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ABSTRACT

This paper reviews statistical methods for analyzing output
data from computer simulations of single systems. In par-
ticular, it focuses on the estimation of steady-state system
parameters. The estimation techniques include the replica-
tion/deletion approach, the regenerative method, the batch
means method, and the standardized time series method.

1 INTRODUCTION

The primary purpose of most simulation studies is the ap-
proximation of prescribed system parameters with the ob-
jective of identifying parameter values that optimize some
system performance measures. If some of the input pro-
cesses driving a simulation are random, then the output
data are also random and runs of the simulation program
only result in estimates of system performance measures.
Unfortunately, a simulation run does not usually produce
independent, identically distributed (i.i.d.) observations;
therefore “classical” statistical techniques are not directly
applicable to the analysis of simulation output.

A simulation study consists of several steps such as data
collection, coding and verification, model validation, exper-
imental design, output data analysis, and implementation.
This paper focuses on statistical methods for computing
confidence intervals for system performance measures from
output data.

There are two types of simulations with regard to output
analysis:
Finite-horizon simulations. In this case the simulation
starts in a specific state and is run until some terminating
event occurs. The output process is not expected to achieve
any steady-state behavior and any parameter estimated from
the output data will be transient in the sense that its value
will depend upon the initial conditions. An example is the
simulation of a vehicle storage and distribution facility for
a week.
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Steady-state simulations. The purpose of a steady-state
simulation is the study of the long-run behavior of the
system of interest. A performance measure of a system is
called a steady-state parameter if it is a characteristic of the
equilibrium distribution of an output stochastic process. An
example is the simulation of a continuously operating com-
munication system where the objective is the computation
of the mean delay of a data packet.

Section 2 discusses methods for analyzing output from
terminating simulations. Section 3 reviews approaches for
removing bias due to initial conditions in steady-state simu-
lations. Section 4 presents techniques for point and interval
estimation of steady-state parameters.

2 FINITE-HORIZON SIMULATIONS

Suppose that we simulate a system until n output data
X1, X2, . . . , Xn are collected with the objective of estimating
µ = E(X̄n), where X̄n = 1

n

∑n
i=1 Xi is the sample mean of

the data. For example, Xi may be the transit time of unit i
through a network of queues or the total time station i is busy
during the i th hour. Clearly, X̄n is an unbiased estimator for
µ. Unfortunately, the Xi ’s are generally dependent random
variables making the estimation of the variance Var(X̄n) a
nontrivial problem. Let S2

n = (n−1)−1 ∑n
i=1(Xi − X̄n)2 be

the sample variance of the data. In many queueing systems
the Xi ’s are correlated making the familiar estimator S2

n/n
a biased estimator of Var(X̄n). In particular, if the Xi ’s are
positively correlated, one has E(S2

n/n) < Var(X̄n).
To overcome this problem, one can run k independent

replications of the system simulation. Assume that run
i produces the output data Xi1, Xi2, . . . , Xin . Then the
“within-run” averages

Yi = 1

n

n∑
j=1

Xij



Alexopoulos and Seila
are i.i.d. random variables, their sample mean Ȳk =
1
k

∑k
i=1 Yi is also an unbiased estimator of µ, and their

sample variance V̂R = (k − 1)−1∑k
i=1(Yi − Ȳk)

2 is an un-
biased estimator of Var(X̄n). If in addition k is sufficiently
large, an approximate 1 − α confidence interval for µ is

Ȳk ± tk−1,1−α/2

√
V̂R/k , (1)

where td,γ represents the γ -quantile of the t distribution
with d degrees of freedom.

Alexopoulos and Seila (1998, Section 7.2.2) review
sequential procedures for determining the number of repli-
cations required to estimate µ with a fixed absolute or rel-
ative precision. The procedure for constructing a 1 − α

confidence interval for µ with a small absolute error
|Ȳk − µ| ≤ β is based on Chow and Robbins (1965).
It starts with k0 ≥ 5 runs and stops when the halfwidth

tk−1,1−α/2

√
V̂R/k ≤ β. Law and Kelton (2000) describe

a method for obtaining an estimate whose relative error
satisfies Pr(|Ȳk − µ|/|µ| ≤ γ ) ≥ 1 − α, with α ≤ 0.15.

The method of replications can also be used for estimat-
ing performance measures other than means. For example,
suppose that we want to estimate the p-quantile, say ξp , of
the average queue size in a single-server queueing system
during a fixed time window. We run k independent replica-
tions, denote by Yi the average observed queue length during
replication i , and let Y(1) < Y(2) < · · · < Y(k) be the order
statistics corresponding to the Yi ’s. Then a point estimate
for yp is ξ̂p = Y(kp) if kp is an integer or ξ̂p = Y(�kp+1�)
otherwise (�·� is the floor function). A confidence interval
for ξp is described in Alexopoulos and Seila (1998, Section
7.3.2).

3 INITIALIZATION PROBLEMS FOR
STEADY-STATE SIMULATIONS

One of the hardest problems in steady-state simulations
is the removal of the initialization bias. Suppose that
{Xi : i ≥ 1} is a discrete-time output stochastic process
from a single run of a steady-state simulation with initial
conditions (system state) I and assume that, as n → ∞,
Pr(Xn ≤ x |I ) → Pr(X ≤ x), where X is the corresponding
steady-state random variable. The steady-state mean of the
process {Xi } is µ = limn→∞ E(Xn |I ). The problem with
the use of the estimator X̄n for a finite n is that E(X̄n|I ) �= µ.

The most commonly used method for eliminating the
bias of X̄n identifies a index l and truncates the observations
X1, . . . , Xl . Then the estimator X̄n,l = n−1 ∑n+l

i=l+1 Xi is
generally less biased than X̄n because the initial conditions
primarily affect data at the beginning of a run. Several
procedures have been proposed for the detection of a cutoff
index l (see Chance and Schruben 1992; Fishman 2001;
Gafarian et al. 1978; Goldsman et al. 1994; Kelton 1989;
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Ockerman 1995; Schruben 1982; Schruben et al. 1983;
Wilson and Pritsker 1978ab).

The graphical procedure of Welch (1983) is popular
due to its simplicity and generality. This method uses k
independent replications with the i th replication producing
observations Xi1, Xi2, . . . , Xin and computes the “across-
runs” averages

X̄ j = 1

k

k∑
i=1

Xij , j = 1, . . . , n.

Then for a given time window w, the procedure plots the
moving averages

X̄ j (w) =
{

1
2w+1

∑w
m=−w X̄ j+m w + 1 ≤ j ≤ n − w

1
2 j−1

∑ j−1
m=− j+1 X̄ j+m 1 ≤ j ≤ w

against j . If the plot is reasonably smooth, then l is chosen
to be the value of j beyond which the sequence of moving
averages converges. Otherwise, a different time window is
chosen and a new plot is drawn. The choice of w may be
a difficult problem for congested systems with output time
series having autocorrelation functions with very long tails
(see Alexopoulos and Seila 1998, Example 7).

4 STEADY-STATE ANALYSIS

We focus on estimation methods for the steady-state mean
µ of a discrete-time output process. Analogous methods
for analyzing continuous-time output data are described in
a variety of texts (Bratley, Fox, and Schrage 1987; Fishman
2001; Law and Kelton 2000). The process {Xi } is called sta-
tionary if the joint distribution of Xi+ j1 , Xi+ j2 , . . . , Xi+ jk
is independent of i for all indices j1, j2, . . . , jk and all
k ≥ 1. If E(Xi ) = µ, Var(Xi ) < ∞ for all i , and the
Cov(Xi , Xi+ j ) is independent of i , then {Xi } is called
weakly stationary.

4.1 The Replication/Deletion Approach

This approach runs k independent replications, each of length
l +n observations, and discards the first l observations from
each run. One then uses the i.i.d. sample means

Yi (l, n) = 1

n

l+n∑
j=l+1

Xij

to compute the point estimate

Ȳk(l, n) = 1

k

k∑
i=1

Yi (l, n)
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and the approximate 1 − α confidence interval for µ

Ȳk(l, n) ± tk−1,1−α/2

√
V̂R(n, l)/k , (2)

where V̂R(l, n) is the sample variance of the Yi (l, n)’s.
The method is simple and general, but involves the

choice of three parameters, l, n and k. Here are a few
points that should make one cautious: (a) As l increases for
fixed n, the “systematic” error in each Yi (l, n) due to the
initial conditions decreases. (b) As n increases for fixed l,
the systematic and sampling errors in Yi (l, n) decrease. (c)
The systematic error in the sample means Yi (l, n) cannot
be reduced by increasing the number of replications k. (d)
For fixed n and under some mild moment conditions that
are satisfied by a variety of simulation output processes,
the confidence interval (2) is asymptotically valid only if
l/ ln k → ∞ as k → ∞ (Fishman 2001). This means that as
one makes more runs in an attempt to compute a narrower
confidence interval, the truncation index l must increase
faster than ln k for the confidence interval to achieve the
nominal coverage. This requirement is hard to implement
in practice.

The reader should also keep in mind that this method
is also potentially wasteful of data as the truncated portion
is removed from each replication. The regenerative method
(Section 4.2) and the batch means method (Section 4.3)
seek to overcome these disadvantages.

4.2 The Regenerative Method

This method assumes the identification of time indices at
which the process {Xi } probabilistically starts over and
uses these regeneration epochs for obtaining i.i.d. random
variables which can be used for computing point and interval
estimates for the mean µ. The method was proposed by
Crane and Iglehart (1974ab, 1978) and Fishman (1973,
1974). More precisely, assume that there are (random)
time indices 1 ≤ T1 < T2 < · · · such that the portion
{XTi + j, j ≥ 0} has the same distribution for each i and is
independent of the portion prior to time Ti . The portion of
the process between two successive regeneration epochs is
called a cycle. Let Yi = ∑Ti+1−1

j=Ti
X j and Zi = Ti+1 − Ti

for i = 1, 2, . . . and assume that E(Zi ) < ∞. Then the
mean µ is given by µ = E(Y1)/E(Z1).

Now suppose that one simulates the process {Xi }
over n cycles and collects the observations Y1, . . . , Yn

and Z1, . . . , Zn . Then µ̂ = Ȳn/Z̄n is a strongly con-
sistent estimator of µ. Furthermore, confidence intervals
for µ can be constructed by using the random variables
Yi − µZi , i = 1, . . . , n and the central limit theorem (see
Iglehart 1975).

The regenerative method is difficult to apply in prac-
tice because the majority of simulations have either no
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regenerative points or very long cycle lengths. Two classes
of systems this method has successfully been applied to
are inventory systems and highly reliable communications
systems with repairs.

4.3 The Batch Means Method

The method of batch means is frequently used to estimate
the steady-state mean µ or the Var(X̄n) (for finite n) and
owes its popularity to its simplicity and effectiveness.

To motivate the method, suppose temporarily that the
data X1, . . . , Xn are from a weakly stationary process with
limn→∞ nVar(X̄n) = σ 2∞ < ∞ (σ 2∞ is called the vari-
ance parameter of the process {Xi }). Then split the data
into k batches, each consisting of b observations. (As-
sume n = kb.) The i th batch consists of the observations
X(i−1)b+1, X(i−1)b+2, . . . , Xib , for i = 1, 2, . . . , k, and the
i th batch mean is given by

Yi (b) = 1

b

b∑
j=1

X(i−1)b+ j .

For fixed m, let σ 2
m = Var(X̄m). Since the batch

means process {Yi (b), i ≥ 1} is also weakly stationary,
some algebra yields

σ 2
n = σ 2

b

k

(
1 + nσ 2

n − bσ 2
b

bσ 2
b

)
. (3)

As a result, σ 2
b /k approximates σ 2

n with error that diminishes
as first n → ∞ and then b → ∞ with b/n → 0. Equiv-
alently, the correlation among the batch means diminishes
as b and n approach infinity with b/n → 0.

To use the last limiting property, one forms the grand
batch mean

X̄n = Ȳk(b) = 1

k

k∑
i=1

Yi (b),

estimates σ 2
b by the sample variance of the batch means

V̂B(n, k) = 1

k − 1

k∑
i=1

(Yi (b) − X̄n)
2,

and computes the following approximate 1 − α confidence
interval for µ:

X̄n ± tk−1,1−α/2

√
V̂B(n, k)/k . (4)

The main problem with the application of the batch
means method in practice is the choice of the batch size b.



Alexopoulos and Seila
The literature contains several batch selection approaches
for fixed sample size; see Conway (1963), Law and Car-
son (1979), Mechanic and McKay (1966), and Schriber
and Andrews (1979). Schmeiser (1982) reviews the above
procedures and concludes that selecting between 10 and
30 batches should suffice for most simulation experiments.
The major drawback of these methods is their inability to
yield a consistent variance estimator.

4.4 Consistent Estimation Batch
Means Methods

These methods assume that a central limit theorem holds

√
n(X̄n − µ)

d−→ σ∞ N(0, 1) as n → ∞ (5)

and aim at constructing a consistent estimator for σ 2∞ (con-
verging in probability to σ 2∞ as n → ∞) and an asymptot-
ically valid confidence interval for µ.

Chien et al. (1997) considered stationary processes and,
under quite general moment and sample path conditions,
showed that as both b, k → ∞, MSE[bV̂k(b)] → 0. Notice
that mean squared error consistency differs from consistency.

The limiting result (5) is implied under the following two
assumptions, where {W (t), t ≥ 0} is the standard Brownian
motion process (see Billingsley 1968).
Assumption of Weak Approximation (AWA).

n(X̄n − µ)

σ∞
d−→ W (n) as n → ∞.

Assumption of Strong Approximation (ASA). There exists
a constant λ ∈ (0, 1/2] and a finite random variable C such
that, with probability one,

|n(X̄n − µ) − σ∞W (n)| ≤ Cn1/2−λ as n → ∞.

The ASA is not restrictive as it holds under relatively weak
assumptions for a variety of stochastic processes including
Markov chains, regenerative processes and certain queueing
systems (see Damerdji 1994). The constant λ is closer to
1/2 for processes having little autocorrelation, while it is
closer to zero for processes with high autocorrelation.

4.5 Batching Rules

Equation (3) suggests that fixing the number of batches
and letting the batch size grow as n → ∞ ensures that
σ 2

b /k → σ 2
n . This motivates the Fixed Number of Batches

(FNB) rule that sets the number of batches at k and uses
batch sizes bn = �n/k� as n increases.
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The FNB rule along with AWA imply that, as n → ∞,

X̄n
p−→ µ and

X̄n − µ√
V̂B(n, k)/k

d−→ tk−1

(see Glynn and Iglehart 1990). Hence, (4) is an asymptot-
ically valid confidence interval for µ. Unfortunately, the
FNB rule has two major limitations: (a) Since bnV̂B(n, k) is
not a consistent estimator of σ 2∞, the confidence interval (4)
tends to be wider than the interval a consistent estimation
method would produce. (b) Statistical fluctuations in the
halfwidth of the confidence interval (4) do not diminish
relative to statistical fluctuation in the sample mean (see
Fishman 1996, pp. 544–545).

The limitations of the FNB rule can be removed by
simultaneously increasing the batch size and the number
of batches. Indeed, assume that ASA holds and consider
batch sizes of the form bn = �nθ�, θ ∈ (1 − 2λ, 1). Then
as n → ∞, X̄n

a.s.−→ µ, bnV̂B(n, kn)
a.s.−→ σ 2∞, and

Zkn = X̄n − µ√
V̂B(n, kn)/kn

d−→ N(0, 1) (6)

(see Damerdji 1994). The last display implies that

X̄n ± z1−α/2

√
V̂B(n, kn)/kn

(zγ is the γ -quantile of the t distribution) is an asymptotically
valid 1 − α confidence interval for µ. In particular, the
Square Root (SQRT) rule (Chien 1989) that uses θ = 1/2
(bn = �√n�, kn = �√n�) is valid if 1/4 < λ < 1/2. Notice
that the last inequality is violated by processes having high
autocorrelation (λ ≈ 0). Unfortunately, in practice the
SQRT rule tends to seriously underestimate the Var(X̄n) for
small-to-moderate sample sizes n.

With the contrasts between the FNB and SQRT rules
in mind, Fishman and Yarberry (1997) proposed two pro-
cedures that dynamically shift between the two rules. Both
procedures perform “interim reviews” and compute confi-
dence intervals at times nl ≈ n12l−1, l = 1, 2, . . .. The
correlation test for the batch means is based on von Neu-
mann’s statistic

C(n, kn) = 1 −
∑k

i=2(Yi (bn) − Yi−1(bn))
2

2
∑k

i=1(Yi (bn) − X̄n)2

(see von Neumann 1941ab).
The LBATCH Procedure. At time nl , if the hypothesis
test detects autocorrelation between the batch means, the
batching for the next review is determined by the FNB rule.
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If the test fails to detect correlation, all future reviews omit
the test and employ the SQRT rule.
The ABATCH Procedure. If at time nl von Neumann’s
test detects correlation between the batch means, the next
review employs the FNB rule. If the test fails to detect
correlation, the next review employs the SQRT rule.

Both procedures yield random sequences of batch sizes.
Under relatively mild assumptions, these sequences imply
convergence results analogous to (6). The respective algo-
rithms require O(n) time and O(log2 n) space, where n is
the desired sample size (see Alexopoulos et al. 1998 and
Yarberry 1993). Although like complexities are known for
static fixed batch size algorithms, the dynamic setting of
the LBATCH and ABATCH procedures offers an important
additional advantage not present in the static approach. As
the analysis evolves with increasing sample path length, it
allows a user to assess how well the estimated variance of
the sample mean stabilizes. This assessment is essential to
gauge the quality of the confidence interval for the sample
mean. The LABATCH.2 implementation is the only com-
puter package that automatically generates the data for this
assessment. C, FORTRAN and SIMSCRIPT II.5 codes of
LABATCH.2 can be downloaded via anonymous ftp from
the site http://www.or.unc.edu/∼gfish/labatch.2.html.

An alternative sequential method has been pro-
posed by Steiger and Wilson (2001ab). The asso-
ciated ASAP software package (accessible from the
site http://www.ie.ncsu.edu/jwilson) can perform sequential
sampling subject to absolute or relative precision criteria.
ASAP fixes the number of batches at 96, discards the first
two batches, and progressively increases the batch size (by
a factor of roughly

√
2) until either the last 94 batch means

pass von Neumann’s test for independence or the batch
means pass the Shapiro-Wilk test for multivariate normality
(Malkovich and Afifi 1973). In the latter case, the pro-
cedure delivers a correlation adjusted confidence interval
based on an inverted Cornish-Fisher expansion whose terms
are estimated via an ARMA time series model of the batch
means. If the resulting confidence interval meets the under-
lying precision requirement, the method ends; otherwise,
it estimates the additional number of batches that the user
must collect. ASAP does not achieve the time and space
complexities of LABATCH.2 and does not yield a consis-
tent variance estimator. The resulting confidence intervals
achieve improved coverage for small sample sizes at the
cost of substantially larger and more variable halfwidths.

4.6 Overlapping Batch Means

An interesting variation of the traditional batch means
method is the method of overlapping batch means (OBM)
proposed by Meketon and Schmeiser (1984). For given
batch size b, this method uses all n − b + 1 overlapping
batches to estimate µ and Var(X̄n). The first batch consists
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of observations X1, . . . , Xb, the second batch consists of
X2, . . . , Xb+1, etc. The OBM estimator of µ is

ȲO = 1

n − b + 1

n−b+1∑
i=1

Yi (b),

where

Yi (b) = 1

b

i+b−1∑
j=i

X j , i = 1, . . . , n − b + 1

are the respective batch means. Let V̂O be the sample vari-
ance of the Yi (b)’s. The following list contains properties
of the estimators ȲO and V̂O : (a) The OBM estimator is
a weighted average of non-overlapping batch means esti-
mators. (b) Asymptotically (as n, b → ∞ and b/n → 0),
the OBM variance estimator V̂O and the non-overlapping
batch means variance estimator V̂B ≡ V̂B(n, k) have the
same expectation, but Var(V̂O)/Var(V̂B) → 2/3 (Meketon
and Schmeiser 1984). (c) The behavior of Var(V̂O ) appears
to be less sensitive to the choice of the batch size than the
behavior of Var(V̂B) (Song and Schmeiser 1993, Table 1).
(d) If {Xi } satisfies ASA and {bn} is a sequence of batches
with bn = �nθ�, θ ∈ (1 − 2λ, 1) and b2

n/n → 0 as n → ∞,

then (Damerdji 1994) bnV̂O
a.s.−→ σ 2∞.

Welch (1987) noted that both traditional batch means
and overlapping batch means are special cases of spectral
estimation at frequency 0 and, more importantly, suggested
that overlapping batch means yield near-optimal variance
reduction when one forms sub-batches within each batch
and applies the method to the sub-batches. For example,
a batch of size 64 is split into 4 sub-batches and the first
(overlapping) batch consists of observations X1, . . . , X64,
the second consists of observations X17, . . . , X80, etc.

4.7 The Standardized Time Series Method

This method was proposed by Schruben (1983). The stan-
dardized time series is defined by

Tn(t) = �nt�(X̄n − X̄�nt�)
σ∞

√
n

, 0 ≤ t ≤ 1

and, under some mild assumptions (e.g., strict stationarity
and φ-mixing),

(
√

n(X̄n − µ), σ∞Tn)
d−→ (σ∞W (1), σ∞ B),

where {B(t) : t ≥ 0} is the standard Brownian bridge
process defined by B(t) = W (t) − tW (1), 0 ≤ t ≤ 1.

If A = ∫ 1
0 σ∞ B(t) dt is the area under B , then the

identity E(A2) = σ 2∞/12 implies that σ 2∞ can be estimated
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by multiplying an estimator of E(A2) by 12. Schruben’s
method splits the data X1, . . . , Xn into k (contiguous)
batches, each of size b. Then for sufficiently large n the
random variables

Ai =
b∑

j=1

[(n + 1)/2 − j ]X(i−1)b+ j , i = 1, . . . , k

become approximately i.i.d. normal and an estimator of
E(A2) is

Ê(A2) = 1

(b3 − b)k

k∑
i=1

A2
i .

Hence an (approximate) 1 − α confidence interval for µ is

Ȳk ± tk,1−α/2

√
V̂T /n; V̂T = 12Ê(A2).

The standardized time series method has asymptotic
advantages over the batch means method (see Goldsman
and Schruben 1984). However, in practice it can require
prohibitively long runs as noted by Sargent, et al. (1992).
Some useful theoretical foundations of the method are given
in Glynn and Iglehart (1990). Also, Damerdji (1994) shows
that under ASA in Section 4.3, batching sequences with
bn = �nθ�, θ ∈ (1 − 2λ, 1), yield asymptotically consistent
estimators for the process variance σ 2∞. Additional devel-
opments on the method, as well as other estimators based on
the standardized time series, are contained in Alexopoulos
et al. (2001), Goldsman et al. (1990) and Goldsman and
Schruben (1984, 1990).

4.8 Quantile Estimation

A variety of methods have been proposed for estimating
quantiles of steady-state data (see Iglehart 1976; Moore
1980; Seila 1982ab; Heidelberger and Lewis 1984). The
methods differ in the way the variance of the sample quantile
is estimated. It should be mentioned that quantile estimation
is a harder problem than the estimation of steady-state means.

4.9 Multivariate Estimation

Frequently, the output from a single simulation run is used
for estimating several system parameters. The estimators
of these parameters are typically correlated. As an exam-
ple, consider the average customer delays at two stations
on a path of a queueing network. In general, Bonferroni’s
inequality can be used for computing a conservative confi-
dence coefficient for a set of confidence intervals. Indeed,
suppose that Di is a 1 − α confidence interval for the
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parameter µi , i = 1, . . . , k. Then

Pr
[
∩k

i=1{µi ∈ Di }
]

≥ 1 −
k∑

i=1

αi .

This result can have serious implications as for k = 10
and αi = 0.10 the r.h.s. of the above inequality is equal to
0. If the overall confidence level must be at least 1 − α,
then the αi ’s can be chosen so that

∑k
i=1 αi = α. The

existing multivariate estimation methods include Charnes
(1989, 1990, 1991) and Chen and Seila (1987).
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