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ABSTRACT

In this tutorial introduction to simulation optimization, we
present motivating and illustrative examples, summarize
most of the major approaches, and briefly describe some
software implementations. The focus is on issues and con-
cepts, rather than mathematical rigor, so the format is Q &
A rather than theorem-proof.

1 INTRODUCTION

Q: What is simulation optimization?
Or at least what do we mean by the term in the context of
this tutorial?

A: Optimization of performance measures based on
outputs from stochastic (primarily discrete-event)
simulations (see also Fu 2001a).

Q: What is the difference between stochastic optimization
and simulation optimization?

A: These terms are very closely related and sometimes
used interchangeably, but as noted above, our fo-
cus is on outputs from stochastic discrete-event
simulation models, whereas stochastic optimiza-
tion is generally more broadly defined, encom-
passing any system involving stochastic behavior
(e.g., continuous-time models or actual functioning
systems). Furthermore, in the usual context of sim-
ulation optimization, simulation is extremely ex-
pensive (computationally) relative to optimization;
in other words, the computational requirements of
a single replication of the simulation model of in-
terest are likely to exceed the typical computation
time of any medium-sized (thousands of variables)
linear program.

Q: Algorithms such as simulated annealing use randomness,
so are they stochastic optimization procedures?
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A: One needs to be careful in distinguishing between
a method that is specifically designed to attack
stochastic problems — which is what is generally
defined as a stochastic optimization procedure —
and a method that uses stochastic properties in
its search, which is what simulated annealing and
most of the modern versions of metaheuristics do.
These procedures could also be adapted for use
for stochastic optimization (and in fact have been,
see Table 1 later on), but they were not originally
formulated to address problems for which only
estimates of the objective function were available.

Q: What are some examples?

• Manufacturing Systems.
Given a discrete-event simulation model of a
semiconductor manufacturing fabrication facility
(a fab), one might be interested in maximizing
throughput (number of completed wafers) while
minimizing average cycle time (mean total time a
wafer spends in the fab).

• Supply Chains.
Given a simulation model of a PC manufacturer’s
supply chain, how can one operate (or possibly
reconfigure) the system in order to reduce over-
all inventory levels and increase customer service
levels (response time, fill rate, etc.)?

• Call Center.
Given a simulation model of a complicated call
center, how can one operate (or possibly recon-
figure) the system in order to minimize system
costs (e.g., reduce the number of operators) and
increase customer service levels (e.g., reduce wait-
ing times)?

• Financial.
Portfolio Optimization: maximize expected return
of a portfolio of financial instruments subject to
an acceptable risk level.
Pricing and Hedging of Financial Derivatives: find
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the arbitrage-free price and provide a means to
hedge.

• Single-Server Queue.
Minimize mean waiting time, assuming a cost on
server speed. Let θ denote the mean service time of
the server (so 1/θ corresponds to the server speed),
and W denote the waiting time. The objective
function is the following:

J (θ) = E[W (θ)] + c/θ,

where c is the cost coefficient for server speed,
i.e., a higher-skilled worker costs more. Since W
is increasing in θ , the objective function quantifies
a trade-off between customer service level and the
cost of providing service. For example, one might
imagine this as corresponding to the selection of an
outdoor ATM, where a faster machine costs more
to operate (we are neglecting the initial cost of the
machine, since this is a long-run problem). This
queueing system is perhaps the most commonly
used textbook example for introducing the main
components of event-driven simulation (e.g., Law
and Kelton 2000).

• (s, S) Inventory Control System.
The inventory level of a single item is to be con-
trolled based on two parameters to be optimized,
s and S, corresponding to the re-order level and
order-up-to level, respectively. When the inventory
position falls below s, an order is placed for an
amount that would bring the position back up to
S. Optimization is generally carried out by mini-
mizing a total discounted or average cost function
consisting of ordering, holding, and shortage com-
ponents.

One can see that there are optimization problems in both
the design and operation of many different types of sys-
tems that are modeled using stochastic simulation models.
The first four examples are real-world motivating examples,
whereas the last two examples are simplified academic prob-
lems (renowned OR models in their own right in queueing
and inventory theory, respectively), useful for illustrating
and testing procedures. For the simplest M/M/1 queue
in steady state, the single-server optimization problem is
analytically tractable, and thus has served as an easy test
case for simulation optimization continuous-variable search
procedures. Similar remarks are true for the (s, S) inventory
system, which is the simplest multi-dimensional problem
(as opposed to the previous scalar one), with a nice graph-
ical representation for search procedures. In addition, the
parameters may be specified as either continuous or discrete.
As a result, it has been used as a test case for nearly all the
procedures in the research literature discussed in the next
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section, e.g., stochastic approximation, sequential response
surface methodology, statistical ranking and selection, and
multiple comparisons.

Q: What is the general problem setting?

A: As in any optimization problems, there are the
usual primary components:

• input and output variables;
• objective function;
• constraints.

The objective function and constraints can involve both the
input and output variables, and either (or both) can involve
stochastic components. Since the output variables are simu-
lation model performance measures, they are quantitative in
nature. However, unlike standard mathematical programs,
the input “variables” may be either quantitative or qualita-
tive. For example, in the call center example, one might
be deciding between different queue disciplines, e.g., first
come, first served, versus a priority scheme. For quantitative
input variables, one distinguishes between the continuous
values and discrete values, and in the discrete case, be-
tween a large state space (uncountable, countably infinite,
or just combinatorially large) and a relatively small one.
In the latter case, the optimization problem is reduced to
an exhaustive comparison of candidate solutions, for which
ranking and selection methods are particularly suited.

In general, there is a single objective function. Multiple
performance measures are usually handled by combining
them into the objective function using appropriate weights,
or by including them as constraints. For example, in an
inventory problem, one must consider ordering, holding,
and backlogging or lost sales. This is usually addressed in
one of two (ultimately equivalent) ways: by minimizing a
single cost function that has all of these components; or
by minimizing a cost function consisting of ordering and
holding costs, subject to a service level constraint on lost
sales or backlogging.

Constraints can be further subdivided into explicit ver-
sus implicit, and deterministic versus stochastic. An explicit
constraint is typically something like “the number of op-
erators at location ABC of the call center system cannot
exceed 100”, whereas an implicit constraint would be more
like “the number of operators in the entire call center system
(summed over all locations) cannot exceed 1000”. These
are deterministic constraints, whereas a stochastic constraint
might be something like “the proportion of customers hav-
ing to wait more than one minute for an operator should
not exceed 1%”, since the waiting time distribution is an
output performance measure that must be estimated from
the simulation model of the call center.

Q: What distinguishes simulation optimization from “ordi-
nary” optimization?
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A: In general, optimization refers to the deterministic
domain, and is dominated by techniques such
as linear programming, (mixed) integer pro-
gramming, nonlinear programming, evolutionary
algorithms, genetic algorithms, tabu search, and
simulated annealing. The key difference in my
mind is a point mentioned earlier:
precise evaluation of the objective function is
computationally very costly!
This sets up a dichotomy not present in de-
terministic optimization: that of the search
process versus the evaluation process. In other
words, simulation optimization involves two
important parts: generating candidate solutions
and estimating their objective function value. This
issue is more fully discussed in Fu (2001b).

Q: What makes simulation optimization difficult?

A: In short, it is the estimation expense derived from
the stochastic nature of a complex simulation model
that makes simulation optimization doubly difficult
on top of the ordinary deterministic optimization
setting. A nice summary of this key difficulty is
provided by Banks et al. (2000, p.488):

“Even when there is no uncertainty, opti-
mization can be very difficult if the number
of design variables is large, the problem
contains a diverse collection of design
variable types, and little is known about
the structure of the performance function.
Optimization via simulation adds an ad-
ditional complication because the perfor-
mance of a particular design cannot be
evaluated exactly, but instead must be es-
timated. Because we have estimates, it
may not be possible to conclusively deter-
mine if one design is better than another,
frustrating optimization algorithms that try
to move in improving directions. In prin-
ciple, one can eliminate this complication
by making so many replications, or such
long runs, at each design point that the
performance estimate has essentially no
variance. In practice, this could mean that
very few alternative designs will be ex-
plored due to the time required to simulate
each one.”

Q: Are you leaving out anything?

A: I am not including a class of problems under the do-
main of stochastic control, stochastic dynamic pro-
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gramming, or Markov decision processes. Many
of these types of problems can be converted into
the simulation optimization problem setting, but
that is beyond the scope of this tutorial.

2 APPROACHES

Q: What are the main approaches?

A: Banks et al. (2000, pp.488-489) categorize the
approaches according to algorithms that

• guarantee asymptotic convergence to the optimum
(generally for continuous-valued parameters);

• guarantee optimality under deterministic counter-
part (i.e., if there were no statistical error or sam-
pling variability; generally based on mathematical
programming formulations);

• guarantee a prespecified probability of correct se-
lection (generally from a prespecified set of alter-
natives);

• are based on robust heuristics (mainly combina-
torial search algorithms that follow evolutionary
strategies, e.g., genetic algorithms).

Q: What types of techniques are used?

A: I divide this into the following main categories:

• statistical procedures: sequential response surface
methodology, ranking & selection procedures, and
multiple comparison procedures;

• metaheuristics: methods directly adopted from de-
terministic optimization search strategies, such as
simulated annealing, tabu search, and genetic al-
gorithms;

• stochastic optimization: random search, stochastic
approximation;

• others, including ordinal optimization and sample
path optimization.

The remainder of this section summarizes many of these
procedures. Much of the material (with the exception of the
deterministic search strategies) is condensed from Section
3 in Fu (2001b).

2.1 Ranking and Selection

Ranking & selection procedures and multiple comparison
procedures (Goldsman and Nelson 1998, Bechofer, Santner,
and Goldsman 1995, and Hochberg and Tamhane 1987) are
designed for distinguishing among a given set of alternatives.
In that sense, they are not simulation optimization proce-
dures, per se, since they lack the search feature. However,
there has been recent work combining them with search
procedures to yield a more complete optimization package
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(e.g., Boesel, Nelson, and Ishii 2001, Boesel, Nelson, and
Kim 2001). Scenario Seeker (Boesel 1999) uses a heuris-
tic search algorithm, with efficient allocation of simulation
replications incorporated into the search phase. Statistical
validity for the offered solution are provided using initial
screening via subset selection to reduce a possibly large set
of configurations to a more manageable size, followed by a
standard two-stage ranking & selection procedure to select
the best.

2.2 Ordinal Optimization

The key idea behind ordinal optimization (Ho et al. 1992,
2000) is that it is much easier to approximately sort out
relative order than to precisely estimate (absolute) value.
Monte Carlo estimation is limited by the canonical 1/

√
n

convergence rate (where n is the number of simulation repli-
cations), whereas the probability of correctly selecting the
best among a set of alternatives often exhibits convergence
rates that are asymptotically exponential (1−e−�n , for some
constant �). Additional significant computational savings
can be achieved by goal softening: instead of looking for
the best, one settles for a solution that is good enough, a
term that is statistically defined.

2.3 Stochastic Approximation

Stochastic approximation (SA) mimics the gradient search
method from deterministic optimization, but in a rigorous
statistical manner that takes into account the stochastic nature
of the system model. The general SA algorithm takes the
following iterative form (for a minimization problem):

θn+1 = ��

(
θn − an∇̂ J (θn)

)
,

where �� denotes some projection back into the constraint
set when the iteration leads to a point outside the set (e.g.,
the simplest projection would be to return to the previous
point), an is a step size multiplier, and ∇̂ J is an estimate
for the gradient of the objective function with respect to
the decision variables. In the case of the toy single-server
queue example, the iteration would proceed as follows:

θn+1 = ��

(
θn − an

[
Ŵ ′(θn)− c/θ2

])
,

with the need to find an appropriate Ŵ ′.
Because of its analogy to steepest descent gradient

search, SA is geared towards continuous variable problems,
although there has been work recently applying it to discrete
variable problems. Under appropriate conditions, one can
guarantee convergence to the actual minimum, as the number
of iterations goes to infinity. Because of the estimation
noise associated with stochastic optimization, the step size
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must eventually decrease to zero in order to obtain (strong)
convergence, but it must not do so to rapidly so as to converge
prematurely to an incorrect point (e.g.,

∑
n an = ∞ is a

typical condition imposed, satisfied by the harmonic series
an = 1/n). In practice, the performance of the SA algorithm
is quite sensitive to this sequence, and a constant step size
often results in much quicker convergence in the early stages
of the algorithm over decreasing the step size at each step.

The convergence rate of SA is dramatically enhanced
with the availability of direct gradients, one motivating
force behind the flurry of research in gradient estimation
techniques in the 1990s (e.g., Fu and Hu 1997 and Pflug
1996). The most well-known gradient estimation techniques
are perturbation analysis (PA) and the likelihood ratio/score
function (LR/SF) method. An example of applying PA and
SA to an option pricing problem is given in Fu and Hu
(1995). Infinitesimal perturbation analysis (IPA) has been
successfully applied to a number of real-world supply chain
management problems, using models and computational
methods reported in Kapuscinski and Tayur (1999).

If no direct gradient is available, naïve one-sided finite
difference (FD) estimation would require p+1 simulations
of the performance measure (where p is the dimension of
the vector θ ) in order to obtain a single gradient estimate,
i.e., the i th component of the gradient estimate based on
estimates Ĵ of the objective function would be given by

(∇̂ J (θ)
)

i =
Ĵ(θ + ci ei )− Ĵ(θ)

ci
,

and two-sided symmetric difference (SD) estimation would
require 2 p simulations:

(∇̂ J (θ)
)

i =
Ĵ (θ + ci ei )− Ĵ(θ − ci ei )

2ci
,

where ei denotes the unit vector in the i th direction. Choice
of the difference parameters {ci } must balance between
too much noise (small values) and too much bias (large
values). In either case, however, the estimate requires
O(p) simulation replications.

The method of simultaneous perturbations (SP) stochas-
tic approximation (SPSA) avoids this by perturbing in all
directions simultaneously as follows:

(∇̂ J (θ)
)

i =
Ĵ (θ +�)− Ĵ(θ −�)

2�i
,

where � = [�1...�p] represents a vector of i.i.d. random
perturbations satisfying certain conditions, which precludes
some of the more common continuous distributions such as
the normal distribution. The most commonly used pertur-
bation distribution is a symmetric (scaled) Bernoulli distri-
bution, e.g., ±ci w.p. 0.5. Spall (1992) shows in fact that
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the asymptotic convergence rate using this gradient estimate
in an SA algorithm is the same as the naïve method above.
The difference in simulations between the FD/SD estimators
and the SP estimators is that the numerator, which involves
the expensive simulation replications, varies in the FD/SD
estimates, whereas the numerator is constant in the SP esti-
mates, and it is the denominator involving the (inexpensive)
random perturbations that varies.

2.4 Response Surface Methodology

The goal of response surface methodology (RSM) is to
obtain an approximate functional relationship between the
input variables and the output objective function. When
this is done on the entire (global) domain of interest, the
result is often called a metamodel. This metamodel can
be obtained in various ways, two of the most common be-
ing regression and neural networks. Once a metamodel is
obtained, in principle, appropriate deterministic optimiza-
tion procedures can be applied to obtain an estimate of
the optimum. However, in general, optimization is usually
not the primary purpose for constructing a metamodel, and,
in practice, when optimization is the focus, some form of
sequential RSM is used (Kleijnen 1998). A more localized
response surface is obtained, which is then used to deter-
mine a search strategy (e.g., move in an estimate gradient
direction). Again, regression and neural networks are the
two most common approaches.

We outline a simple two-stage version of sequential
RSM using regression. Phase I involves an iterative gradient
search procedure by which a set of points around the current
point are simulated (e.g., a 2p factorial design, where p is
the dimension of the input vector), and a linear regression
is performed to characterize the response surface around
the current iterate. A line search is carried out in the
direction of steepest descent to determine the next point in
the iteration. This process is repeated until the linear fit is
deemed inadequate, which signals the end of Phase I. In
Phase II, additional points are simulated in the surrounding
region of the current point, and a higher order (usually
quadratic) regression is carried out to estimate the optimum
from the resulting fit.

2.5 Random Search

Random search algorithms move iteratively from a current
single design point to another design point in the neighbor-
hood of the current point. A central part of the algorithm
is defining an appropriate neighborhood structure, which
must be connected in a certain precise mathematical sense.
These have been applied primarily to discrete optimization
problems, although in principle they could be applied to
continuous optimization problems, as well. Differences in
algorithms manifest themselves in two main fashions: (a)
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how the next point is chosen; and (b) what is the estimate for
the optimal design. For (b), the choice is usually between
taking the current design point versus choosing the one that
has been visited the most often.

Let N(θ) denote the neighborhood set of θ ∈ �. One
version of random search that gives the general flavor is
the following:

(0) Initialize:
Select initial point θ̂∗;
Set n

θ̂∗ = 1 and nθ = 0 ∀θ �= θ̂∗.
(1) Iterate:

Select another θi ∈ N(θ̂∗) according to some pre-
specified probability distribution.
Perform simulations to obtain estimates Ĵ (θ̂∗) and
Ĵ(θi ).
Increase counter for point with best estimate and
update current point: (1 denotes indicator function)

n
θ̂∗ = n

θ̂∗ + 1{ Ĵ(θ̂∗) ≤ Ĵ(θi )};
nθi = nθi + 1{ Ĵ(θ̂∗) > Ĵ(θi )};
If Ĵ (θ̂∗) > Ĵ (θi ), then θ̂∗ ← θi .

(3) Final Answer:
When stopping rule satisfied, return

θ∗ = arg max
θ∈� nθ .

2.6 Deterministic Optimization Search Strategies

As we shall see in the next section (Table 1), the software
implementations are dominated by routines that simply adapt
search strategies (mainly evolutionary) from deterministic
optimization. Here we will provide a brief overview of
three of these approaches: simulated annealing, genetic
algorithms (GAs), and tabu search. All of these are global
search strategies. However, as anyone who has implemented
these algorithms in real problems know, the devil is in
the details, in that small tweakings can sometimes lead to
vast improvements in performance of the algorithm, so the
exposition here will merely provide a flavor for the main
ideas.

Simulated annealing (Kirkpatrick, Gelatt, and Vwecchi
1981) can be thought of as a variation of local search (for
deterministic objective functions), in which the main idea is
to accept all downhill (assume here a minimization problem)
improving moves, but sometimes accept uphill moves, where
the acceptance probability decreases to 0 at an appropriate
rate (this is the cooling schedule from which the method
derives its name in analogy with the physical annealing
process where the system seeks the lowest energy state).
An attractive property of this algorithm is that unlike the
next two metaheuristics to be described, convergence can
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be rigorously proven in many settings. On the other hand,
in practice, the procedure has been found to be relatively
slow in converging to good solutions, compared to the
metaheuristic approaches. See Anandalingam (2001) for
more details and references.

Tabu search (Glover and Laguna 1997) can be thought
of as a variation on local search that incorporates two main
strategies: adaptive memory and responsive exploration.
The features of these strategies modify the neighborhood of
a solution point as the search progresses, and thus determine
the effectiveness of the algorithm. In particular, the mod-
ification from which the method derives its name forbids
certain points (classifying them tabu) from belonging to
the current neighborhood of points being considered. Thus,
for example, short-term memory can prevent the search
from revisiting recently visited points, whereas longer-term
memory can encourage moves that have historically led to
improvements (intensification) and moves into previously
unexplored regions of the search space (diversification). See
Glover (2001) for more details and references.

Evolutionary search strategies such as GAs work with
a family of solutions (called the population) rather than
a single point, as in simulated annealing, random search,
and stochastic approximation (and in some ways, sequen-
tial RSM, as well). More importantly, the members of
the population interact in forming the next set of iterates
(generation). Otherwise, one could accomplish the same
thing using the single point strategies merely by picking a
set of starting points and running them in parallel. Here is
an outline of a general evolutionary search strategy:

(0) Initialize population.
(1) Iterate:

Evaluate fitness of individuals in current generation.
Choose individuals for reproduction.
Apply genetic operators to current generation.
Select new generation.

(2) Final Answer:
When stopping rule satisfied, return best individ-
ual(s).

The fitness of an individual corresponds to the objective
function value of a solution point. Important components
affecting the success of the algorithm are the selection pro-
cedure and the types of genetic operators that are applied.
Selection can be done either deterministically or proba-
bilistically, based on the fitness of the individuals. Two
of the simplest (deterministic) selection procedures include
keeping each generation at a constant number of the fittest
individuals (survival of the fittest), or keeping only the off-
spring from reproduction (complete generational turnover).
Genetic operators operate on a genetic representation (code)
of the individual, and are generally classified into type main
categories: crossover (or recombining) operators that in-
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volve parents exchanging genetic material, and mutation
operators that involve only the genetic material of a single
individual (this could be local search, for example). Thus,
the crossover operators are what distinguish these algorithms
from all of the other approaches discussed thus far. See
Michalewicz and Schoenauer (2001) for more details and
references.

Q: What are the theoretical results for these various proce-
dures?

• Stochastic Optimization Procedures (e.g., SA and
random search):

θn −→ θ∗ w.p.1,

which is also known as almost sure (a.s.) con-
vergence. There are results for other modes of
convergence, as well.

• Ranking and Selection Procedures: probability that
the selected θ is within ε of the best is at least
(1-α).

In contrast, very little in the way of theoretical convergence
results exists for the metaheuristics in the deterministic
framework; none that the author is aware of in the stochastic
environment.

3 SOFTWARE

Q: What kind of software is available?

A: A sample is given in Table 1 (adapted from Law
and Kelton 2000, p.664, Table 12.11). All of these
software packages came into existence just in the
past decade.

Q: What skills does one need to use the software?

A: I’ll invoke the consultant’s pat answer here: It de-
pends. Most of these packages have been made
extremely user “friendly”, in the sense that you
don’t have to know much to be able to use them.
However, to be a more informed user, it would be
desirable to have the usual skill set in understand-
ing basic simulation output analysis (elementary
probability and statistics), as well as a rudimentary
knowledge of the optimization approaches that are
used by the algorithms. I’ll provide a bit more
details on three of the packages listed in Table 1.

The optimization routine in the AutoStat suite (Bitron
2000) of statistical output analysis tools incorporates an
evolutionary strategies algorithm (genetic algorithm varia-
tion) and handles multiple objectives by requiring weights
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Table 1: Some Commercial Software Packages

Optimization Package Vendor Primary Search
(simulation platform) (URL) Strategies

AutoStat AutoSimulations, Inc. evolutionary,
(AutoMod) (www.autosim.com) genetic algorithms
OptQuest Optimization Technologies, Inc. scatter search and tabu search,
(Arena, Crystal Ball, et al.) (www.opttek.com) neural networks
OPTIMIZ Visual Thinking International Ltd. neural networks
(SIMUL8) (www.simul8.com)
SimRunner PROMODEL Corp. evolutionary,
(ProModel) (www.promodel.com) genetic algorithms
Optimizer Lanner Group, Inc. simulated annealing,
(WITNESS) (www.lanner.com/corporate) tabu search
to form a fitness function. For each input variable the user
wishes to optimize, the user specifies a range or set of
values. For each performance measure, the user specifies
its relative importance (with respect to other performance
measures) and a minimization or maximization goal. The
user also specifies the number of simulation replications
to use for each iteration in the search algorithm. Further
options include specifying the maximum number of total
replications per configuration, the number of parents in
each generation, and the stopping criteria, which is of two
forms: termination after a maximum number of generations
or when a specified number of generations results in less
than a specified threshold level of percentage improvement.
While the optimization is in progress, the software displays
a graph of the objective function value for four measures as
a function of the generation number: overall best, best in
current generation, parents’ average, and children’s average.
When complete, the top 30 configurations are displayed,
along with various summary statistics from the simulation
replications.

SIMUL8’s OPTIMIZ proceeds using a
form of sequential RSM using neural networks
(http://www.SIMUL8.com/optimiz1.htm July
11, 2001):

“SIMUL8 OPTIMIZ searches for the best
solution. Give OPTIMIZ information
about what to optimize (maybe a service
level of 95%). Give it a list of the
resources and other variables you are
prepared to see change (maybe some
factors are fixed but you could buy more
machinery, or some types of labor).
You can also give constraints on how
much these factors are allowed to change.

OPTIMIZ uses SIMUL8’s ‘trials’
facility multiple times to build an un-
derstanding of the simulation’s ‘response
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surface’. (The effect that the variables,
in combination, have on the outcome).
It does this very quickly because it does
not run every possible combination! It
uses Neural Network technology to learn
the shape of the response surface from
a limited set of simulation runs. It then
uses more runs to obtain more accurate
information as it approaches potential
optimal solutions.”

OptQuest is a stand-alone optimization software routine
that can be bundled with a number of the commercial sim-
ulation environments, such as Arena and Crystal Ball. The
algorithm incorporates a combination of strategies based
on scatter search and tabu search, along with neural net-
works for screening out candidates likely to be poor. Scatter
search is also a population-based evolutionary search strat-
egy like GAs. However, Glover, Kelly, and Laguna (1999)
claim that whereas naïve GAs produce offspring through
random combination of components of the parents, scatter
search produces offspring more intelligently by incorporat-
ing history (i.e., past evaluations). In other words, diversity
is preserved, but natural selection is used in reproduction
prior to being evaluated. This is clearly more important in
the simulation setting, where estimation costs are so much
higher than search costs. The neural network serves as
a metamodel representation. Since it is clearly a rough
approximation, both in approximating the objective func-
tion and in the uncertainty associated with the simulation
outputs, OptQuest incorporates a notion of a risk metric,
defined in terms of standard deviations. If the neural net-
work predicts an objective function value for the candidate
solution that is worse than the best solution up to that point
by an amount exceeding the risk level, then the candidate
solution is discarded without performing any simulations.

Q: Why is the commercial software dominated by meta-
heuristic approaches?
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A: Good question, especially considering that SA and
RSM have been around half a century. I don’t think
there is a clear answer to this, and Fu (2001b) con-
tains further discussion on this topic. Some possible
explanations include the fact that the metaheuristic
approaches use a family of solutions, are designed
to seek global optimality (explore solutions over the
entire state space), and seem to have robust prop-
erties in practice, even if not completely supported
theoretically yet. Some of the other techniques,
e.g., the PA gradient estimation technique, are local
search strategies and can be problem dependent, so
they are more apt to be used in specific consulting
problems (such as those cases reported in Kapus-
cinski and Tayur 1999); however, these techniques,
when they apply, are usually more effective and
efficient. Closely related to this point is that these
techniques may simply be harder (but certainly not
insurmountable) to program into general-purpose
simulation environments.

4 CONCLUSION

Q: Where do I go from here?

• Research Basics. From the reference list provided
here, good places to start include the surveys by
Fu (1994, 2001a, 2001b), Andradóttir (1998), and
Swisher et al. (2001), as well as Chapter 12 in Law
and Kelton (2000) and Banks et al. (2000), and the
book by Pflug (1996). Other good sources include
these annual Winter Simulation Conference Pro-
ceedings and the forthcoming ACM Transactions on
Modeling and Computer Simulation Special Issue
on Simulation Optimization (co-edited by myself
and Barry Nelson).

• Newer Avenues (>1990). These include SPSA
(Spall 1992, Fu and Hill 1997, Kushner and
Yin 1997), ordinal optimization (Ho et al. 1992,
2000; Chen et al. 2000), sample path optimiza-
tion (Gürkan, Özge, and Robinson 1999), nested
partitions (Shi and Olafsson, 2000), ant colony
optimization (Dorigo and Di Caro 1999), neuro-
dynamic programming (Bertsekas and Tsitsiklis
1996).

• Practice. See the software vendors peddling their
wares at the WSC!
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