
Proceedings of the 2000 Winter Simulation Conference
J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, eds.

AN INTERACTIVE LAND USE VRML APPLICATION
(ILUVA) WITH SERVLET ASSIST

Lee A. Belfore, II
Suresh Chitithoti

Department of Electrical and
Computer Engineering

Old Dominion University
Norfolk, VA 23529, U.S.A.

ABSTRACT

We summarize progress achieved on an interactive land use
VRML application (ILUVA) with servlet assist. The purpose
of this application is to enable one to take a virtual land area
and add buildings, roadways, landscaping and other features.
The application is implemented entirely using standard web
based technologies to allow fairly universal accessibility.
The Virtual Reality Modeling Language (VRML) is a pro-
gramming language that describes three dimensional objects
and defines interactions associated with these objects. In
this work, we show how the interactive capabilities can
be expanded by employing Java servlets for recording user
actions and for restoring prior sessions. The Java servlets
offer several powerful capabilities including enabling log-
ging permanent records of user sessions, retrieval of prior
sessions, and dynamically generated VRML.

1 INTRODUCTION

The growth of the internet has cultivated a wealth of new
technologies. Driving these technologies is the desire to
enhance the way internet content is delivered to the user.
From a superficial perspective, displaying a web page ap-
pears to be a simple matter of displaying text and images.
With the introduction of programming capabilities offered
by Java (Arnold and Gosling 1996), Javascript, and other
programming languages, as well as new web standards such
as XML (Bray, et. al. 1998), the web page is a dynamic en-
tity. Paralleling the advances in web technology, advances
in computing technology provide capabilities that were until
recently beyond the reach of machines generally available.
As evidence and in support of these advances, a 3D inter-
active visualization language, the Virtual Reality Modeling
Language (VRML), has been standardized and is widely
available (The Web3D Consortium 1998). VRML offers
opportunities for demonstrating the value of distributing 3D
web content over the world wide web (WWW). In this

paper, we present progress on a methodology for delivering
VRML based interactive 3D visualizations.

VRML has been applied in several visualization appli-
cations. A special issue ofIEEE Graphics & Applications
(IEEE Computer Society 1999) gives several interesting
applications that illustrate the power of VRML. The ap-
plications range from entertainment (Matsuba and Roehl
1999), to terrain visualization (Reddy et. al. 1999), to
simulation (Fishwick 1999). Our own work has been under
development for some time and continues to evolve (Belfore
and Vennam 1999). Technical challenges include creating
an application that works well on typical machine platforms
and also identifying those applications that can best benefit
with the addition of a third dimension.

The primary contribution of our work summarized here
is the development of a collection of Java Servlets that inter-
act with and manage a VRML application. The Interactive
Land Use VRML Application (ILUVA) provides a user with
the ability to take a land area and populate it with build-
ings, roadways, and etc. In addition, ILUVA benefits from
some of the unique capabilities offered by servlets. More
specifically, the servlets provide three important capabilities.
First, servlet calls make possible the logging of information
generated by a VRML application. Second, servlets can
restore the work from a prior session by retrieving informa-
tion from the log file and emitting the appropriate VRML
content. Third, servlets can be used to generate models
specified parametricly.

This paper is organized into six sections, including an
introduction, a brief tutorial on VRML, an overview of
ILUVA, a discussion of interfacing VRML applications and
Java servlets, a sample session and a summary.

2 VRML

A VRML application is typically a hierarchical collection
of solid models, sensors, light sources, script methods, and
grouping primitives assembled in a meaningful fashion. In

1823

Belfore, II and Chitithoti

VRML, these primitives are termed nodes. Each node can
have several fields to define node parameters and also to
define inputs to (VRMLeventIn fields) and outputs from
(eventOut fields) the node. A node can define a solid
model, such as a box; a capability, such as an interactive
touch sensor; or arbitrary behavior, such as can be defined
in a script. Model reuse is accomplished with prototype
definitions that specify user defined nodes. The subset of
the VRML nodes used in this application is discussed in this
section. Several excellent VRML resources exist (Nandeau
1999; The Web3D Consortium 1998). The nodes are divided
into different classes according to their purposes.

2.1 Shape Primitives

Shape geometries can be basic or general. Basic shapes such
as boxes, cylinders, cones, and spheres are defined by name
with fields to specify the dimensions. More general shape
geometries includeExtrusion and IndexedFaceSet
geometries enabling specification of fairly general geome-
tries. TheExtrusion geometry is an analogy with the
shape a material, such as modeling clay, makes after being
forced through an opening with a varying cross section.
The IndexedFaceSet defines the form of an the object
as a collection of simpler polygons.

2.2 Grouping Nodes

TheGroup andTransform nodes are two grouping nodes
used in this application. TheGroup node groups objects
so that the entire child hierarchy can be easily referenced
through the root node and can also be collectively associated
with one sensor. TheTransform node gives the same
capabilities, but in addition allowing arbitrary scale, trans-
lation, and rotations of the child hierarchy. Nodes can be
dynamically added and removed from the grouping nodes.

2.3 Sensors Monitor the World and Listen for the User

VRML has seven sensor nodes that generate events when
the conditions to which they are sensitive occur. For exam-
ple, theTouchSensor node generates an event when the
mouse cursor is over an affected geometry and the mouse
button is depressed. ThePlaneSensor senses mouse
drag actions while the mouse button is depressed. Using a
TouchSensor in conjunction with aPlaneSensor en-
ables a mouse click to select a geometry (TouchSensor)
and a mouse drag to change the position of the geometry
(PlaneSensor).

2.4 Scripts Implement Arbitrary Behaviors

TheScript node enables the inclusion of arbitrary meth-
ods and behaviors implemented by the developer. The script

receives input, does the required processing, and then gen-
erates the necessary output events. For example, a script
can take events from aPlaneSensor that is tracking a
mouse drag and convert this into an output event consisting
of a set of vertices that defines another geometry.

2.5 Events Communicate Information

Events are generated and received by most nodes. An
eventIn is used to receive input while aneventOut
outputs information. For example, aTouchSensor node
generates an event when a mouse click occurs on the target
geometry. This event can be received by a script making a
wire frame appear around the selected geometry.ROUTE
declarations connect output events from one node to input
events of another. Routes may be explicitly declared, or may
be dynamically created and destroyed in script nodes. Events
can be simple, passing a simple value, or complex, passing
a node, enabling many interesting capabilities. Finally, it is
possible to circumvent explicit routing by directly accessing
node input and output events within a script method.

2.6 Prototype Nodes

PROTOdeclarations enable the definition of new node types
that can be used in much the same way as the standardVRML
nodes. The prototype can be defined either in the same
file can be in a separate file declared in anEXTERNPROTO
declaration.PROTOnodes are valuable for supporting model
reuse and hiding implementation details.

2.7 The VRML Execution Engine

AVRML world can be viewed schematically as a scene graph
where nodes describe geometries, scripts describe behaviors,
and routes define information flow. The VRML execution
engine is an integral part of VRML browser plug-in that
“executes” the scene graph (The Web3D Consortium 1998).
Consistent with the existing routes, the execution engine
receives events from the scene graph and then delivers the
events to the respective destinations, assigning a time-stamp
along the way. Events that cascade from an initiating event
during the same time delta receive the same time-stamp.

3 AN OVERVIEW OF ILUVA

The predecessor to ILUVA is described in Belfore and Ven-
nam (1999). The primary enhancement has been to link
the application to a web server. The server interactions are
described in the next section. In this section, we describe
the basic operation of ILUVA. ILUVA is a decentralized
collection of eight interconnected, concurrently operating
modules. A high level overview the ILUVA software ar-
chitecture is given in Figure 1. These modules are 1) the

1824

Belfore, II and Chitithoti

points

command

grant

object type

grant

re
qu

es
t

request

number of points required

parameters

Resource
Manager

Manager
Collision

Object

Work Zone
Main

Arbiter

Manager
Simulation

collision data

bounding box

Initializationhandshake

Menu

Figure 1: Overview of the ILUVA Software Architecture

Table 1: Major Events
Signal Purpose Source

command user request menu
objectType send information about selected object, usu-

ally occurs after mouse click on object
object

request object request for menu control object, resource manager
grant grants object menu control main arbiter

menu, 2) the resource manager, 3) the arbiter, 4) the work
zone, 5) the collision manager, 6) the fixed landscape (not
shown in the figure), 7) a simple simulation manager, and
8) the object models. Object models are self-contained and
encapsulate all object functional capabilities. In VRML,
the information flow is event driven, with the major events
are presented in Table 1. Menu events are encoded into
commands that are broadcast to all modules and objects.
When objects are selected, anobjectType event is sent
to the menu hierarchy to make the appropriate menu ap-
pear. The arbitrationrequest andgrant events are used
to manage shared resources. When an object is selected,
it sends arequest event. When a requesting object is
recognized, agrant event is broadcast to all objects that
each monitors and responds accordingly.

The object architecture is designed to serve four pur-
poses. First and most importantly, the object architecture
is designed to be independent and autonomous, as much
as possible, from the rest of the visualization. This en-
ables objects to be managed and integrated cleanly in a
modular fashion. Furthermore, the objects manage their
own interactions with the user and the interface to the vi-
sualization. This makes possible objects having entirely
arbitrary dynamic behavior independent of other elements
in the visualization. Second, the object is implemented so
that it is contained in and can be handled as a single node to
simplify object management. The object, itself, is defined
in a file containing aPROTOdeclaration for the object.
An instance of the object is inserted into the visualization
using a second file that contains anEXTERNPROTOdec-

laration for the object followed by a single instantiation
of the object. It is this coding formulation that guarantees
that the instantiated object is contained in a singleSFNode
field when the second file is used to dynamically instanti-
ate the object using thecreateVrmlFromURL browser
method. Third, the object must be capable of reporting all
changes in geometry and appearance to a web server. The
monitor is the interface between the object and the server.
The monitor takes updates and communicates the changes
through servlet calls. Fourth, the node architecture enables
static instantiation of the node as is required for restoring a
prior session. Specific fields in the node prototype are used
to both signal static instantiation and configure the object.
Sufficient fields are included to recreate all information from
a prior session.

In order to achieve these diverse purposes, the object
architecture is partitioned into layers that isolate functions
that interface the object to the visualization, from those
that change the object geometry, and from those that define
the pure behavior of the object. This organization permits
modular design of the architecture and provides a straight
forward framework for adding new objects with a variety of
capabilities. As such, the object architecture is organized
into three layers, the interaction layer, the edit layer, and
the model layer, as shown in Figure 2. The interaction
layer manages the interface with the visualization, static
instantiation, and any user interactions that affect the object
as a whole, such as object drag and rotation. The edit layer
defines the nature and appearance of controls and provides
an interface between the model and the interaction layer.

1825

Belfore, II and Chitithoti

Local
Arbiter

Collision
Manager

Layer
Behavior

Plane Sensors

Edit Layer

Updates to Server

Highlight

Model
Control

selected

User interaction

Bounding Box

Collision

Request

Grant

collision

Any update

Monitor

Sensors
Touch and Plane

Interaction LayerObject Activated

Command
Configuration and state

fields

select, position, orientation type

dimensions

location

orientation

parking

etc.

Figure 2: Object Architecture

At the lowest layer, the model layer, the appearance of the
object is defined as is any characterizing behaviors, such as
the ability to change appearance or shape. Presently, a new
object can be included in the visualization by using templates
for the interaction and edit layers. Indeed, the interaction
layer is sufficiently well defined that it is automatically
generated.

4 ILUVA AND JAVA SERVLETS

Java Servlets enable the integration of Java programs that
run on the web server. The servlets can manage information
from the client browser that reside on the server and can,
in addition, produce web content of any type. In order to
run servlets, the web server must be servlet enabled. For
this project, we employed the Apache web server version
3.1.12 (TheApache Project 2000), SUN servlet Development
Kit version 2.0 (Sun Microsystems 2000), and the Apache
servlet engineApache JServ version 1.1 (TheApache Project
2000). A high level view of the interactions is illustrated
in Figure 3. Servlets were employed for three reasons 1)
reading and writing files, 2) generating VRML to restore a
session, and 3) generating a VRML object for a session.

First, the web browser has security limitations in that
files on the client machine cannot be arbitrarily read and
written. Furthermore, the server can be easily configured
to read and write files on the server file system. The mech-
anism for logging a session requires interaction between
servlets ECMAscripts in the VRML application. A simple
method for passing information is for the VRML applica-
tion to load the universal resource locator (URL) for the
servlet. Arguments passed to the servlet URL supply the in-

formation to be logged. This is accomplished in the VRML
application using theloadURL browser method. In this
fashion, information from the VRML session is logged on
the server. For example, we employ aRecord servlet in
this capacity. In ECMAscript, the following shows how a
two dimensional coordinate stored in theSFVec2d variable
point is passed to the server:

urls[0]=’http:// host / zone /Record?’+

point[0]’+’:’+point[1];

parameters[0]=’target=updateFrame’;

Browser.loadUrl(urls,parameters);

Additions and updates are recorded chronologically in the
log file, with the most recent modifications representing the
final appearance. Figure 3 illustrates the interaction between
these processes. Note that the server and client machines are
not necessarily different machines. For example, a stand
alone system can be configured to run Apache while at
the same time the client browser can request documents
from the server. Table 2 lists the different log file record

Table 2: Log File Record Formats
Type Format

New Entry id : type
Update, simple id : type :(field):-: value
Update, x,y id : type :(field):-: x-value :

y-value
Update, array id : type :(field):-: n:-: value 1:-:

value 2:-: · · · :-: value n

types. The format is straight forward and easy to parse.
The id field is the serial number for the object and is used

1826

Belfore, II and Chitithoti

Log File

Apache
Web
Server

ContentURLURLContent

Client Browser

VRML Application

VRML Plug-in

Client Machine

zones

urban

Display

Record

Reset

Document
Directory

Servlets

Host Machine

Figure 3: Interaction of Client and Host Machines

to associate subsequent updates to that object. Thetype
field identifies what type of object is being manipulated.
New entries provide this information only and signal the
insertion of a new object into the visualization session.
Updates to the geometry require, in addition to the serial
number, an identifier for the field updated followed by the
update. Fields can be single values, coordinates, or arrays
of either. To restore a session, the log file is read and the
last value recorded for a particular field is used. In the
event a field is not modified, reasonable defaults, defined
in the object model, are used.

Second, servlets can be used to restore prior sessions.
This is as much a function of the servlet method as it is of
the structure of object architecture within the visualization.
The servlet must be able to scan the log file described
in the previous paragraph, collect a list of all objects that
were saved, and retrieve the most recent set of updates for
each. Next, a VRML object is created that encapsulates
the collection of restored objects. The object architecture is
designed so that by appropriate instantiation, the object is

configured so that it appears identically to the prior session.
Currently, the application only supports restoring a prior
session, without an editing capability for the restored objects.

Third, the servlets are a powerful mechanism for dy-
namically generating VRML content. For example, parking
lots associated with office buildings are sized according to
the building square footage. Per city building codes, parking
lots are required to have a particular canopy cover fraction,
i.e. trees. The number of trees varies with the parking
lot size. In the application, one parking lot model repre-
sents all parking lot instances and therefore, the requisite
number of trees must be generated dynamically. In earlier
versions of the visualization, the trees were generated using
ECMAscript. While functional, this approach has resulted
in instabilities and resource problems. Presently, a servlet
has been designed to generate an object containing the ap-
propriate number of trees. This has resulted in faster and
more reliable operation.

1827

Belfore, II and Chitithoti

Figure 4: Opening View

(a) Top View (b) Front View
Figure 5: Saved Session

5 EXAMPLE SESSION

Parts of an example session are presented in this section.
The opening of the visualization shown in Figure 4 is a
view from about 2,000 feet (about 600 meters) above the

work zone. In addition, the menu appears in the right part
of the view. Figure 5 shows content that was the result of a
prior session. The object specifications were stored in the
log file during the session and then retrieved by a servlet
that generated the appropriate geometry specifications

1828

Belfore, II and Chitithoti

Figure 6: Continue in New Session

for each object. Figure 6 shows work continuing after
restoring a session. A link to ILUVA can be found
at <http://www.lions.odu.edu/˜lbelfore/
/urbanVisualization> and presently only operates
under CosmoPlayer.

6 SUMMARY AND FUTURE WORK

In this paper, we have described extensions to Belfore and
Vennam (1999) that allow a visualization session to be
logged and later restored. A limitation in the restore ca-
pability is that currently restored objects cannot be edited.
The interface to the server required that each geometry or
configuration update be communicated using the VRML
loadURL method, where the URL is a servlet call. The
session restore feature required that all objects in the appli-
cation have an instantiation mode that faithfully recreates
the object appearance from a prior session.

We envision several directions for future work. First,
the application architecture can be expanded to allow objects
to be fully editable in the restored session. Second, the
servlet provides unlimited capabilities in terms of generating
custom VRML modules. The modules can be synthesized
from data bases or by user request. The framework presented
here and in prior work allow any such geometry to be an
integral part of the application.

ACKNOWLEDGMENTS

We would like to acknowledge the Virginia Modeling, Anal-
ysis and Simulation Center (VMASC) for providing facilities
and other support for this project.

REFERENCES

The Apache Project Software Foundation. 2000.
The Apache Server Project. Available as
<http://www.apache.org/httpd.html> .
[accessed April 1, 2000].

Arnold, K., and Gosling, J. 1996.The Java programming
language Reading, Massachusetts: Addison-Wesley
Publishing Company, Inc.

Belfore, L. A., and Vennam, R. VRML for urban visual-
ization. Proceedings of the 1999 Winter Simulation
Conference. 1454-1459.

Bray T., Paoli J., and Sperberg-McQueen, C. M.
1998. Extensible markup language (XML) 1.0
specification, 10 February 1998. Available as
<http://www.w3.org/TR/REC-xml> .

Fishwick, P. A. 1999. A hybrid visual environment for
models and objects.Proceedings of the 1999 Winter
Simulation Conference. 1417-1424.

IEEE Computer Society. 1999. Special Issue.IEEE Com-
puter Graphics & Applications. 18 (2).

Matsuba S. N., and Roehl, B. 1999 “Bottom, thou art trans-
lated”: The making of VRML dream.IEEE Computer
Graphics & Applications19 (2): 45-51.

The Java Apache Project. 2000. The Apache JServ Project.
Available as <http://java.apache.org/
jserv/index.html> . [accessed April 1, 2000].

Nadeau, D. R. 1999 Tutorial: Building virtual worlds with
VRML. IEEE Computer Graphics & Applications19
(2): 18-29.

Reddy, M., Leclerc, Y., Iverson, L.,and Bletter, N. 1999.
TerraVision II: Visualizing massive terrain databases in
VRML. IEEE Computer Graphics & Applications19
(2): 30-38.

1829

Belfore, II and Chitithoti

Sun Microsystems, Inc. 2000. The JavaTM servlet
API. Available as <http://java.sun.com/
products/servlet> . [accessed April 1, 2000].

The Web3D Consortium. 1998. The virtual reality modeling
language. Available as<http://www.web3d.org
/Specifications/VRML97> . [accessed February
1, 2000].

AUTHOR BIOGRAPHIES

LEE A. BELFORE, II is an Assistant Professor of Electri-
cal and Computer Engineering at Old Dominion University
in Norfolk, Virginia. He holds a Ph.D. in Electrical En-
gineering from the University of Virginia. His research
interests include internet based visualization, artificial neu-
ral networks, and data compression.

SURESH CHITITHOTI is a Research Assistant in the
Electrical and Computer Engineering Department. He is
currently working towards an M.S in Electrical Engineering
from He received the B.E. in Electronics and Communi-
cations from Jawaharlal Nehru Technological University,
Hyperabad, India.

1830

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

