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ABSTRACT 
 
Web technology is having a significant impact on 
computer simulation.  Most of the effort in web-based 
simulation is aimed at modeling, particularly at building 
simulation languages and at creating model libraries that 
can be assembled and executed over the web.  We focus on 
the efficiency of simulation experimentation for 
optimization.  We introduce a framework for combining 
the statistical efficiency of simulation optimization 
techniques with the effectiveness of parallel execution 
algorithms.  In particular, the Optimal Computing Budget 
Allocation (OCBA) algorithm is implemented in a web-
based environment for low-cost parallel and distributed 
simulation experimentation.  A prototype implementation 
with some experimental results is presented. 
 
1 INTRODUCTION 
 
The web has experienced tremendous growth since its 
introduction in early 1990�s (Paxson and Floyd 1997).  The 
web also has a growing impact on computer simulation.  
Discrete-event simulation is a popular tool for designing 
large man-made systems such as communication networks, 
traffic systems, and manufacturing facilities since no 
reliable closed-form analytical models exist for such 
systems. In addition to excellent graphical animation 
capability, simulation offers virtually unlimited modeling 
flexibility as arbitrary levels of system detail can be 
incorporated into a simulation model. 
 Increased levels of detail in simulation models (e.g., 
explicit representation of an increasing number of 
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resources such as people, machines, tools, and jobs in 
manufacturing models), considerably higher levels of 
activity in the modeled system (e.g., millions of messages 
to be handled by a telecommunications network), and 
significantly improved levels of reliability of modeled 
systems (e.g., a highly reliable airline ticket reservation 
computer), however, are straining the effectiveness of 
simulation experiments.  In those cases with increased 
level of model detail, the execution speed of models does 
not improve in spite of the availability of faster hardware 
platforms.  In those cases with rare events, significantly 
longer simulation runs are required to obtain reliable 
performance estimates. 
 Efficiency becomes an even greater concern when 
simulation is used for decision-making. In this setting, 
simulation must be performed repeatedly for many design 
alternatives. Furthermore, to obtain a good statistical 
estimate for a design decision, a large number of 
simulation replications (or samples) are usually required 
for each design alternative.  If the number of design 
alternatives is large, the total simulation cost could be 
prohibitively expensive.  Various schemes have been 
proposed to enhance the effectiveness of simulation 
experiments.  On the modeling side, alternative modeling 
approaches have been introduced to reduce the inherent 
complexity of models either by implicitly representing 
most system entities (Yücesan and Schruben 1993) or by 
reducing the size of the state space of the underlying model 
(Kang and Lee 1994 and 1996).  On the analysis side, 
various approaches have been introduced to improve the 
statistical efficiency of simulation experiments (Wilson 
1984, Glynn and Iglehart 1989, and Chen et al. 1996).  
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Finally, on the execution side, algorithms have been 
developed for parallel execution (Chandy and Misra 1979, 
Misra 1986).  
 The objective of this paper is to introduce a platform 
for combining the statistical efficiency of simulation 
optimization techniques with the effectiveness of parallel 
execution algorithms.  In particular, the Optimal Comput-
ing Budget Allocation (OCBA) algorithm is implemented 
in a web-based environment for low-cost parallel and 
distributed simulation experimentation. 
 Our objective in designing and implementing a web-
based simulation optimization system is to emphasize the 
power of web technologies for the experimental design and 
output analysis phases of a simulation study.  Our im-
mediate concern is thus capability (or functionality) rather 
than run-time performance.  Issues of portability, maintain-
ability, and conformance to standards are crucial in 
demonstrating the feasibility of a web-based optimization 
system.  We will subsequently focus on execution speed 
through the design of intelligent distribution algorithms 
and exploit emerging technologies aimed at speeding up 
communication over the Internet. 
 Our work focuses on the parallel execution of a simula-
tion experiment for optimization.  However, instead of 
equally distributing simulation replications for different de-
sign alternatives, OCBA offers an intelligent way to allocate 
simulation experiments to processors.  More specifically, 
OCBA is an innovative scheme aimed at identifying the 
optimal system through an optimal experimental design.   
 The paper is organized as follows:  Section 2 provides 
the necessary background on simulation optimization (and, 
in particular, on OCBA), on parallel and distributed simula-
tion, and on web-based simulations.  The prototype for dis-
tributed simulation over the Internet is introduced in Section 
3.  Current research efforts are described in Section 4. 
 
2 BACKGROUND 
 
2.1 Simulation Optimization 
 
Simulation enables the comparison of various design 
alternatives before implementing any of the required 
physical changes.   Suppose we want to compare k 
different systems (competing designs or alternative 
operating policies).  We conduct N simulation replications 
for each of the k designs. Therefore, we need kN simulation 
replications.  Simulation results become more accurate as 
N increases.  If the accuracy requirement is high (N is not 
small) and if the total number of competing designs is large 
(k is large), then kN can be very large.  This may easily 
make total simulation cost prohibitively high and preclude 
the feasibility of simulation optimization. 
 The effective reduction of computation costs while 
obtaining a good decision is therefore crucial.  Dudewicz 
and Dalal (1975) propose a two-stage procedure for 
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selecting the best design or a design that is very close to the 
best system.  In the first stage, all systems are simulated 
through a fixed number of replications.  Based on the results 
of the first stage, the number of additional simulation 
replications for each design in the second stage is estimated 
in order to reach the desired confidence level. Rinott (1978) 
presents an alternative way to estimate the required number 
of simulation replications in the second stage.  Many 
researchers have extended this idea to more general ranking 
and selection settings in conjunction with new develop-
ments.  Chiu (1974), Gupta and Panchapakesan (1979), 
Bechhofer et al. (1995), and Hsu (1996) present methods 
based on the classical statistical model adopting a frequentist 
view.  Berger (1985), Berger and Deely (1988), Bernardo 
and Smith (1994), Gupta and Berger (1988), and Chick 
(1997), on the other hand, use a Bayesian framework for 
constructing ranking and selection procedures. 
 Chen et al. (1996) formulate the procedure of selecting 
the best design as an optimization problem, which 
optimally allocates a computing budget and processors to 
the designs under evaluation. They present a solution 
technique to this budget allocation problem. Preliminary 
tests indicate that the proposed technique is significantly 
faster than the traditional two-stage procedures.  
 Let SQ denote the overall simulation quality. 
Examples of SQ include the mean squared error of the 
performance measure or the probability of correctly 
selecting the true best design.  Also denote by Ni the 
number of simulation replications for design i and by k the 
total number of alternative designs. If the simulation 
experiment is executed sequentially on a single processor, 
the budget allocation problem can be expressed as:  
 
    max

N1,⋅⋅,Nk

 SQ 

s.t. N1 + N2 + ⋅⋅ + Nk  = B, 
 
where B is the given computing budget.  Intuitively, this 
technique provides an optimal way to reach an optimal 
design using simulation experiments.  A critical element in 
the above budget allocation problem is the effective 
estimation of the sensitivity information.  Let ESQ(N1, N2, 
.., Ns-1, Ns+τ, Ns+1, .., Nk) denote an estimated SQ if 
additional τ simulation replications were performed on 
design s.  ESQ is computed using the statistical information 
after N1, N2, .., Nk simulation replications are completed for 
designs 1, .., k, respectively.  Based on a Bayesian model, 
Chen et al (1996) present an effective way to estimate ESQ 
if SQ is defined as the probability of correctly selecting the 
true best design (P{CS}). This scheme will be adopted in 
this paper to implement an efficient simulation experiment 
planner. 
 Our approach builds on three important ideas: first, the 
number of replications needed to achieve a desired 
confidence level is dependent on the standard deviation of 
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the performance measure, which may vary significantly 
across designs. Designs having a lower standard deviation 
require fewer replications to achieve the same confidence 
level. Second, inferior designs can often be detected at a 
given confidence level after only a few replications. 
Discarding such designs early on increases the computing 
budget (e.g., the number of replications) available for more 
promising designs. Third, the computing budget should be 
allocated to the subset of designs that best improves the 
overall simulation quality (or the ESQ).  This approach is 
outlined in pseudo-code format: 
 
2.1.1  A Sequential Algorithm for Optimal Computing 

Budget Allocation (OCBA) 
 
Step 0. Perform n0 simulation replications for all designs; 

l←0; l
k

ll NNN === !21 = n0, B = B - kn0. 
Step 1. If B = 0, stop, otherwise, go to Step 2.  
Step 2. Estimate the incremental of ESQ(s) for each s = 1, 

�, k.  
Step 3. Find the set S(m) ≡ { s : ESQ(s) is among the 

highest m}, where m is the number of threads or 
parallel processors available. 

Step 4. Perform additional τ simulation replications for 
design i, i ∈ S(m).  

  Set  1+l
iN ← l

iN  + τ, for i ∈S(m), and 

  1+l
iN ← l

iN , for i ∉S(m), 
  B ← B - mτ, l ← l + 1, go to Step 1. 
 
2.2 Parallel and Distributed Simulation 
 
There are several approaches for exploiting parallelism in 
discrete event simulation in order to reduce computation time: 
 

• Dedicated execution.  This is the approach where 
dedicated functional units execute specific se-
quential simulation functions such as random 
number generation, future events list manage-
ment, and statistics collection (Comfort 1984). 

• Hierarchical decomposition.  This is the approach 
where the simulation model is decomposed in a 
hierarchical fashion so as to allow an event 
consisting of several sub-events to be processed 
concurrently (Concepcion 1989). 

• Parallel replication.  This is the approach where 
several replications of a sequential simulation are 
executed independently on different processors 
(Heidelberger 1988). 

• Parallel execution.  This is the execution of a sim-
ulation model on a parallel computer by decom-
posing the simulation model implementation into 
a set of concurrently executing processes (Misra 
1986). 
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 The application of parallel simulation technology has 
been limited.  Until recently, parallel computers could be 
found only in research laboratories or large universities.  
Furthermore, system software to support large-scale distri-
buted simulations remains scarce.  Under these circum-
stances, simulation community has largely been reluctant to 
explore the potential gains offered by this technology.  In 
fact, this lack of acceptance by the simulation community 
has even triggered a heated discussion about the future of 
parallel discrete event simulation (Fujimoto 1993).  The 
Internet and web-based technologies provide a viable 
infrastructure for parallel discrete event simulation.  The 
Internet eliminates the need for expensive parallel hardware, 
while the Internet Protocol (IP) unifies diverse networking 
technologies and administrative domains.  In other words, IP 
ensures uniform connectivity without requiring uniform 
behavior.  The Internet can therefore be viewed as an 
appealing infrastructure for distributed simulation.   
 
2.3 Web-Based Simulation  
 
Web-based simulation represents the convergence of simu-
lation methodology and World Wide Web technologies.  
The key enabler of web-based simulation is the Java 
language introduced by Sun Microsystems.  Java is an 
object-oriented (OO) programming language for the web, 
which therefore supports such OO features as classes, 
encapsulation, polymorphism, and inheritance.  Further-
more, Java aims for universal portability; Java source code 
is compiled into byte code and browsers provide a byte 
code interpreter to execute the code produced by a Java 
compiler.  On the one hand, this allows an applet, a 
segment of Java code, to be downloaded from a server to 
be run locally by the browser.  On the other hand, source 
code need not be made available to the web, as it must be 
for purely interpreted languages. 
 For application development, Nair et al. (1996) list the 
advantages of using Java for web-based simulations: 
 

• Java has built-in support for producing sophisti-
cated animations. 

• Java has built-in threads making it easier to imple-
ment the process/resource interaction worldview. 

• Models implemented as Java applets can be made 
widely accessible through web browsers. 

• Java�s universal portability eliminates the need to 
port to a different platform, to recompile or to 
relink. 

 
For application execution, both the web and Java offer a set 
of capabilities to facilitate web-based simulation.  Key fea-
tures of web technology include (Ferscha and Richter 1997): 
 

• Transparency of network heterogeneity: 
Interoperability of different networks is achieved 
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through well-defined, standardized protocols such 
as HTTP and CGI.  The HTTP protocol defines a 
uniform information transport mechanism, while 
CGI establishes the interface between a web 
server and arbitrary programs executing on the 
same machine. 

• Transparency of operating system heterogeneity: 
The Java virtual machine, a platform-neutral 
architecture definition, provides a uniform proces-
sing environment due to its integration into 
standard web browsers. 

• Transparency of user interface heterogeneity: 
Along with Java, a class library for user interface 
programming supports standardized concepts for 
graphical interfaces.  Dynamic retrieval of classes 
from the net, run-time linking, significantly 
enriches user interfaces. 

 
 Fishwick (1997) cites at least two ways of combining 
the web with simulation: (i) distributed model repositories 
and (ii) parallel and distributed execution.  It therefore 
comes as no surprise that most of the effort over the past 
few years has been devoted to the construction of Java-
based simulation languages and web-based modeling 
libraries.  There exists a large number of Java-based simu-
lation software packages; some of them are directly avail-
able on the Internet.  These packages can be categorized 
into two broad groups: Java implementation of existing 
simulation packages [e.g., JavaGPSS (Klein et al. 1997) 
and Simjava (McNab and Howell 1996)] and new 
simulation languages implemented in Java [e.g., Simkit 
(Buss and Stork 1996), JSIM (Nair et al. 1996), and Silk 
(Healy and Kilgore 1997)].  A comprehensive list of Java-
based simulation packages can be found at <ms.ie. 
org/websim/survey/survey.html>.  There is 
also on-going effort to extend some of these software 
packages with distributed computing capabilities (Page et 
al. 1997).   
 Web-based simulation optimization, however, has 
been scarce.  To date, we are aware of only the Java-based 
simulation manager for response surface methodology 
(Biles and Kleijnen 1999).  In our work, we deploy OCBA 
to distribute simulation replications over the web for 
ranking and selection problems.  This is described next.  
 
3 EXTENSION TO PARALLEL  

COMPUTATION ENVIRONMENTS 
 
3.1 Description 
 
The key contribution of the OCBA algorithm is the 
significant gain in simulation efficiency through significant 
reduction in computational effort (i.e., the total number of 
simulation replications) needed to identify the best system 
or obtain a desired simulation quality.  Furthermore, 
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OCBA offers a natural way of running the optimization in 
a distributed fashion, thereby providing further gains in 
simulation efficiency.  In our first prototype of the web-
based simulation optimization system (Yücesan et al. 
1999), we have used Java�s threading capability to mimic 
the parallel simulation environment.  In that setting, while 
the simulation is actually run on a traditional sequential 
computer, the total number of replications executed per 
thread significantly decreases as we increase the number of 
threads.     This implies that the total computation time 
should decrease as we increase the number of parallel 
processors, if the OCBA algorithm were implemented in a 
real parallel computation environment and if the network 
congestion were not an issue.  Based on this idea, we 
developed a second platform for web-based distributed 
computation with the OCBA algorithm managing the entire 
simulation experiment.  Figure 1 depicts the structure of 
the distributed implementation. 
 
 

Management 
Console 

Web Server 
& 

Central 
Controller 
(OCBA) 

Client 

Client 

Client 

Client 
 

 

Figure 1:  The Structure of the Web-Based Distributed 
Simulation System 
 
 The major components of our distributed implemen-
tation for web-based simulation experiments include: 
 

• Management Console: Through a web browser, a 
central management console is established.  The 
console is used to set up the simulation experi-
ment.  In particular, the simulation model is 
selected and the corresponding parameters for the 
design problem are specified for the experiment.  
As the experiment proceeds, the status of each 
client and the most recent simulation results are 
displayed at the console (as shown in Figure 2).  
The local clients are also displayed on the 
management console together with information on 
the particular experiment the client is currently 
executing.  In addition to real-time monitoring of 
clients, the management console can also be used 
88
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for post-processing of the simulation results and 
the launching of multiple simulation experiments. 

• Web Server and Central Controller: The Java 
source code resides in the web server.  OCBA 
algorithm is executed on this server.  Based on the 
simulated results obtained from each client, 
OCBA serves as a central controller and deter-
mines which design should be simulated further 
so that the overall efficiency can be maximized.  
The central controller then assigns the computa-
tional task to a particular client. 

• Local Client: Local clients are viewed as 
computing resources seeking work.  To establish a 
local client for our web-based distributed 
simulation, it suffices to point the web browser on 
a local computer to the web server.  The status of 
this client is then displayed both at the local 
machine and on the management console.  OCBA 
at the web server will ask the local client to 
simulate a particular design for a certain number 
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of replications. After the requested simulation is 
finished, the local client sends the simulation 
results to the central controller and this client 
becomes available for new tasks. Based on the 
simulated results, the central controller determines 
through OCBA the new task for this client.  The 
parallel computation on local clients can be in 
synchronous or asynchronous mode. 
 

3.2  Illustrative Examples 
 
To illustrate the power of the web technology for simu-
lation analysis, we have conducted various experiments 
applying OCBA to queueing models.  We consider a 
queueing system where the customer interarrival times are 
independent and distributed uniformly between 0.15 and 
0.20 hours.  The service times are also independent, but 
exponentially distributed with rate (6.0+0.2i) for the ith 
alternative design (i = 1, 2,�, 10).  We wish to identify the 
system that yields the lowest expected system time for the 
first 100 customers.  The OCBA algorithm is applied to 
 

 
 

Figure 2:  Management Console for the Web-Based Distributed Simulation 
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this ranking and selection problem, where the budget 
allocation is done in a greedy fashion; that is, additional 
computing budget is allocated to the top m designs that 
maximize the probability of correct selection, where m is 
the number of clients supporting the experiment (refer to 
Section 2.1 for the algorithm expressed in pseudo-code 
format and to Figure 2 for the architecture). 
 There are two objectives in this test: 1) to demonstrate 
that the simulation time can be reduced through distributed 
simulation, and 2) to study the impact of the delay caused 
by the network communication.  To this end, we compare 
four different settings: 
 

1. Local Simulation (LS). All simulations and the 
OCBA algorithm are performed on a single 
computer.  Namely, the web browser for the local 
client resides on the same machine as that of the 
central controller.  In this setting, there is no 
communication through the network and, as a 
result, there is no communication delay.   This is 
the same as the setting in previous experiments; it 
therefore serves as a benchmark. 

2. Distributed Simulation with A Single Client 
(DS1). While there is a single client, the 
simulations are performed at the local client.  The 
difference between DS1 and LS is that the client 
resides on a different machine in DS1.  Since the 
OCBA algorithm is executed at the web server, 
communication between server and client is 
needed.  While the total computation loads in DS1 
and LS are almost the same, some communication 
delay is expected in DS1.  Therefore, the total 
simulation time for DS1 is expected to be much 
longer than that in LS, although the total number 
of replications should remain the same. 

3. Distributed Simulation with Two Clients (DS2). 
There are two local clients connected to the web 
server.  Again, the OCBA algorithm is executed at 
the server, and requests are sent to clients to 
perform simulations.  Simulation results are sent 
back to the web server, where OCBA determines 
the new task for clients.  Some communication is 
needed.  The advantage of distributed simulation 
may be compromised by the communication delay.  

4. Distributed Simulation with Three Clients (DS3). 
The setting is the same as in DS2 except there are 
three local clients connected to the web server.  In 
this setting, we anticipate the advantage of 
distributed simulation to become more significant. 

 
Figure 3 compares the observed simulation execution times 
and the total number of replications under these four 
different settings.  The numbers represent averages over 
ten independent replications for each setting.  The average 
number of replications per client decreases with the 
179
number of clients.  The total number of simulation 
replications, however, is increasing.  This is due to the 
greedy nature of the algorithm, where we continue 
considering the top m designs in the experiment, where m 
is the number of local clients.  Hence, when m is increased, 
additional replications are allocated to those design 
alternatives that would have otherwise been discarded from 
further consideration.  While the total number of 
replications increases, the total simulation time decreases 
as more local clients are deployed to run the experiment.  
This is the timesavings provided by the distributed 
simulation environment.  When the number of clients is 
increased, the timesavings of distributed simulation 
become more significant.  Also note that, while the 
simulation loads for LS and DS1 are almost the same, DS1 
takes much longer to complete all simulation replications 
due to communication delays through the Internet. 
 
4 SUMMARY AND CURRENT WORK 
 
In this paper, we introduced a framework for combining 
the statistical efficiency of simulation optimization 
techniques with the effectiveness of parallel execution 
algorithms.  In particular, a novel simulation sampling 
procedure, the Optimal Computing Budget Allocation 
(OCBA) algorithm, is implemented in a web-based 
environment for low-cost parallel and distributed 
simulation experimentation. 
 The application of parallel simulation technology has 
traditionally been limited.  First, parallel hardware 
configurations are expensive, hence not widely available to 
many users.  Second, system software to support large-
scale distributed simulations remains scarce.  Under these 
circumstances, simulation community has been reluctant to 
explore the potential gains offered by this technology.   
The Internet and web-based technologies now provide a 
viable infrastructure for parallel discrete event simulation.  
The Internet eliminates the need for expensive parallel 
hardware, while the Internet Protocol (IP) unifies diverse 
networking technologies and administrative domains.  In 
other words, IP ensures uniform connectivity without 
requiring uniform behavior.  The Internet can therefore be 
viewed as an appealing infrastructure for distributed 
simulation.   
 Our objective in designing and implementing a web-
based simulation optimization system is to emphasize the 
power of web technologies for the experimental design and 
output analysis phases of a simulation study.  Our 
immediate concern is thus functionality rather than run-
time performance.  Issues of portability, maintainability, 
and conformance to standards are crucial in demonstrating 
the feasibility of a web-based optimization system.  We are 
currently focusing on enhancing the execution speed 
through the design of intelligent distribution algorithms 
that exploit emerging technologies aimed at speeding up  
0
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Figure 3:  Total Simulation Time and Number of Replications with Different Number of Local Clients 

 

communication over the Internet.  For instance, OCBA is 
driven solely by statistical efficiency, implicitly assuming 
that all processors are identical in computing power.  A 
natural extension of the current algorithm is one where the 
computing power of individual processors is explicitly 
considered in allocating simulation tasks to local clients.  
In addition to processor capability, communication over-
head (e.g., congestion) is also studied to assess whether 
batching simulation replications may lead to further run-
time reductions.  A final effort is focused on dealing with 
unreliable clients that may slow down the overall 
completion of the simulation experiment or with unreliable 
communication network that may lead to data loss. 
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