

Yuh-Chuyn Luo

Department of Computer Science
Chung-Cheng Institute of Technology

Ta-Shi, Taoyuan
TAIWAN

Enver Yücesan

Technology Management Area
INSEAD

77305 Fontainebleau Cedex, FRANCE

Chun-Hung Chen

Department of Systems Engineering
and Operations Research
George Mason University

4400 University Drive, MS 4A6
Fairfax, VA 22030, U.S.A.

Insup Lee

Department of Computer and Information Science
University of Pennsylvania

Philadelphia, PA 19104, U.S.A.

ABSTRACT

Web technology is having a significant impact on
computer simulation. Most of the effort in web-based
simulation is aimed at modeling, particularly at building
simulation languages and at creating model libraries that
can be assembled and executed over the web. We focus on
the efficiency of simulation experimentation for
optimization. We introduce a framework for combining
the statistical efficiency of simulation optimization
techniques with the effectiveness of parallel execution
algorithms. In particular, the Optimal Computing Budget
Allocation (OCBA) algorithm is implemented in a web-
based environment for low-cost parallel and distributed
simulation experimentation. A prototype implementation
with some experimental results is presented.

1 INTRODUCTION

The web has experienced tremendous growth since its
introduction in early 1990�s (Paxson and Floyd 1997). The
web also has a growing impact on computer simulation.
Discrete-event simulation is a popular tool for designing
large man-made systems such as communication networks,
traffic systems, and manufacturing facilities since no
reliable closed-form analytical models exist for such
systems. In addition to excellent graphical animation
capability, simulation offers virtually unlimited modeling
flexibility as arbitrary levels of system detail can be
incorporated into a simulation model.
 Increased levels of detail in simulation models (e.g.,
explicit representation of an increasing number of
178
resources such as people, machines, tools, and jobs in
manufacturing models), considerably higher levels of
activity in the modeled system (e.g., millions of messages
to be handled by a telecommunications network), and
significantly improved levels of reliability of modeled
systems (e.g., a highly reliable airline ticket reservation
computer), however, are straining the effectiveness of
simulation experiments. In those cases with increased
level of model detail, the execution speed of models does
not improve in spite of the availability of faster hardware
platforms. In those cases with rare events, significantly
longer simulation runs are required to obtain reliable
performance estimates.
 Efficiency becomes an even greater concern when
simulation is used for decision-making. In this setting,
simulation must be performed repeatedly for many design
alternatives. Furthermore, to obtain a good statistical
estimate for a design decision, a large number of
simulation replications (or samples) are usually required
for each design alternative. If the number of design
alternatives is large, the total simulation cost could be
prohibitively expensive. Various schemes have been
proposed to enhance the effectiveness of simulation
experiments. On the modeling side, alternative modeling
approaches have been introduced to reduce the inherent
complexity of models either by implicitly representing
most system entities (Yücesan and Schruben 1993) or by
reducing the size of the state space of the underlying model
(Kang and Lee 1994 and 1996). On the analysis side,
various approaches have been introduced to improve the
statistical efficiency of simulation experiments (Wilson
1984, Glynn and Iglehart 1989, and Chen et al. 1996).
5

Luo, Chen, Yücesan, and Lee
Finally, on the execution side, algorithms have been
developed for parallel execution (Chandy and Misra 1979,
Misra 1986).
 The objective of this paper is to introduce a platform
for combining the statistical efficiency of simulation
optimization techniques with the effectiveness of parallel
execution algorithms. In particular, the Optimal Comput-
ing Budget Allocation (OCBA) algorithm is implemented
in a web-based environment for low-cost parallel and
distributed simulation experimentation.
 Our objective in designing and implementing a web-
based simulation optimization system is to emphasize the
power of web technologies for the experimental design and
output analysis phases of a simulation study. Our im-
mediate concern is thus capability (or functionality) rather
than run-time performance. Issues of portability, maintain-
ability, and conformance to standards are crucial in
demonstrating the feasibility of a web-based optimization
system. We will subsequently focus on execution speed
through the design of intelligent distribution algorithms
and exploit emerging technologies aimed at speeding up
communication over the Internet.
 Our work focuses on the parallel execution of a simula-
tion experiment for optimization. However, instead of
equally distributing simulation replications for different de-
sign alternatives, OCBA offers an intelligent way to allocate
simulation experiments to processors. More specifically,
OCBA is an innovative scheme aimed at identifying the
optimal system through an optimal experimental design.
 The paper is organized as follows: Section 2 provides
the necessary background on simulation optimization (and,
in particular, on OCBA), on parallel and distributed simula-
tion, and on web-based simulations. The prototype for dis-
tributed simulation over the Internet is introduced in Section
3. Current research efforts are described in Section 4.

2 BACKGROUND

2.1 Simulation Optimization

Simulation enables the comparison of various design
alternatives before implementing any of the required
physical changes. Suppose we want to compare k
different systems (competing designs or alternative
operating policies). We conduct N simulation replications
for each of the k designs. Therefore, we need kN simulation
replications. Simulation results become more accurate as
N increases. If the accuracy requirement is high (N is not
small) and if the total number of competing designs is large
(k is large), then kN can be very large. This may easily
make total simulation cost prohibitively high and preclude
the feasibility of simulation optimization.
 The effective reduction of computation costs while
obtaining a good decision is therefore crucial. Dudewicz
and Dalal (1975) propose a two-stage procedure for
17

selecting the best design or a design that is very close to the
best system. In the first stage, all systems are simulated
through a fixed number of replications. Based on the results
of the first stage, the number of additional simulation
replications for each design in the second stage is estimated
in order to reach the desired confidence level. Rinott (1978)
presents an alternative way to estimate the required number
of simulation replications in the second stage. Many
researchers have extended this idea to more general ranking
and selection settings in conjunction with new develop-
ments. Chiu (1974), Gupta and Panchapakesan (1979),
Bechhofer et al. (1995), and Hsu (1996) present methods
based on the classical statistical model adopting a frequentist
view. Berger (1985), Berger and Deely (1988), Bernardo
and Smith (1994), Gupta and Berger (1988), and Chick
(1997), on the other hand, use a Bayesian framework for
constructing ranking and selection procedures.
 Chen et al. (1996) formulate the procedure of selecting
the best design as an optimization problem, which
optimally allocates a computing budget and processors to
the designs under evaluation. They present a solution
technique to this budget allocation problem. Preliminary
tests indicate that the proposed technique is significantly
faster than the traditional two-stage procedures.
 Let SQ denote the overall simulation quality.
Examples of SQ include the mean squared error of the
performance measure or the probability of correctly
selecting the true best design. Also denote by Ni the
number of simulation replications for design i and by k the
total number of alternative designs. If the simulation
experiment is executed sequentially on a single processor,
the budget allocation problem can be expressed as:

 max

N1,⋅⋅,Nk

 SQ

s.t. N1 + N2 + ⋅⋅ + Nk = B,

where B is the given computing budget. Intuitively, this
technique provides an optimal way to reach an optimal
design using simulation experiments. A critical element in
the above budget allocation problem is the effective
estimation of the sensitivity information. Let ESQ(N1, N2,
.., Ns-1, Ns+τ, Ns+1, .., Nk) denote an estimated SQ if
additional τ simulation replications were performed on
design s. ESQ is computed using the statistical information
after N1, N2, .., Nk simulation replications are completed for
designs 1, .., k, respectively. Based on a Bayesian model,
Chen et al (1996) present an effective way to estimate ESQ
if SQ is defined as the probability of correctly selecting the
true best design (P{CS}). This scheme will be adopted in
this paper to implement an efficient simulation experiment
planner.
 Our approach builds on three important ideas: first, the
number of replications needed to achieve a desired
confidence level is dependent on the standard deviation of
86

Luo, Chen, Yücesan, and Lee

the performance measure, which may vary significantly
across designs. Designs having a lower standard deviation
require fewer replications to achieve the same confidence
level. Second, inferior designs can often be detected at a
given confidence level after only a few replications.
Discarding such designs early on increases the computing
budget (e.g., the number of replications) available for more
promising designs. Third, the computing budget should be
allocated to the subset of designs that best improves the
overall simulation quality (or the ESQ). This approach is
outlined in pseudo-code format:

2.1.1 A Sequential Algorithm for Optimal Computing

Budget Allocation (OCBA)

Step 0. Perform n0 simulation replications for all designs;

l←0; l
k

ll NNN === !21 = n0, B = B - kn0.
Step 1. If B = 0, stop, otherwise, go to Step 2.
Step 2. Estimate the incremental of ESQ(s) for each s = 1,

�, k.
Step 3. Find the set S(m) ≡ { s : ESQ(s) is among the

highest m}, where m is the number of threads or
parallel processors available.

Step 4. Perform additional τ simulation replications for
design i, i ∈ S(m).

 Set 1+l
iN ← l

iN + τ, for i ∈S(m), and

 1+l
iN ← l

iN , for i ∉S(m),
 B ← B - mτ, l ← l + 1, go to Step 1.

2.2 Parallel and Distributed Simulation

There are several approaches for exploiting parallelism in
discrete event simulation in order to reduce computation time:

• Dedicated execution. This is the approach where
dedicated functional units execute specific se-
quential simulation functions such as random
number generation, future events list manage-
ment, and statistics collection (Comfort 1984).

• Hierarchical decomposition. This is the approach
where the simulation model is decomposed in a
hierarchical fashion so as to allow an event
consisting of several sub-events to be processed
concurrently (Concepcion 1989).

• Parallel replication. This is the approach where
several replications of a sequential simulation are
executed independently on different processors
(Heidelberger 1988).

• Parallel execution. This is the execution of a sim-
ulation model on a parallel computer by decom-
posing the simulation model implementation into
a set of concurrently executing processes (Misra
1986).
178
 The application of parallel simulation technology has
been limited. Until recently, parallel computers could be
found only in research laboratories or large universities.
Furthermore, system software to support large-scale distri-
buted simulations remains scarce. Under these circum-
stances, simulation community has largely been reluctant to
explore the potential gains offered by this technology. In
fact, this lack of acceptance by the simulation community
has even triggered a heated discussion about the future of
parallel discrete event simulation (Fujimoto 1993). The
Internet and web-based technologies provide a viable
infrastructure for parallel discrete event simulation. The
Internet eliminates the need for expensive parallel hardware,
while the Internet Protocol (IP) unifies diverse networking
technologies and administrative domains. In other words, IP
ensures uniform connectivity without requiring uniform
behavior. The Internet can therefore be viewed as an
appealing infrastructure for distributed simulation.

2.3 Web-Based Simulation

Web-based simulation represents the convergence of simu-
lation methodology and World Wide Web technologies.
The key enabler of web-based simulation is the Java
language introduced by Sun Microsystems. Java is an
object-oriented (OO) programming language for the web,
which therefore supports such OO features as classes,
encapsulation, polymorphism, and inheritance. Further-
more, Java aims for universal portability; Java source code
is compiled into byte code and browsers provide a byte
code interpreter to execute the code produced by a Java
compiler. On the one hand, this allows an applet, a
segment of Java code, to be downloaded from a server to
be run locally by the browser. On the other hand, source
code need not be made available to the web, as it must be
for purely interpreted languages.
 For application development, Nair et al. (1996) list the
advantages of using Java for web-based simulations:

• Java has built-in support for producing sophisti-
cated animations.

• Java has built-in threads making it easier to imple-
ment the process/resource interaction worldview.

• Models implemented as Java applets can be made
widely accessible through web browsers.

• Java�s universal portability eliminates the need to
port to a different platform, to recompile or to
relink.

For application execution, both the web and Java offer a set
of capabilities to facilitate web-based simulation. Key fea-
tures of web technology include (Ferscha and Richter 1997):

• Transparency of network heterogeneity:
Interoperability of different networks is achieved
7

Luo, Chen, Yücesan, and Lee
through well-defined, standardized protocols such
as HTTP and CGI. The HTTP protocol defines a
uniform information transport mechanism, while
CGI establishes the interface between a web
server and arbitrary programs executing on the
same machine.

• Transparency of operating system heterogeneity:
The Java virtual machine, a platform-neutral
architecture definition, provides a uniform proces-
sing environment due to its integration into
standard web browsers.

• Transparency of user interface heterogeneity:
Along with Java, a class library for user interface
programming supports standardized concepts for
graphical interfaces. Dynamic retrieval of classes
from the net, run-time linking, significantly
enriches user interfaces.

 Fishwick (1997) cites at least two ways of combining
the web with simulation: (i) distributed model repositories
and (ii) parallel and distributed execution. It therefore
comes as no surprise that most of the effort over the past
few years has been devoted to the construction of Java-
based simulation languages and web-based modeling
libraries. There exists a large number of Java-based simu-
lation software packages; some of them are directly avail-
able on the Internet. These packages can be categorized
into two broad groups: Java implementation of existing
simulation packages [e.g., JavaGPSS (Klein et al. 1997)
and Simjava (McNab and Howell 1996)] and new
simulation languages implemented in Java [e.g., Simkit
(Buss and Stork 1996), JSIM (Nair et al. 1996), and Silk
(Healy and Kilgore 1997)]. A comprehensive list of Java-
based simulation packages can be found at <ms.ie.
org/websim/survey/survey.html>. There is
also on-going effort to extend some of these software
packages with distributed computing capabilities (Page et
al. 1997).
 Web-based simulation optimization, however, has
been scarce. To date, we are aware of only the Java-based
simulation manager for response surface methodology
(Biles and Kleijnen 1999). In our work, we deploy OCBA
to distribute simulation replications over the web for
ranking and selection problems. This is described next.

3 EXTENSION TO PARALLEL

COMPUTATION ENVIRONMENTS

3.1 Description

The key contribution of the OCBA algorithm is the
significant gain in simulation efficiency through significant
reduction in computational effort (i.e., the total number of
simulation replications) needed to identify the best system
or obtain a desired simulation quality. Furthermore,
17

OCBA offers a natural way of running the optimization in
a distributed fashion, thereby providing further gains in
simulation efficiency. In our first prototype of the web-
based simulation optimization system (Yücesan et al.
1999), we have used Java�s threading capability to mimic
the parallel simulation environment. In that setting, while
the simulation is actually run on a traditional sequential
computer, the total number of replications executed per
thread significantly decreases as we increase the number of
threads. This implies that the total computation time
should decrease as we increase the number of parallel
processors, if the OCBA algorithm were implemented in a
real parallel computation environment and if the network
congestion were not an issue. Based on this idea, we
developed a second platform for web-based distributed
computation with the OCBA algorithm managing the entire
simulation experiment. Figure 1 depicts the structure of
the distributed implementation.

Management
Console

Web Server
&

Central
Controller
(OCBA)

Client

Client

Client

Client

Figure 1: The Structure of the Web-Based Distributed
Simulation System

 The major components of our distributed implemen-
tation for web-based simulation experiments include:

• Management Console: Through a web browser, a
central management console is established. The
console is used to set up the simulation experi-
ment. In particular, the simulation model is
selected and the corresponding parameters for the
design problem are specified for the experiment.
As the experiment proceeds, the status of each
client and the most recent simulation results are
displayed at the console (as shown in Figure 2).
The local clients are also displayed on the
management console together with information on
the particular experiment the client is currently
executing. In addition to real-time monitoring of
clients, the management console can also be used
88

Luo, Chen, Yücesan, and Lee

for post-processing of the simulation results and
the launching of multiple simulation experiments.

• Web Server and Central Controller: The Java
source code resides in the web server. OCBA
algorithm is executed on this server. Based on the
simulated results obtained from each client,
OCBA serves as a central controller and deter-
mines which design should be simulated further
so that the overall efficiency can be maximized.
The central controller then assigns the computa-
tional task to a particular client.

• Local Client: Local clients are viewed as
computing resources seeking work. To establish a
local client for our web-based distributed
simulation, it suffices to point the web browser on
a local computer to the web server. The status of
this client is then displayed both at the local
machine and on the management console. OCBA
at the web server will ask the local client to
simulate a particular design for a certain number

178
of replications. After the requested simulation is
finished, the local client sends the simulation
results to the central controller and this client
becomes available for new tasks. Based on the
simulated results, the central controller determines
through OCBA the new task for this client. The
parallel computation on local clients can be in
synchronous or asynchronous mode.

3.2 Illustrative Examples

To illustrate the power of the web technology for simu-
lation analysis, we have conducted various experiments
applying OCBA to queueing models. We consider a
queueing system where the customer interarrival times are
independent and distributed uniformly between 0.15 and
0.20 hours. The service times are also independent, but
exponentially distributed with rate (6.0+0.2i) for the ith
alternative design (i = 1, 2,�, 10). We wish to identify the
system that yields the lowest expected system time for the
first 100 customers. The OCBA algorithm is applied to

Figure 2: Management Console for the Web-Based Distributed Simulation
9

Luo, Chen, Yücesan, and Lee

this ranking and selection problem, where the budget
allocation is done in a greedy fashion; that is, additional
computing budget is allocated to the top m designs that
maximize the probability of correct selection, where m is
the number of clients supporting the experiment (refer to
Section 2.1 for the algorithm expressed in pseudo-code
format and to Figure 2 for the architecture).
 There are two objectives in this test: 1) to demonstrate
that the simulation time can be reduced through distributed
simulation, and 2) to study the impact of the delay caused
by the network communication. To this end, we compare
four different settings:

1. Local Simulation (LS). All simulations and the
OCBA algorithm are performed on a single
computer. Namely, the web browser for the local
client resides on the same machine as that of the
central controller. In this setting, there is no
communication through the network and, as a
result, there is no communication delay. This is
the same as the setting in previous experiments; it
therefore serves as a benchmark.

2. Distributed Simulation with A Single Client
(DS1). While there is a single client, the
simulations are performed at the local client. The
difference between DS1 and LS is that the client
resides on a different machine in DS1. Since the
OCBA algorithm is executed at the web server,
communication between server and client is
needed. While the total computation loads in DS1
and LS are almost the same, some communication
delay is expected in DS1. Therefore, the total
simulation time for DS1 is expected to be much
longer than that in LS, although the total number
of replications should remain the same.

3. Distributed Simulation with Two Clients (DS2).
There are two local clients connected to the web
server. Again, the OCBA algorithm is executed at
the server, and requests are sent to clients to
perform simulations. Simulation results are sent
back to the web server, where OCBA determines
the new task for clients. Some communication is
needed. The advantage of distributed simulation
may be compromised by the communication delay.

4. Distributed Simulation with Three Clients (DS3).
The setting is the same as in DS2 except there are
three local clients connected to the web server. In
this setting, we anticipate the advantage of
distributed simulation to become more significant.

Figure 3 compares the observed simulation execution times
and the total number of replications under these four
different settings. The numbers represent averages over
ten independent replications for each setting. The average
number of replications per client decreases with the
179
number of clients. The total number of simulation
replications, however, is increasing. This is due to the
greedy nature of the algorithm, where we continue
considering the top m designs in the experiment, where m
is the number of local clients. Hence, when m is increased,
additional replications are allocated to those design
alternatives that would have otherwise been discarded from
further consideration. While the total number of
replications increases, the total simulation time decreases
as more local clients are deployed to run the experiment.
This is the timesavings provided by the distributed
simulation environment. When the number of clients is
increased, the timesavings of distributed simulation
become more significant. Also note that, while the
simulation loads for LS and DS1 are almost the same, DS1
takes much longer to complete all simulation replications
due to communication delays through the Internet.

4 SUMMARY AND CURRENT WORK

In this paper, we introduced a framework for combining
the statistical efficiency of simulation optimization
techniques with the effectiveness of parallel execution
algorithms. In particular, a novel simulation sampling
procedure, the Optimal Computing Budget Allocation
(OCBA) algorithm, is implemented in a web-based
environment for low-cost parallel and distributed
simulation experimentation.
 The application of parallel simulation technology has
traditionally been limited. First, parallel hardware
configurations are expensive, hence not widely available to
many users. Second, system software to support large-
scale distributed simulations remains scarce. Under these
circumstances, simulation community has been reluctant to
explore the potential gains offered by this technology.
The Internet and web-based technologies now provide a
viable infrastructure for parallel discrete event simulation.
The Internet eliminates the need for expensive parallel
hardware, while the Internet Protocol (IP) unifies diverse
networking technologies and administrative domains. In
other words, IP ensures uniform connectivity without
requiring uniform behavior. The Internet can therefore be
viewed as an appealing infrastructure for distributed
simulation.
 Our objective in designing and implementing a web-
based simulation optimization system is to emphasize the
power of web technologies for the experimental design and
output analysis phases of a simulation study. Our
immediate concern is thus functionality rather than run-
time performance. Issues of portability, maintainability,
and conformance to standards are crucial in demonstrating
the feasibility of a web-based optimization system. We are
currently focusing on enhancing the execution speed
through the design of intelligent distribution algorithms
that exploit emerging technologies aimed at speeding up
0

Luo, Chen, Yücesan, and Lee

Comparison of Four Simulation Modes

282.75

491.97

277.08
247.28

736.8 727.6

806.75

1087.25

0

100

200

300

400

500

600

LS DS1 DS2 DS3
Simulation Mode

Si
m

ul
at

io
n

Ti
m

e

0

200

400

600

800

1000

1200

R
ep

lic
at

io
n

#

Sim ulation Time Replication #

Figure 3: Total Simulation Time and Number of Replications with Different Number of Local Clients

communication over the Internet. For instance, OCBA is
driven solely by statistical efficiency, implicitly assuming
that all processors are identical in computing power. A
natural extension of the current algorithm is one where the
computing power of individual processors is explicitly
considered in allocating simulation tasks to local clients.
In addition to processor capability, communication over-
head (e.g., congestion) is also studied to assess whether
batching simulation replications may lead to further run-
time reductions. A final effort is focused on dealing with
unreliable clients that may slow down the overall
completion of the simulation experiment or with unreliable
communication network that may lead to data loss.

ACKNOWLEDGMENTS

Professor Chen�s work has been supported in part by NSF
under grant DMI-9732173, by the U.S. Department of
Transportation under a grant from the University Transporta-
tion Centers Program through the Mid-Atlantic Transpor-
tation Consortium, by Sandia Laboratories under Contract
BD-0618, and by the University of Pennsylvania Research
Foundation. Professor Yücesan�s research has been
supported by INSEAD Recherche under grant 2010-248.

REFERENCES

Bechhofer R.E., T.J. Santner, and D.M. Goldsman. 1995.

Design and analysis of experiments for statistical
179
selection, screening, and multiple comparisons. New
York, NY: Wiley.

Berger, J.O. 1980. Statistical decision theory, foundations,
concepts, and methods. Berlin: Springer Verlag.

Berger, J.O. and J. Deely. 1988. A Bayesian approach to
ranking and selection of related means with alternative
to analysis of variance methodology. Journal of
American Statistical Association, 83(402): 364-373.

Bernardo, J.M. and A.F.M. Smith. 1994. Bayesian theory.
New York, NY: Wiley.

Biles, W.E. and J.P.C. Kleijnen. 1999. A Java-based
simulation manager for optimization and response
surface methodology in multiple-response parallel
simulation. In Proceedings of the 1999 Winter
Simulation Conference, ed. Phillip Farrington, Harriet
Nembhard, David Sturrock, and Gerald Evans, 513-
517. Institute of Electrical and Electronics Engineers,
Piscataway, New Jersey.

Buss, A. H. and K. A. Stork. 1996. Discrete event
simulation on the World Wide Web using Java. In
Proceedings of the 1996 Winter Simulation
Conference, ed. John Charnes, Douglas Morrice, Dan
Brunner, and James Swain, 780-786. Institute of
Electrical and Electronics Engineers, Piscataway, New
Jersey.

Chandy, K.M. and Misra, J. 1979. Distributed simulation: a
case study in design and verification of distributed
programs. IEEE Transactions on Software
Engineering. SE-5(5): 440-452.
1

Luo, Chen, Yücesan, and Lee

Chen, C.H., H.C. Chen, and L. Dai. 1996. A gradient
approach of smartly allocating computing budget for
discrete event simulation. In Proceedings of the 1996
Winter Simulation Conference, ed. John Charnes,
Douglas Morrice, Dan Brunner, and James Swain,
398-405. Institute of Electrical and Electronics
Engineers, Piscataway, New Jersey.

Chick, S. E. 1997. Bayesian analysis for simulation input
and output. In Proceedings of the 1997 Winter
Simulation Conference, ed. Sigrun Andradottir, Kevin
Healey, David Withers, and Barry Nelson, 253-260.
Institute of Electrical and Electronics Engineers,
Piscataway, New Jersey.

Chiu, W.K. 1974. The ranking of means of normal
populations for a generalized selection goal.
Biometrika, 61(4): 579-584.

Comfort, J.C. 1984. The simulation of a master-slave event
set processor. Simulation, 42(3): 117-124.

Concepcion, A.I., 1989. A hierarchical computer
architecture for distributed simulation. IEEE
Transactions on Computing, C-38(2): 311-319.

Dudewicz, E. J. and S. R. Dalal, 1975. Allocation of
observations in ranking and selection with unequal
variances. Sankhya, B37: 28-78.

Fishwick, P.A., 1997. Web-based simulation. In
Proceedings of the 1997 Winter Simulation
Conference, ed. Sigrun Andradottir, Kevin Healey,
David Withers, and Barry Nelson, 100-102. Institute
of Electrical and Electronics Engineers, Piscataway,
New Jersey.

Ferscha, A. and M. Richter. 1997. Java-based conservative
distributed simulation. In Proceedings of the 1997
Winter Simulation Conference, ed. Sigrun Andradottir,
Kevin Healey, David Withers, and Barry Nelson, 381-
388. Institute of Electrical and Electronics Engineers,
Piscataway, New Jersey.

Fujimoto, R.M. 1993. Parallel discrete event simulation:
will the field survive? ORSA Journal on Computing.
5(3): 218-230.

Glynn, P.W. and D.L. Iglehart. 1989. Importance sampling
for stochastic simulations. Management Science,
35(11): 1367-1392.

Gupta, S. S. and S. Panchapakesan. 1979. Multiple de-
cision procedures: theory and methodology of select-
ing and ranking populations. New York, NY: Wiley.

Gupta, S.S. and J.O. Berger. 1988. Statistical decision
theory and related topics IV. Berlin: Springer Verlag.

Healy, K. J. and R. A. Kilgore, 1997. Silk: A Java-based
process simulation language. In Proceedings of the
1997 Winter Simulation Conference, ed. Sigrun
Andradottir, Kevin Healey, David Withers, and Barry
Nelson, 475-482. Institute of Electrical and Electronics
Engineers, Piscataway, New Jersey.

Heidelberger, P. 1988. Discrete event simulations and
parallel processing: statistical properties. SIAM
179
Journal Scientific and Statistical Computing, 9(6):
1114-1132.

Hsu, J.C. 1996. Multiple comparisons: theory and
methods. Dordrecht: Chapman & Hall.

Kang, I. and I. Lee. 1994, State minimization for
concurrent system analysis based on state space
exploration. In Proceedings of the Conference on
Computer Assurance.

Kang, I. and I. Lee. 1996. Efficient state space generation
for analysis of real-time systems. In Proceedings of
the ACM Int. Symposium on Software Testing and
Analysis.

Klein, U., S. Strassburger, and J. Beikirch. 1997.
Distributed simulation with JavaGPSS based on the
High Level Architecture. Extended abstract.

McNab, R. and F.W. Howell. 1996. Using Java for discrete
event simulation. In Proceedings of the Twelfth UK
Computer and Telecommunications Performance
Engineering Workshop (UKPEW), Univ. of
Edinburgh, 219-228.

Misra, J. 1986. Distributed discrete-event simulation.
Computing Surveys, 18(1): 39-65.

Nair, R. S., J. A. Miller, and Z. Zhang. 1996. Java-based
query driven simulation environment. In Proceedings
of the 1996 Winter Simulation Conference, ed. John
Charnes, Douglas Morrice, Dan Brunner, and James
Swain, 786-793. Institute of Electrical and Electronics
Engineers, Piscataway, New Jersey.

Page, E.H., R.L. Moose, Jr., and S.P. Griffin. 1997. Web-
based simulation in SimJava using remote method
invocation. In Proceedings of the 1997 Winter
Simulation Conference, ed. Sigrun Andradottir, Kevin
Healey, David Withers, and Barry Nelson, 468-474.
Institute of Electrical and Electronics Engineers,
Piscataway, New Jersey.

Paxson, V. and S. Floyd. 1997. Why we don�t know how
to simulate the Internet. In Proceedings of the 1997
Winter Simulation Conference, ed. Sigrun Andradottir,
Kevin Healey, David Withers, and Barry Nelson,
1037-1044. Institute of Electrical and Electronics
Engineers, Piscataway, New Jersey.

Rinott, Y. 1978. On two-stage selection procedures and
related probability inequalities. Communications in
Statistics, A7: 799-811.

Wilson, J.R. 1984. Variance reduction techniques for
digital simulation. American Journal of Mathematical
and Management Sciences. 4: 277-312.

Yücesan, E. and L. Schruben, 1993. Modeling Paradigms
for Discrete Event Simulations. Operations Research
Letters, 13(5): 265-276.

Yücesan, E., Y.-C. Luo, C.H. Chen, and I. Lee, 1999.
Distributed Web-based Simulation Experiments for
Optimization. Technology Management Area,
INSEAD, Working Paper #99, Fontainebleau, France.

2

Luo, Chen, Yücesan, and Lee

AUTHOR BIOGRAPHIES

YUH-CHUYN LUO is an Assistant Professor of Com-
puter Science at Chung-Cheng Institute of Technology,
Taiwan. He received his Ph.D. degree in Systems En-
gineering from University of Pennsylvania in 1999. His
research interests include developing efficient approaches
for web-based discrete event simulation, stochastic
optimization, and using simulation in the planning and
design of manufacturing systems.

CHUN-HUNG CHEN is an Associate Professor of
Systems Engineering and Operations Research at George
Mason University, Fairfax, VA. He received his Ph.D.
degree in Simulation and Decision from Harvard
University in 1994. His interests cover a wide range of
areas in discrete event systems modeling and simulation,
ordinal optimization, manufacturing systems design, and
robot motion planning. Recently, he has been engaged in
the development of very efficient approaches for stochastic
simulation and decision problems, and in their applications
to manufacturing, scheduling, supply chain management,
logistics, stochastic equilibrium problems, and robust
engineering design problems. He is also a specialist in
web-based distributed simulation. Dr. Chen won the 1994
Harvard University Eliahu I. Jury Award for the best thesis
in the field of control. He is one of the recipients of the
1992 MasPar Parallel Computer Challenge Award and is
listed in Who�sWho in America.

ENVER YÜCESAN is a Professor in the Technology
Management Area at the European Institute of Business
Administration (INSEAD), Fontainebleau, France. He
received his PhD in Operations Research from Cornell
University in 1989. He is an Industrial Engineer from Pur-
due University. His research interests include simulation
modeling and analysis, supply chain management, and
electronic commerce.

INSUP LEE is a Professor in the Department of Computer
and Information Science at the University of Pennsylvania,
Philadelphia, PA. He received a B.S. degree in mathe-
matics from the University of North Carolina, Chapel Hill,
in 1977, and a PhD in computer science from the
University of Wisconsin, Madison, in 1983. His research
interests cover a range of issues in the areas of distributed
systems and real-time computing, including operating
systems, formal methods, programming languages, and
software engineering tools.

1793

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

