
Proceedings of the 2000 Winter Simulation Conference
J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, eds.

A JAVA-BASED SIMULATION MANAGER FOR WEB-BASED SIMULATION

Charles Marr
Christopher Storey
William E. Biles

Department of Industrial Engineering

University of Louisville
304 J. B. Speed Building

Louisville, KY 40292, U.S.A.

Jack P. C. Kleijnen

Department of Information Systems /
Center for Economic Research

 Tilburg University
 P. O. Box 90153

 5000 LE Tilburg, THE NETHERLANDS

ABSTRACT

This paper discusses a Web-based simulation manager
program that executes an Application Service Provider
(ASP) event for a customer who does not possess the in-
house capability to program complex simulations. The
utility in using this simulation manager is that the customer
needs results in near real-time; that is, approximately the
time to run one complete replication of the simulation
model plus some overhead time to send the commands
necessary to execute the simulation and to process the
results. The simulation manager executes simulation
studies in a parallel replications format, using either
designed experiments or optimization methodologies, by
sending the appropriate messages to a set of engine
processors to cause the execution of the prescribed
simulation trials. It then receives and analyzes the
simulation results produced by the simulation engines, and
sends a project report to the human customer.

1 INTRODUCTION

The approach proposed here is aimed at carrying out a
simulation study in a parallel-replications mode
(Heidelberger 1988), utilizing a set of P slave processors
available to a master processor called SimManager. By
�available� we mean that the processors exist somewhere
in the world and that their owners have entered into an
agreement to participate in a simulation consortium that we
shall call the Alliance. Through the Alliance agreement,
these owners maintain their processors in the �on� state,
with the simulation application accessed, so that they are
available for use as slave processors (hence-forth referred
to as simulation engines, or simply engines). We use the
term SimManager here to identify the master processor that
is controlling the simulation study and the term engines to
refer to the processors that are actually executing the
18

simulation trials. Other terms that are sometimes used to
refer to this relationship are master/slave, supervisor/
worker, and client/server.
 Suppose that the simulation model involved in the
project has input variables Xi , i= 1,�, N and performance
measures Yj , j = 1,�, M, and that the objective of the
simulation study is to establish the best values of X and Y
using an optimization scheme such as response surface
methodology (RSM). The simulation study involves the
execution of R replications at each of S system scenarios,
so that the total number of simulation trials to be executed
is K = RS. This simulation workload is assigned to
P engines by the SimManager processor. SimManager
sends a file to each simulation engine detailing that
engine�s work assignment, receives back a file containing
the statistical results derived from that engine�s efforts, and
organizes these results into a form that meets the needs of
the customer who has purchased the simulation study.
This is often an iterative activity that takes place over
several cycles. We assume here that a human analyst is
available to intervene with SimManager to ensure proper
execution, to maintain security, and to deal with those
customers who want to interact with a human.
 This paper focuses mainly on the following interfaces:
(a) that between the SimManager and its engine processors,
(b) that between SimManager and its customer base, and
(c) that between SimManager and its simulation model
catalog. It describes methods for allocating workload to
the P engine processors so that the simulation study is
carried out in minimum time or at minimum cost. The
objective is to give the customer the best service possible,
which could entail providing personal presentations of the
final report by expert simulation consultants. This
�personal� contact could be a face-to-face training session
to novice simulation customers, or a combination of
telephone conversations and e-mail.
15

Marr, Storey, Biles, and Kleijnen

 This paper explores the simulation-study capabilities
of a Java-based simulation manager such as that discussed
by Biles and Kleijnen (1999). Theoretically, a simulation
study that requires R replications of each of S system
scenarios to obtain the desired confidence intervals on each
of M performance measures can be achieved in the time Tr
to run just one complete replication on the slowest
available engine processor plus overhead time To. This
overhead time is the sum of (a) that required prior to
execution in order to send the required files and
performance parameters to the P engine processors, and (b)
that needed after execution to receive simulation output
back from the P engines and compile simulation results. In
its most ideal performance, SimManager would conduct a
simulation study involving K = S*R simulation trials in a
differs from that of the PADS format described by
Fujimoto (1998) in which a simulation model is
decomposed and its P component modules are simulated
on P engines.

181
 The Front End is the interface between SimManager
and its potential customers, who may only have access to
the World Wide Web (WWW) via a shared computer or
one with limited processing capability. A target audience
might be for example, MBA graduate students who need
the capability to perform an analysis of alternatives for
business practices, but who lack formal simulation
programming knowledge. This web-based simulation
concept might also lead to carrying out distributed, non-
parsed simulations for industrial organizations seeking the
time and cost-savings that this technology offers. Figure 1
shows a sequential look at the interaction between a
customer using the WWW to access SimManager and the
Front-End software. SimManager controls the flow of the
simulation, including which engine processors are assigned
which simulation models, as well as the number S of
different sets of inputs conditions (scenarios) and the
number R of replications at each scenario. SimManager
then compiles the summary results generated through the
simulation study and delivers them to the customer.
Figure 1: The Relationship Between the Simulation and the SimManager
6

Marr, Storey, Biles, and Kleijnen

2 AN APPLICATION SERVICE
PROVIDER (ASP) CONCEPT

Figure 2 shows how SimManager would function in an
Application Service Provider (ASP) environment.
SimManager would serve as the interface between a
customer seeking assistance in simulation modeling and
the simulation system. As an ASP, SimManager would
require a fee for service based on the total number of
simulation trials executed with a given simulation model.
When the customer accesses the web page, he/she would
click on the Catalog of Simulation Models and view a
description of any models that appear to meet his/her
specific needs. The customer could print, at no charge, the
information describing any simulation models he/she might
be interested in. One of the published facts about each
simulation model would be the cost of executing a single
simulation trial with that model.
181
 For example, the charge for the Silk Bake-Load model
(Kilgore and Healy, 1999) might be $0.20 per simulation
trial, whereas the charge for a Silk model of a (s, S)
inventory system might be $0.10 per simulation trial. If
the customer requires 100 replications of the Baked-Load
model at each of 8 scenarios, the charge is C =
$0.20(8)(100) = $160.00. If the customer finds this sum
too expensive, he/she might choose to follow an iterative
approach and initially order only 10 replications at each of
the 8 parameter sets at a cost C = $0.20(8)(10) = $16.00.
Then by examining the, say, 95 percent confidence
intervals on the performance measures of interest and
having SimManager compute the required number of
replications using the sequential procedure discussed by
Law and Kelton (2000), the customer could select a greater
number of replications. In fact, the sample size models
discussed in Law and Kelton (2000) would allow
SimManager to select the minimum number of replications
needed to achieve a desired relative error γ (0<γ<1).
Figure 2: A Concept for SimManager Operation in an ASP Environment
7

Marr, Storey, Biles, and Kleijnen

3 AN ILLUSTRATIVE EXAMPLE

Using the Java-based Silk simulation system (Kilgore and
Healy 1999) as a test platform, we were able to complete a
simple simulation study for a complex single-server
machine. The example involves a Silk-based simulation
model of a bake oven that is used to heat treat computer
chips in a microelectronics manufacturing process. This
program was executed in a Visual Cafe environment
(Symantec 1998). Our MBA student wants to determine
the oven utilization and oven load percentage as his
measures of performance for two alternatives. For both
ovens the mean inter-arrival time of parts into the oven is
1.00 seconds. For Oven A the minimum oven load is 30
parts, with a maximum oven capacity of 40 parts. The
cycle time for the oven is 30 seconds. The length of the
terminating simulation run is 800 seconds. For Oven B the
minimum oven load is 10 parts, with a maximum oven
capacity of 25 parts. The cycle time for the oven is 20
seconds. The length of the terminating simulation run is
800 seconds These data were passed through the Sim
Manager dialog box shown in Figure 3. Once we describe
the execution of the simulation from this point we will
return to our MBA student example to discuss the results.

4 SimManager OPERATION

The procedure for executing the distributed simulation
involves four operations:

1. A customer, our MBA student, completes the data
entries in the PayPerSim dialog box shown in
Figure 3. These entries include the mean inter-
arrival time, the mean service time, the minimum
load size, and the maximum capacity of the oven,

1818
the simulation, and the required number of
replications. This information is then sent as a
customer request from the thin-client Front-End
interface to the SimManager processor, currently
shown as �a46324� in Figure 3.

2. SimManager receives this request for work and
places it in the job queue. After determining what
engines are available for work SimManager
assigns this workload to the engine processor.
This request is sent via a HTTP pass of
�GET//...performance parameters...� It should be
noted that here S = 1 and R = 2, so that there are
K = 2 simulation trials to be carried out with one
engine processor (P = 1). SimManager could
have just as easily selected several engine
processors (e.g., P = 6) and utilized multiple ports
on each processor (e.g., L = 5), if the simulation
study required it.

3. The engine acknowledges receipt of this work
order by sending an echo check of the assigned set
of input parameters. Had the simulation workload
been assigned to several engine processors, each
engine would have responded in this manner.

4. As the simulation runs, the engine collects raw
data (See Figure 4), load size, wait time in queue,
etc and saves them as arrays. Upon completion of
the replication, this raw data is sent to the
SimManager associated with the job number
assigned.

5. Once all of the jobs associated with the customer
request are complete, an e-mail message is sent
telling him that the results are ready for pick up.
The customer may then select to receive all the
raw data, the summary results of each replication,
a final report of data, or any combination.

Figure 3: Front-End Dialogue Box for Input of our MBA Student Example

Marr, Storey, Biles, and Kleijnen

Figure 4: Engine Showing Performance Parameters and Raw Data Results for MBA Example
 Detailed simulation results captured during the
simulation run can also be recorded in a separate data file
for each replication should the customer require it. The
more likely project report, however, would consist of a set
of summary statistics for R replications at each of the S sets
of input values. This project report might include, for
example, the mean, variance, standard deviation,
minimum, maximum and a 100(1-α) percent confidence
interval for each of the performance measures the customer
has requested. In the SimManager environment, each
engine computes these summary statistics at the conclusion
of its work assignment, saves these results in arrays, and
populates a database file back to the SimManager.

5 HOW THE Alliance OPERATES

The Alliance is simply a consortium of simulation engine
processors belonging to individuals and organizations that
have agreed to participate in the SimManager Application
Service Provider system. The �owner� is the individual
who usually operates a specific engine processor. The
Alliance of engine processors need not be co-located.
They can belong either to an intranet, to the internet, or to
18

a combination thereof. An engine is simply known to
SimManager by its IP address; e.g., 123.456.789.111.
SimManager also knows the performance characteristics of
each engine, such as processing speed and availability.
The owner of each engine has agreed to leave the processor
�on� with the simulation application in an active window;
e.g., VisualCafe (Symantec 1998) and Silk (Kilgore and
Healy 1999). As long as the engine processor is �on� and
has the simulation application active, it is available to the
SimManager server.
 There are three distinct phases of the Alliance
operation. First, a customer initiates a request for a
simulation study using the Front-end dialog box such as
shown in Figure 3, thereby providing the specific
parameters required for his/her project. These parameters
will usually include the number of replications, the
simulation run length, the random number seed vector, the
mean entity inter-arrival time, minimum and maximum
batch sizes, the mean service time, and, in the case of a
steady-state simulation, a �warm-up� period. SimManager
sends the necessary information to P selected engines.
 An engine completes its assigned workload in some
time length based on such factors as processor capability,
19

Marr, Storey, Biles, and Kleijnen

speed, and the current utilization by its �owner.� For
example, a high-end Pentium III 500Mhz computer is
capable of performing a greater number of replications per
unit time than is a 486-66 processor. However, if the PIII-
500 processor is often busy (i.e., in use by its owner), it
could well take longer to complete a simulation assignment
due to its reduced availability. That is, when the owner is
using the engine processor for some other application (e.g.,
word processing or surfing the web) the simulation task
continues to run in the �background,� but at a slower pace.
Figure 5 illustrates how the execution time for a simulation
trial is affected by the owner�s use of the engine processor.
The simulation activity is not curtailed, but its execution
time per replication is lengthened.

6 KEY ENABLERS

The initial version of SimManager, later to become the
Front-End portion, was simply a hand-held COMPAQ 810
that send a �GET� command from the pocket windows
browser through a �hard link� serial cable to a DELL
Insprion 7000. The Dell ran the SILK simulation �Baked
Load� as an application running within Visual Cafe
Professional Edition 3.0. The original �Baked Load�
model was modified by adding in a WebServer.class and
HTTP.class to the project. As well, the simulation class
was modified to allow �passing� the performance
parameters from the COMPAQ 810 to the Dell via an
HTTP request. The request was echoed to the COMPAQ
and the simulation began, with a user-required acceptance
of the academic license from SILK. Once the simulation
182
 ran to completion, the Summary Results would post to the
screen on the DELL. The �customer� COMPAQ 810 did
not receive any feedback other than the initial echo of input
parameters. The next step was to write a JAVA thin-client
Front-End. This took the form of a stand-along executable
file that would allow passing the performance parameters
to any machine running the Baked Load or sSInventory
Model, as long as the IP address and port # were known by
the customer. The same �GET� command was sent to the
simulation models, just in a more distributed form. On the
DELL, the simulation ran within Visual Cafe 3.0 on
different ports. This began our replications of many
machines, many ports, demonstrating the capability of the
Front-End to send jobs, work, to the Alliance. Each Port
replicated a different simulation engine. Again the
summary results were seen on the screen of the DELL, but
no feed back to the �customer,� now any computer with an
Internet access.
 Our next advance came with storage of RAW data
within the simulation itself. For example, having the actual
loadsize data instead of the mean and standard deviation
allowed calculation of MIN, MAX and determination of
the actual distribution of the loadsize, as well as the
required warm-up time for steady-state. This data was
saved as an array and later saved as a ZIP file on the
simulation engine computer. This file was e-mailed to the
SimManager for compilation with other simulation engines
results to create the complete simulation study and creation
of the response surface depicting the process over a range
of performance parameters, (see Figure 6).
Figure 5: Illustration of Simulation Execution Time as a Function of �Owner� Activity
0

Marr, Storey, Biles, and Kleijnen

Figure 6: Front-End for Executing Baked-Load across a Range of Performance Parameters

 The next phase of the project was to create an effective
three-tier system. The first tier is the Front End. This
became an applet running within a WebPage resident in a
Cobalt Cube file Server. It has one simple task and
purpose. Provide an entryway for choosing a simulation
and filling in the applicable performance parameters. The
next tier is the SimManager itself. The SimManager holds
the available workforce or simulation engines current
doing and available for work. As well, the SimManager
determines the number of replications sent to each
machine. Currently, this is done very simply and the
control strategies must be further developed. The
SimManager also is responsible for keeping track of the
job status and sending a completion message to the
customer. Additionally, the Cobalt Cube also holds the
database of information. This is where each Jobs results,
raw data and summary results are stored. Once the
SimManager determines that the job has been completed a
message is sent to the customer to retrieve the results. The
customer may have selected to receive the raw data,
summary results, or a complete report. Each requires more
processing and thus incurs a greater charge. The third tier
is where all the real work is done. The simulation engines
send UDP messages to the SimManager upon activation
and at periodic intervals �telling� the SimManger that it is
ready to accept work and its current status (used to
determine true availability).

7 SUMMARY AND CONCLUSIONS

The purpose of this article was to provide proof of
principle of a concept for carrying out simulation studies
on the World Wide Web. The main concept presented
here was that web-based simulation can be exploited to run
simulation trials in a parallel replications format on mul-
tiple engine processors, thereby significantly shortening the
time required to complete a simulation study. Such a
18
project can be completed in approximately the time
required to complete a single replication.
 There are three distinct phases of SimManager
operation. First, a customer initiates a request for a
simulation study. This request can be initiated on a web
page with a dialog-box type of input form. The customer
fills in the blanks of a Front-End dialog box with the
performance parameters required for his/her simulation
model; i.e., the number of replications needed, the
simulation run length, the mean entity inter-arrival times,
minimum and maximum batch sizes, and mean service
time. These performance parameters are sent to a set of P
simulation engines and the replications begin. An engine
processor completes its assigned workload in some time
length based on such factors as processor capability, speed,
and concurrent utilization by its �owner.�
 The greatest benefit of the SimManager concept is that
a simulation replication runs from start to finish on one
computer; that is, there is no need to engage in distributed
simulation (Fujimoto 1998). Theoretically, if a sufficient
number of simulation engines are available (i.e., P >K), the
simulation study should require only the time of one
replication plus the overhead time of sending the request
and results across the Internet.
 The next step in this research is to create a web interface
to enable customers to actually gain access to commercial
applications of Java-based computer simulation. A second
phase would be to program the SimManager application in a
more widely used development language, such as C++ or
Visual Basic, thereby enabling the use of a greater variety of
simulation models. In this way it may even be possible to
gain access to simulation models coded in such languages as
Arena (Kelton, Sadowski and Sadowski 1998) and Promodel
(Benson 1997).
 Other areas of future study include the following: (a)
completing the development of the control strategies
needed to determine the number of replications sent to an
21

Marr, Storey, Biles, and Kleijnen
engine processor (processor type, speed, current utilization,
historical utilization, etc); (b) exploring variance reduction
strategies on different ports of the same engine; and (c)
completing an analysis of using different optimization
strategies in connection with more complex simulation
studies (e.g., Tabu search, simulated annealing, response
surface methodology, and genetic algorithms). Further
research will investigate the effect of running the same
simulation model on different ports of the same engine, as
compared to running it on the same port on each of several
engines, in terms of the time required to report results to
the SimManager.

REFERENCES

Banks, J. 1998. Software for Simulation. In Handbook of

Simulation, ed. J. Banks, 813-836.
Biles, W. E., and J. P. C. Kleijnen. 1999. A Java-Based

Simulation Manager for Optimization and Response
Surface Methodology in Multiple-Response Parallel
Simulations. In Proceedings of the 1999 Winter
Simulation Conference.

Fujimoto, R. M. 1998. Parallel and Distributed
Simulation. Handbook of Simulation, ed. J. Banks,
429-464.

Heidelberger, P. 1988. Discrete-event simulation and
parallel replications: statistical properties. Scientific
and Statistical Computing (9):1114-1132.

Kelton, W. D., R. P. Sadowski and D. A. Sadowski. 1998.
Simulation with Arena, McGraw-Hill, New York.

Kilgore, R., and K Healy. 1999. Introduction to Silk: A
Java-based, process-oriented simulation system.
Threadtec, Inc., St. Louis, MO, 1-15.

Law, A. M., and W. D. Kelton. 2000. Simulation
Modeling and Analysis. McGraw-Hill, New York.

Pappalardo, D. 2000. ASPs still searching for the right
mix. Network World Fusion: News.

Symantec. 1998. Visual Cafe Version 3: User�s Guide.
Symantec Corporation, Cupertino, CA.

AUTHOR BIOGRAPHIES

CAPTAIN CHARLES A. MARR is a Graduate Student at
the University of Louisville. He received his B.S.M.E and
commission in the U.S. Army from Rose-Hulman Institute
of Technology in 1989. He is simultaneously pursuing his
M.S. and Ph.D. in I.E under the Army�s Advanced Civil
Schools program. His email address is <charles-marr@
us.army.mil>.

CAPTAIN CHRISTOPHER B. STOREY is a Graduate
Student at the University of Louisville. He received his B.S.
in the United States Military Academy at West Point in
1990. He completed the M. S. in Computer Science from
the University of Southern California and is currently
18

pursuing his M.S. and Ph.D. degrees in I.E from the
University of Louisville. His email address is <storeyc@
knox-rotc.army.mil>.

WILLIAM E. BILES is the Edward R. Clark Chair of
Computer Aided Engineering in the Department of
Industrial Engineering of the University of Louisville. He
received the BS degree in Chemical Engineering from
Auburn University, the MS in Industrial Engineering from
the University of Alabama in Huntsville, and the PhD in
Industrial Engineering and Operations Research from
Virginia Polytechnic Institute and State University. Dr.
Biles is currently engaged in teaching and research in the
areas of simulation methodology, rapid prototyping in
product design, and automated manufacturing. He has
authored more than 100 journal articles and conference
papers, two books, and 15 chapters in books and handbooks.
He is a registered Professional Engineer in Indiana and
Kentucky, and a member if INFORMS, SME and NSPE and
a Fellow of IIE. Dr. Biles recently spent four months on
sabbatical leave at Tilburg University in the Netherlands,
where he engaged in joint research with Dr. Jack P. C.
Kleijnen on Web-based simulation. His email address is
<webile01@gwise.louisville.edu>.

JACK P. C. KLEIJNEN is Professor of Simulation and
Information Systems in the Department of Information
Systems and Auditing of Tilburg University (Katholieke
Universiteit Brabant) in the Netherlands, where he is also
associated with the Center for Economic Research
(CentER). He received his PhD in Management Science
from Tilburg University. His research interests are in sim-
ulation, mathematical statistics, information systems, and
logistics. Dr. Kleijnen has published six books and more
than 130 articles. He has lectured at numerous conferences
throughout the USA, Europe, Israel and Turkey; served as
a consultant for numerous industrial and government
organizations; and is a member of several editorial boards.
He has spent several years with different universities and
companies in the USA. Dr. Kleijnen has been awarded a
number of fellowships, both nationally and internationally.
His email address is <kleijnen@kub.nl>.
22

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

