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ABSTRACT

This paper presents an overview of the use of simulation
algorithms in the field of financial engineering, assuming
on the part of the reader no familiarity with finance and a
modest familiarity with simulation methodology, but not its
specialist research literature. The focus is on the challenges
specific to financial simulations and the approaches that
researchers have developed to handle them, although the
paper does not constitute a comprehensive survey of the
research literature. It offers to simulation researchers, pro-
fessionals, and students an introduction to an application of
increasing significance both within the simulation research
community and among financial engineering practitioners.

1 INTRODUCTION

Many problems in financial engineering require numerical
evaluation of an integral. Several virtues make simulation
popular among practitioners as a methodology for these
computations.

First, it is easy to apply to many problems. For most
derivative securities and financial models, even those that
are complicated or high-dimensional, it takes relatively lit-
tle work to create a simulation algorithm for pricing the
derivative under the model. (A notable exception, American
options, occupies Section 7.) Also, pitfalls in numerical
implementation of simulation algorithms are relatively rare.
For the most part, a little knowledge and effort go a long way
in financial simulations; with some expertise and investment
of one’s time, one can go further and faster.

The second virtue of simulation is its good performance
on high-dimensional problems: the rate of convergence of a
Monte Carlo estimate does not depend on the dimension of
the problem. While other numerical integration techniques
may have advantages over simulation in various situations,
their rates of convergence tend to degrade as the dimen-
sion increases. The dimension of the problem is high, for
instance, when dealing with models of markets that con-
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tain many fundamental sources of risk or with derivative
securities that depend in a nontrivial way on prices at many
times. This issue is becoming increasingly important as
securities markets and financial risk management become
more sophisticated.

A third attraction of simulation is the confidence in-
terval that it provides for the Monte Carlo estimate. This
information makes possible an assessment of the quality
of the estimate, and of how much more computational ef-
fort might be needed in order to produce an estimate of
acceptable quality.

For these reasons, simulation is a valuable tool for
pricing options, as Boyle (1977) pointed out. Twenty years
later, Boyle, Broadie and Glasserman (1997) surveyed this
field and described research advances that had improved
efficiency and broadened the domain of problems to which
simulation could be profitably applied. The present paper
touches on such advances in order to describe the techniques
presently available to financial engineers using simulation
and the challenges still confronting them, without offering
a comprehensive survey of the field.

The paper continues by explaining in Section 2 the the-
ory that underpins the use of simulation to handle financial
engineering problems, and discussing in Section 3 the me-
chanics of generating simulated paths for this purpose. Then
Section 4 deals with variance reduction, providing a philo-
sophical perspective and examples of specific techniques and
derivative securities to which they are well suited. Section 5
is a brief discussion of quasi-Monte Carlo methods. Next
comes a presentation of advances that have extended the
range of effective application of simulation: in Section 6,
approaches to estimation of Greeks, and in Section 7 recent
research into simulating American options; explanations of
the technical terms “Greek” and “American” appear in those
sections. The paper concludes with some thoughts about
the future interplay of simulation research, and financial
engineering theory and practice.
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2 FINANCIAL BACKGROUND

Financial engineers most frequently apply simulation to
derivative securities, often called simply derivatives. These
are financial instruments whose payoffs derive from the
values of other underlying financial variables, such as prices
or interest rates. The canonical example is the European
call option, whose payoff is max{ST − K , 0}, where ST

is the price of a stock at time T , and K is a prespecified
amount called the strike price. This option gives its owner
the right to buy the stock at time T for the strike price
K : if ST > K , the owner will exercise this right, and if
not, the option expires worthless. If the future payoff of
a derivative derives from the underlying, is there a way to
derive the present price of the derivative from the current
value of the underlying?

Under some theoretical conditions on the payoff of the
derivative, the model of the stochastic process governing the
underlying, and the possibilities for trading in the market,
the answer is yes. If it is possible to replicate the derivative’s
payoff by trading in a portfolio of securities available on the
open market, then the combination of executing this trading
strategy and selling the derivative has no risk. This is known
as hedging the sale of the derivative, and hedging strategies
are of great practical interest in their own right, as well as
being of theoretical interest in justifying no-arbitrage pricing.
The pricing theory has this name because it postulates that
there are no arbitrages, which are opportunities to make
a positive amount of money with zero risk or cost. Such
opportunities are supposed to disappear, should they exist,
because unlimited demand for them would drive their costs
above zero.

The riskless combination of a derivative minus the initial
portfolio of its replicating strategy must have nonpositive
cost to avoid arbitrage; assuming the same of the oppo-
site combination, the price of the derivative must equal the
cost of its initial replicating portfolio. A basic theorem of
mathematical finance states that this price is the expectation
of the derivative’s discounted payoff under an equivalent
martingale measure. This is a probability measure under
which discounted asset prices are martingales, and it gener-
ally does not coincide with the original probability measure
which models the real world. When discounting is done
with the value of a riskless money market account, the
equivalent martingale measure is known as the risk-neutral
measure, because if investors had a neutral attitude toward
risk, they would demand the same return on all risky assets
as on a riskless asset. There are many textbook accounts
of this theory, such as Björk (1998) and Duffie (1996).

Given all this, pricing a derivative is evaluating the
expectation of the sum of all its discounted payoffs, under
a specified measure. The discounting is crucial and allows
for appropriate comparisons between cashflows, whether
positive or negative, at different times. However, for brevity,
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henceforth “payoff” may be an abbreviation of “the sum of
all discounted payoffs.” Since the probability measures of
financial models typically have densities, derivative pricing
is evaluating the integral of the product of payoff and
probability density over all possible paths of the underlying.

As an example, consider the European call option under
the Black-Scholes model, for which the distribution of the
log stock price ln ST is normal with mean ln S0+(µ−σ 2/2)T
and variance σ 2T under a probability measure P. Here S0
is the initial stock price and µ and σ are called respectively
the drift and volatility. Under the risk-neutral measure Q,
ln ST is normal with mean ln S0 + (r − σ 2/2)T and the
same variance, where r is the instantaneous interest rate on
a riskless money market account. The no-arbitrage price of
the European call option is

EQ[e−rT max{ST − K , 0}]
= e−rT

∫ ∞

K
(s − K )φ

(
ln(s/S0)− (r − σ 2/2)T

σ
√

T

)
ds

= S0�(d1)− K e−rT�(d2)

where

d1 = ln(S0/K )+ (r + σ 2/2)T

σ
√

T
, d2 = d1 − σ

√
T .

and � and φ are respectively the cumulative distribution
and probability density functions of the standard normal.
This is the famous Black-Scholes formula.

The standard Monte Carlo approach to evaluating such
expectations is to simulate under the equivalent martingale
measure a state vector which depends on the underlying
variables, then evaluate the sample average of the derivative’s
payoff over all trials. This is an unbiased estimate of the
derivative’s price, and when the number of trials n is large,
the Central Limit Theorem provides a confidence interval for
the estimate, based on the sample variance of the discounted
payoff. The standard error is then proportional to 1/

√
n.

The Monte Carlo approach is similar for other financial
engineering problems, such as finding hedging strategies and
analyzing portfolio return distributions in order to assess
the risk of one’s current portfolio or select a portfolio with
the most attractive combination of rewards and risks. All
of these rely on the same basic approach of simulating
many trials, each of which is a path of underlying financial
variables over a period of time, computing the values of
derivatives on this path, and looking at the distribution of
these values. The next section covers the generation of
these paths.
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3 PATH GENERATION

In some applications of simulation, there is no great con-
ceptual difficulty involved in generating simulated paths,
other than that of producing pseudo-random numbers with
a digital computer. For instance, when estimating the steady-
state mean of a random variable in a queuing system, the
model specifies the transition rates from any state, and it is
not theoretically difficult to sample the next state from the
correct distribution. The situation in financial simulations
is not so simple. The models of mathematical finance are
usually specified by stochastic differential equations (SDEs)
under the equivalent martingale measure used for pricing.
Sometimes it is possible to integrate these SDEs and get a
tractable expression for the state vector, but not always.

An example that poses no difficulties is the Black-
Scholes model, which has

d St = St (r dt + σ dWt )

where W is a Wiener process (Brownian motion) under the
risk-neutral probability measure Q. By Itô’s lemma, a basic
result of stochastic calculus, this is equivalent to

d ln St = (r − σ 2/2)dt + σ dWt

which integrates to

ln St − ln S0 = (r − σ 2/2)t + σWt .

Because Wt is normally distributed with mean 0 and variance
t , the terminal log stock price ln ST has the distribution stated
previously.

Pricing the European call option under the Black-
Scholes model therefore requires the generation of one
standard normal random variate per path. The simulated
value of ST on the i th path is

S(i)T = S0 exp
((

r − σ 2/2
)

T + σ
√

T Z (i)
)

and the estimated option value is

1

n

n∑
i=1

e−rT max
{

S(i)T − K , 0
}
.

In this model, the situation is not appreciably more
difficult when pricing a path-dependent option whose payoff
depends on the value of the state vector at many times. For
instance, a discretely monitored Asian call option has the
payoff max{S̄T − K , 0} where S̄T = ∑m

k=1 Stk /m is the
average price. Now the simulation must generate the entire
path St1, St2 , . . . , Stm . Assume tk = T k/m = kh. The way
to simulate the whole path is to generate m independent
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standard normal random variables Z (i)1 , . . . , Z (i)m for the i th
path and set

S(i)(k+1)h = S(i)kh exp
((

r − σ 2/2
)

h + σ
√

h Z (i)k

)
.

This provides the correct multivariate distribution for
(St1, St2 , . . . , Stm ) and hence the correct distribution for
S̄T .

Another challenge in path generation is continuous path-
dependence. While the payoff of the European call option
depends only on the terminal value of the state vector, and
the payoff of the discretely monitored Asian call option
depends only on a finite set of observations of the state
vector, some derivatives have payoffs that depend on the
entire continuous-time path. An example is a down-and-out
option that pays off only if a stock price stays above some
barrier, or equivalently, if the minimum stock price is above
the barrier. Suppose the stock price obeys the Black-Scholes
model. Because

min
k=1,...,m

Stk < min
t∈[0,T ] St

almost surely, the former is not an acceptable substitute for
the latter. It is necessary to introduce a new component Mt =
minu∈[0,t ] Su into the state vector; this can be simulated since
the joint distribution of St and Mt is known (Karatzas and
Shreve 1991).

A slightly subtler example occurs in the Hull-White
model of stochastic interest rates. The SDE governing the
instantaneous interest rate rt is

drt = α(r̄ − rt )dt + σ dWt

where r̄ is the long-term mean interest rate, α is the strength
of mean reversion, and σ is the interest rate’s volatility.
Integration of this SDE yields the distribution of rt , which
is normal. Then the simulated path rt1, . . . , rtm is adequate
for evaluating payoffs that depend only on these interest rates,
but not for evaluating the discount factor DT = ∫ T

0 ru du;
the discrete approximation h

∑m
k=1 rkh does not have the

right distribution. Instead one must add Dt to the state vector
and simulate using its joint distribution with rt , which is
easily computable.

Some financial models feature SDEs that are not easily
integrable, as the Black-Scholes and Hull-White models’
are. An example is the Cox-Ingersoll-Ross model, in which
the SDE is

drt = α(r̄ − rt )dt + σ
√

rt dWt .

This model’s principal advantage over Hull-White is that
the instantaneous interest rate must remain nonnegative.
However, there is no useful expression for the distribution
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of rt given r0. A simulation of this model must rely on
an approximate discretization r̂ of the stochastic process r .
Because the laws of these processes are not the same, the
Monte Carlo estimate based on r̂ may be biased for the
true price based on r . This bias is known as discretization
error.

Kloeden and Platen (1992) have written a major ref-
erence on the rather involved topic of discretizing SDEs,
whose surface this paper barely scratches. Faced with an
SDE of the generic form

d Xt = µ(Xt )dt + σ(Xt )dWt

one simulates a discretized process X̂t1, . . . , X̂tm . Even if
the only quantity of interest is the terminal value XT , it is
necessary to simulate intermediate steps in order to reduce
discretization error. The question is how to choose the
scheme for producing the discretized process X̂ and the
number of steps m.

The most obvious method of discretizing is the Euler
scheme

X̂(k+1)h = X̂kh + µ
(

X̂kh

)
h + σ

(
X̂kh

)√
h Zk+1

where Z1, . . . , Zm are independent standard normal random
variates. The idea is simply to pretend that the drift µ and
volatility σ of X remain constant over the period [kh, (k +
1)h] even though X itself changes. Is there a better scheme
than this, and what would it mean for one discretization
scheme to be better than another?

There are two types of criteria for judging discretized
processes. Strong criteria evaluate the difference between
the paths of the discretized and original processes pro-
duced on the same element ω of the probability space. For
example, the strong criterion E[maxk ‖X̂tk − Xtk ‖] mea-
sures the maximum discrepancy between the path X̂(ω)
and the path X (ω) over all times, then weights the ele-
ments ω with the probability measure P. On the other
hand, weak criteria evaluate the difference between the
laws of the discretized and original processes: an example
is supx |P[X̂T < x]−P[XT < x]|, measuring the maximum
discrepancy between the cumulative distribution functions
of the terminal values of X̂ and X . Weak criteria are of
greater interest in derivative pricing because the bias of the
Monte Carlo estimator f (X̂t1, . . . , X̂tm ) of the true price
E[ f (Xt1, . . . , Xtm )], where f is the payoff, depends only
on the distribution of (X̂t1, . . . , X̂tm ).

Given a choice of weak criterion, a discretization scheme
has weak order of convergence γ if the error is of order
m−γ as the number of steps m goes to infinity. Under some
technical conditions on the stochastic process X and the
exact nature of the weak criterion, the weak order of the
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Euler scheme is 1, and a scheme with weak order 2 is

X̂(k+1)h = X̂kh + σ Zk+1h1/2

+
(
µ+ 1

2
σσ ′ (Z2

k+1 − 1
))

h

+1

2

(
µ′σ + µσ ′ + 1

2
σ 2σ ′′

)
Zk+1h3/2

+1

2

(
µµ′ + 1

2
µ′′σ 2

)
h2

where µ, σ , and their derivatives are evaluated at X̂kh . This
is known as the Milstein scheme, but so are some other
schemes. This scheme comes from the expansion of the
integral

∫ (k+1)h
kh d Xt to second order in h using the rules of

stochastic calculus.
The weak order of convergence remains the same if

simple random variables with appropriate moments replace
the standard normal random variables Z . Not only can such
a substitution improve speed, but it may be necessary when
the SDE involves multivariate Brownian motion, whose
multiple integrals are too difficult to simulate.

It is also possible to use Richardson extrapolation in
order to improve an estimate’s order of convergence. For
instance, let f (X̂ (h)) denote the payoff simulated under the
Euler scheme with step size h. The Euler scheme has weak
order of convergence 1, so the leading term in the bias
E[ f (X̂ (h))] − E[ f (X)] is of order h. The next term turns
out to be of order h2. Because the order h terms cancel, the
bias of 2E[ f (X̂ (h))] − E[ f (X̂ (2h))] is of order h2, and this
extrapolated Euler estimate has weak order of convergence
2.

Turning to the choice of the number of steps m, one
consideration is allocating computational resources between
a finer discretization and a greater number of paths (Duffie
and Glynn 1995). If there is a fixed computational budget
C , and each simulation step costs c, then the number of
paths must be n = C/(mc). For a discretization scheme of
weak order γ , the bias is approximately bm−γ for some
constant b. Estimator variance is approximately vn−1 for
some constant v. Therefore the mean squared error is
approximately

b2m−2γ + vn−1 = b2m−2γ + vc

C
m

which is minimized by m ∝ C1/(2γ+1). With this opti-
mal allocation, the mean squared error is proportional to
C−2γ /(2γ+1), which is slower than the rate C−1/2 of decrease
of the variance of a simulation unbiased by discretization
errror. A higher order of convergence γ is associated with
a coarser discretization (m smaller) and more rapid diminu-
tion of mean squared error with increased computational
budget C .
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4 VARIANCE REDUCTION

The standard error of a Monte Carlo estimate decreases
as 1/

√
C , where C is the computational budget. This

is not an impressive rate of convergence for a numerical
integration method. For simulation to be competitive for
some problems, it is necessary to design an estimator that
has less variance than the most obvious one. A variance
reduction technique is a strategy for producing from one
Monte Carlo estimator another with lower variance given
the same computational budget.

A fixed computational budget is not the same as a fixed
number of paths. Variance reduction techniques frequently
call for more complicated estimators that involve more work
per path. Where W is the expected amount of work per path,
the computational budget C allows approximately n = C/W
paths. There is a variance per path V such that the estimator
variance is approximately V/n = V W/C . Thus a technique
achieves efficiency improvement (variance reduction given
a fixed budget) if it reduces V W .

In practice, one may be concerned with human effort
as well as computer time. Computing power has become so
cheap that for many individual financial simulations, it is
not worth anybody’s time to implement variance reduction.
On the other hand, some financial engineering problems are
so large that variance reduction is extremely important.

A large financial institution may have positions in thou-
sands of derivative securities, involving hundreds of under-
lying variables. In order to manage its risks, it must assess
the distribution of possible losses on its portfolio over some
time horizon. One way is to compute, for instance, the
one-day 5% value at risk (VaR), which is the amount L
such that the probability of having a loss larger than L to-
morrow is 5%. Despite undesirable theoretical properties,
VaR is very popular and the adequacy of its computation
is a matter of concern for world financial authorities. A
sound way to compute this VaR would be to simulate many
scenarios for tomorrow’s value of the underlying variables,
price all of the derivatives in each scenario, and find the
level L such that 5% of the scenarios have a loss larger
than L. The difficulty is that simulation is required to price
many of the derivatives, and one might need to generate,
for each of one thousand scenarios, ten thousand paths of
one hundred time steps and one hundred state variables, for
a total of one hundred billion primitive simulation opera-
tions. Despite advances in computing technology, this is not
yet affordable, and consequently financial institutions rely
on methodologies of questionable soundness for computing
VaR. Variance reduction makes better answers affordable.

4.1 Antithetic Variates

Because of its simplicity, the method of antithetic variates
is a good introduction to variance reduction techniques,
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among which it is not one of the most powerful. A quantity
simulated on one path, such as a payoff, always has a
representation f (U) where U is uniformly distributed on
[0, 1]m . The antithetic variate of U is 1 − U = (1 −
U1, . . . , 1 − Um). The method uses as an estimate from
a pair of antithetic variates ( f (U) + f (1 − U))/2, which
can be called the symmetric part of f . This is unbiased
because 1 − U is also uniformly distributed on [0, 1]m .

The antisymmetric part of f is ( f (U)− f (1 − U))/2.
These two parts are uncorrelated and sum to f (U), so
the variance of f (U) is the sum of the variances of the
symmetric and antisymmetric parts. The estimator using
antithetic variates has only the variance of the symmetric
part of f , and requires at most twice as much work as the
old. The variance of the antisymmetric part is eliminated,
and if it is more than half the total variance of f , efficiency
improves. This is true, for instance, when f is monotone,
as it is in the case of the European call option in the
Black-Scholes model.

4.2 Stratification and the Latin Hypercube

Stratification makes simulation more like numerical integra-
tion by insisting on a certain regularity of the distribution of
simulated paths. This technique divides the sample space
into strata and makes the fraction of simulated paths in each
stratum equal to its probability in the model being simu-
lated. Working with the representation f (U1, . . . ,Um), one
choice is to divide the sample space of U1 into N equiproba-
ble strata [0, 1/N], . . . , [(N − 1)/N, 1]. Then the stratified
estimator is

1

N

N∑
i=1

f

(
i − 1 + U (i)

1

N
,U (i)

2 , . . . ,U (i)
m

)

where the random variables U (i)
k are i.i.d. uniform on [0, 1].

This estimator involves N paths, whose first components are
chosen randomly within a predetermined stratum. Because
these N paths are dependent, to get a confidence interval
requires enough independent replications of this stratified
estimator sufficient to make their mean approximately nor-
mally distributed.

Stratification applies in the quite general situation of
sampling from a distribution that has a representation as
a mixture: above, the uniform distribution on [0, 1] is an
equiprobable mixture of N uniform distributions on intervals
of size 1/N . The general case is sampling from a distribution
that is a mixture of N distributions, the i th of which has
mixing probability pi , mean µi , and variance σ 2

i . The
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mixed distribution has mean
∑N

i=1 piµi and variance

N∑
i=1

pi

(
µ2

i + σ 2
i

)
−
(

N∑
i=1

piµi

)2

.

A stratified estimate has variance
∑N

i=1 piσ
2
i . The amount

of variance reduction is the difference

N∑
i=1

piµ
2
i −

(
N∑

i=1

piµi

)2

which is the variance of µη, where η is a random variable
taking on the value i with probability pi . That is, stratifi-
cation removes the variance of the conditional expectation
of the outcome given the information being stratified.

This approach can be very effective when the payoff
depends heavily on a single random variable, and it is possi-
ble to sample the rest of the path conditional on this random
variable. For instance, if the payoff depends primarily on a
terminal stock price ST whose process S is closely linked
to a Brownian motion W , then a good strategy is to stratify
on WT and simulate Wt1, . . . ,Wtm−1 conditional on it.

Stratification in many dimensions at once poses a diffi-
culty. Using N strata for each of d random variables results
in a mixture of Nd distributions, each of which must be
sampled many times if there is to be a confidence interval.
If d is too large there may be no way to do this with-
out exceeding the computational budget. Latin hypercube
sampling offers a way out of this quandary.

Consider the stratification of each dimension of [0, 1]m

into N intervals of equal length. A Latin hypercube sample
includes a point in only N of the Nd boxes formed. This
sample has the property that it is stratified in each dimension
separately, that is, for each stratum j and dimension k, there
is exactly one point U (i) such that U (i)

k is in [( j−1)/N, j/N].
The Latin hypercube sampling algorithm illustrates:

Loop over dimension k = 1, . . . ,m.

• Produce a permutation J of 1, . . . , N .

• Loop over point i = 1, . . . , N .

– Choose U (i)
k uniformly in [(Ji −1)/N, Ji/N].

Because points are uniformly distributed within their boxes,
the marginal distributions are correct. Choosing all permu-
tations with equal probability makes the joint distribution
correct.

Because it is not full stratification, Latin hypercube
sampling does not remove all the variance of the condi-
tional expectation given the box. Writing this conditional
expectation as a function µ( j1, . . . , jm) where jk is the
stratum in the kth dimension, Latin hypercube sampling
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asymptotically removes only the variance of the additive
part of this function. The additive part is the function
g( j1, . . . , jm) = ∑m

k=1 gk( jk) that minimizes the expected
squared error of its fit to the original function µ. Sometimes
the fit is quite good, for instance when pricing a relatively
short-term interest-rate swap in the Hull-White model. In
each of a sequence of periods, the swap pays the difference
between preset interest payments and the then-prevailing
interest payments. These terms are linear in the normal
random variates Z1, . . . , Zm , but for pricing must also be
multiplied by nonlinear discount factors.

4.3 Importance Sampling

The intuitive way to plan a simulation to estimate the
expectation of a payoff f that depends on a path X1, . . . , Xm

is to simulate paths according to the law of the process X ,
then compute the payoff on each path. This is a way of
estimating the integral

∫
f (x)g(x)dx =

∫ (
f g

g̃

)
(x)g̃(x)dx

as long as g̃ is nonzero where g is. The second integral
has an interpretation as simulation of paths under a new
probability measure Q̃ which is absolutely continuous with
respect to the original measure Q. The path X1, . . . , Xm

has likelihood g under Q and g̃ under Q̃. There is also a
new payoff f̃ = f g/g̃, the product of the original payoff f
and the Radon-Nikodym derivative or likelihood ratio g/g̃.

The idea of importance sampling is to choose g̃ so that
f̃ has less variance under Q̃ than f does under Q. When f
is positive, the extreme choice is g̃ = f g/µ, where µ is the
constant of integration that makes g̃ a probability density.
Then f̃ = µ and has no variance. However, this constant
µ is precisely

∫
f (x)g(x)dx , the unknown quantity to be

estimated. The goal is to choose g̃ to be a tractable density
that is close to being proportional to f g. That is, one wishes
to sample states x according to importance, the product of
likelihood and payoff.

Importance sampling has proven extremely powerful in
other applications, especially in simulation of rare events,
which are more common under an appropriate importance
sampling measure. There have been some effective financial
engineering applications in this spirit, involving the pricing
of derivatives that are likely to have zero payoff. An example
is an option that is deep out of the money, meaning that
the underlying is currently distant from a threshold that it
must cross in order to produce a positive payoff.

Importance sampling may become even more valuable
in financial engineering with the advent of more sophisticated
approaches to risk management. There is an increasing
appreciation of the significance for risk management of
extreme value theory and the heavy-tailed distributions of
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many financial variables. In models and applications where
behavior in the tails of distributions has greater impact,
importance sampling has greater potential. An example of
such developments is the work of Glasserman, Heidelberger,
and Shahabuddin (2000).

4.4 Control Variates

Unlike other methods that adjust the inputs to simulation,
the method of control variates adjusts the outputs directly.
A simulation intended to estimate an unknown integral
can also produce estimates of quantities for which there
are known formulas. The known errors of these estimates
contain information about the unknown error of the estimate
of the quantity of interest, and thus are of use in correcting
it. For instance, using the risk-neutral measure, the initial
stock price S0 = EQ[e−rT ST ], but the sample average
e−rT ∑n

i=1 S(i)T /n will differ from S0. If it is too large, and
the payoff f (ST ) has a positive correlation with ST , then
the estimate of the security price is probably also too large.

Generally, in a simulation to estimate the scalar E[X]
which also generates a vector Y such that E[Y ] is known,
an improved estimator is X − β(Y − E[Y ]) where β is the
multiple regression coefficient of X on Y . The variance of
this estimator is the residual variance of X after regression
on Y ; the better the linear fit of X on the predictors Y , the less
variance remains after the application of control variates.
The regression coefficient β is presumably unknown if E[X]
is unknown, but the usual least squares estimate will suffice.
However, using the same paths to estimate β and evaluate
the control variates estimator creates a slight bias. An
alternative is to estimate β on a small subset of the paths.

A favorite example of the great potential of control
variates is the discretely monitored Asian call option in the
Black-Scholes model, which appeared in Section 3. Aver-
aging, as in the average stock price S̄T , is the distinguishing
feature of Asian options. For economic reasons, the con-
vention is that the averaging is arithmetic, not geometric.
For instance, an Asian option on oil futures could help a
power company hedge the average cost of its planned future
purchases of oil, while an option on a geometric average
of prices does not have such an obvious purpose. On the
other hand, the distribution of the arithmetic average of
jointly lognormal random variables (such as St1, . . . , Stm )
is inconvenient, while the distribution of their geometric
average is again lognormal, so a geometric Asian option
has a closed-form price in the Black-Scholes model. The
payoffs of arithmetic and geometric Asian call options are
extremely highly correlated, and therefore the geometric
Asian call option makes a very effective control variate for
simulation of the arithmetic Asian call option: it can reduce
variance by a factor of as much as one hundred. Using this
control variate, the simulation is effectively estimating only
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the slight difference between the arithmetic and geometric
Asian options.

4.5 Summary

The methods discussed above do not exhaust the financial
engineer’s repertory of variance reduction techniques, but
they do illustrate two major types of variance reduction.
Importance sampling and control variates rely on knowledge
about the structure of the problem to change the payoff
or sampling distribution. Stratified and Latin hypercube
sampling also benefit from a good choice of the variables
to stratify. However, these methods and antithetic variates
work by making Monte Carlo simulation less purely random
and more like other numerical integration techniques that
use regular, not random, distributions of points. Similarly,
quasi-Monte Carlo simulation is a numerical integration
technique that bears a resemblance to Monte Carlo, although
it is wholly deterministic.

5 QUASI-MONTE CARLO

A sample from the multidimensional uniform distribution
usually covers the unit hypercube inefficiently: to the eye
it seems that there are clusters of sample points and voids
bare of sample points. A rectangular grid of points looks
more attractive, but the bound on the error of this numerical
integration technique converges as n−2/d where n is the
number of points used and d is the dimension of the hyper-
cube. For dimension four or higher, there is no advantage
compared to the order n−1/2 convergence of the standard
error of a Monte Carlo simulation. A quasi-Monte Carlo
approach often used in financial engineering is to generate a
deterministic set of points that fills space efficiently without
being unmanageably numerous in high dimension. Several
authors have proposed rules for generating such sets, known
as low-discrepancy sequences: see Niederreiter (1992). The
name “quasi-Monte Carlo” does not indicate that these se-
quences are somewhat random, but rather that they look
random; indeed they look more random than actual random
sequences, because the human mind is predisposed to see
patterns that are statistically insignificant.

The great attraction of low-discrepancy sequences is that
they produce an error of integration whose bound converges
as (log n)d/n. As this result suggests, quasi-Monte Carlo
methods are sometimes much more effective than Monte
Carlo. Perhaps because financial instruments usually have
payoff functions that are close to smooth, financial engi-
neering is a domain that is quite favorable for quasi-Monte
Carlo. Lemieux and L’Ecuyer (2001) give an overview of
quasi-Monte Carlo methods for financial computations.

Here it suffices to mention along with the rewards some
difficulties that beset the use of low-discrepancy sequences.
The superiority of the rate of convergence to that of Monte



Staum
Carlo does not guarantee that the low-discrepancy sequence
will outperform at a reasonable fixed sample size n. Al-
though theory specifies this favorable rate of convergence
of error bounds, in practice it is not easy to compute useful
error bounds in the first place. As there is no confidence
interval available, it is not simple to tell when the quality of
the estimate is adequate. There is also a potential pitfall: it
is possible for the sample size n to be too small relative to
the dimension d . The regularity of popular low-discrepancy
sequences is such that, while the points formed from the first
two coordinates (x1, x2) may cover the unit square evenly,
the points (xd−1, xd) cover it very badly, with a distribution
nowhere near uniform. Consequently, more care is required
when using quasi-Monte Carlo than Monte Carlo.

6 GREEKS

Within the theoretical framework of Section 2, the no-
arbitrage price V of a derivative security, or a portfolio
thereof, is a function of the initial value and parameters
ψ of the stochastic process that models the underlying
financial variables: V = V (ψ). The derivatives (in the
sense of differential calculus) of the price with respect
to initial values and parameters are called Greeks because
capital Greek letters symbolize several of the most common.
For an accessible introduction, see Hull (1999).

The Greeks are important in quantifying and reducing
risk. Financial institutions that sell derivative securities
usually hedge these sales, often by adding securities to an
existing portfolio in order to reduce its Greeks. A lesser
sensitivity to changes in the environment is supposed to
lead to less risk of significant loss.

Having simulated an estimate V̂ (ψ) of V (ψ), how can
one estimate a derivative of the form (∂V/∂ψ1)(ψ)? For
simplicity, write the price as V (ψ1), suppressing every other
component of ψ . An obvious way is to simulate another
estimate V̂ (ψ1+ε) of the portfolio value using a slightly dif-
ferent value of the parameter. Then (V (ψ1+ε)−V (ψ1))/ε is
the forward finite-difference approximation to the derivative
evaluated at ψ , and (V̂ (ψ1 + ε)− V̂ (ψ1))/ε is an estimate
of it. Somewhat better is (V̂ (ψ1 + ε)− V̂ (ψ1 − ε))/(2ε),
based on the central finite-difference approximation, but
this requires three rather than two simulations to estimate
the price and derivative.

These estimates have biases directly related to ε, be-
cause a finite-difference approximation is not the same as
a derivative. Their variances are inversely related to ε be-
cause they involve division by ε. Thus there is an optimal
ε for the sample size n. Even using the optimal ε, these
finite-difference estimates perform very poorly in that, for
typical problems, their root mean squared errors converge to
zero at the rates n−1/4 and n−1/3 respectively, more slowly
than the usual Monte Carlo rate of n−1/2. Using the same
random numbers in the simulations with ψ1 and ψ1 + ε can
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help a great deal by making V̂ (ψ1) and V̂ (ψ1+ε) positively
correlated, thus reducing the variance of their difference.
Even then, finite-difference estimates are still poor for the
Greeks of securities such as barrier options because of their
discontinuous payoffs.

Frequently, better methods are applicable. Broadie
and Glasserman (1996) describe methods based on differ-
entiating inside the expectation in the risk-neutral pricing
equation

V (ψ) =
∫

f (x;ψ)g(x;ψ)dx

where f (x;ψ) is the payoff on path x and g(x;ψ) is its
likelihood. The freedom one has in factoring the product
f g is important here.

For example, for the European call option in the Black-
Scholes model, the parameter vector is ψ = (S0, σ, r, T ).
One may write

f (x;ψ) = e−rT max
{

S0e
(
r−σ 2/2

)
T +σ√

T x − K , 0
}

g(x;ψ) = φ(x) (1)

so that the payoff is a function of a standard normal random
variable X whose density g has no dependence on the
parameters. Equally well one could write

f (x;ψ) = e−rT max {x − K , 0}
g(x;ψ) = φ

(
ln(x/S0)− (r − σ 2/2)T

σ
√

T

)
(2)

so that the parameters S0 and σ appear only in the density
g of ST , the terminal stock price.

Using the expressions (2),

∂( f g)

∂σ
= f

∂g

∂σ
= f

∂(ln g)

∂σ
g.

The derivative

∂V

∂σ
(ψ) = ∂

∂σ

∫
f (x;ψ)g(x;ψ)dx

=
∫

f (x;ψ)∂(ln g)

∂σ
(x;ψ)g(x;ψ)dx

because the log likelihood ln g is sufficiently smooth that
it is permissible to change the order of differentiation with
respect to σ and integration with respect to x . The result is
an expectation that simulation can estimate directly. This is
called the likelihood ratio method of estimating the Greek.
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Using instead the expressions (1), and writing ST =
S0 exp

((
r − σ 2/2

)
T + σ

√
T X

)
,

∂( f g)

∂σ
= ∂ f

∂σ
g = e−rT 1{ST > K }∂ST

∂σ
g

where 1{ST > K } is the indicator function for the event
that ST > K . The payoff is actually not differentiable
at ST = K , and it is now more difficult to justify the
interchange of differentiation and integration, but the result
is similar: a simulation of X according to the same density
g with e−rT 1{ST > K }∂ST /∂σ in place of the payoff gives
an unbiased estimate of the derivative. This is known as
the pathwise method.

These two estimators require some analytical work in
performing the differentiation and checking the conditions
that allow the exchange of differentiation and integration,
ensuring unbiasedness in estimating the Greek. These issues
are more complicated in the case of second derivatives.
Still, these estimators have the great advantage that with
them, a single simulation estimates the price and all desired
Greeks, whereas finite difference approximations require at
least one additional simulation per Greek. Both methods are
faster than finite difference approximations, and the pathwise
method is generally superior to the likelihood ratio method
when both apply.

7 AMERICAN OPTIONS

An American option has the feature that the owner may
decide to exercise it at any time up to a maturity date T ,
unlike a European option, which the owner may exercise
only at T , not before. Many financial options are American,
and the analysis of business investment opportunities as real
options has the same feature, making this an important topic.

Whereas the risk-neutral price of a European-style se-
curity with payoff f is EQ[ f (ST )], for an American-style
security it is

max
τ≤T

EQ[ fτ (Sτ )] (3)

where τ is a stopping time that does not exceed T . The
nominal payoff usually does not depend on time explicitly,
but the discounted payoff does depend on time, requiring
the notation fτ .

In this context, a stopping time is a possible policy for
making the decision to exercise: the decision whether or
not to exercise at time t can depend on the past up to t ,
but not the future. The stopping time τ ∗ that attains the
maximum is the optimal exercise policy, so the price is also
EQ[ fτ∗(Sτ∗)].

One minor difficulty that simulation faces in pricing
an American-style security is that the optimal exercise may
take place in between simulation steps. Simulation more
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easily prices Bermudan-style securities, for which exercise
is possible only at a discrete set of times t1, . . . , tm . The
fundamental difficulty is in determining the optimal exercise
policy. This is necessary for finding the price, and also for
the owner to make the correct exercise decision and for
the seller to hedge well. It is optimal to exercise when the
payoff from doing so now is greater than the continuation
value of owning the security if not exercised now, that is,
when

ft (St ) > Ct (St ) = max
t<τ≤T

EQ[ fτ (Sτ ) | St ] (4)

assuming the state vector process is Markov. To determine
whether this is true requires knowledge of a conditional
expectation whose value is not available in the simulation.

An obvious attempt at a Monte Carlo estimator is

1

n

n∑
i=1

max
k=1,...,m

ftk

(
S(i)tk

)

which for each path picks the best time to have exercised,
given knowledge of the entire path. This estimator is biased
high, because the best time to have exercised is not a
stopping time: it depends on the future and thus leads to
higher average payouts than are attainable in reality. Much
more useful biased estimators are possible.

For instance, Broadie and Glasserman (1997a) produce
a low-biased and a high-biased estimator from simulated
trees. In these trees, each path has b branches at each of m
steps, so branches are conditionally independent given their
most recent common ancestor, but are generally dependent.

Using dynamic programming to find the continuation
value and exercise decision on these trees still results in
a positive bias, but it is inversely related to the branching
factor b. On the other hand, using only some of the
branches to make the exercise decision and the rest of
the branches to estimate value produces a negative bias:
the stopping time is suboptimal and has no foresight on
branches that evolve conditionally independently. The total
cost is of order bm and thus decreasing the bias is expensive,
and it is difficult to handle problems with many exercise
opportunities. However, there is no trouble with high-
dimensional state vectors, and a confidence interval is still
available, by creating n independent trees.

Broadie and Glasserman (1997b) also propose a stochas-
tic mesh method which produces a low-biased and a high-
biased estimator. This method is designed to handle large
problems with a more manageable amount of work. In the
stochastic mesh, again each path has b branches, but the
total number of nodes at each step is only b. The paths are
drawn by connecting every node at step k to every node at
step k + 1, requiring b2 connections at each of m steps for
a cost of just mb2. The success of this method depends
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on a good way of choosing the weights associated with
these connections. Again, the high-biased estimator comes
from applying dynamic programming to the mesh, and this
time the low-biased estimator comes from generating en-
tirely new paths and using the suboptimal exercise policy
estimated from the mesh. It seems that to be effective, this
method requires intensive application of variance reduction.
Avramidis and Hyden (1999) do further work on improving
stochastic mesh estimators.

Another line of research combines simulation with
regression (Carrière 1996, Tsitsiklis and Van Roy 1999,
Longstaff and Schwartz 2001). These papers differ in their
details; what follows is an algorithm in their spirit. The
basic idea is to approximate the continuation value Ct (St )

in condition (4) by regressing the simulated rewards to
continuation on the state vector St .

Working backward through the possible exercise dates
tm , . . . , t1, the algorithm creates an estimated continuation
value function Ĉt and an estimated value function V̂t . At the
last step, V̂tm (Stm ) = ftm (Stm ). At step k on path i , the sim-

ulated reward to continuation from state S(i)tk is V̂tk+1(S
(i)
tk+1
).

Regression produces the estimated continuation value func-
tion Ĉtk fit to these rewards, and then V̂tk = max{ ft , Ĉt }.
This approach has had success in practice because most
American-style securities have a continuation value that is
easy to approximate well by regression on the state vector.

Tsitsiklis and Van Roy (2000) and Clément, Lamber-
ton, and Protter (2001) prove convergence results for such
regression-based methods. They are often much faster to
arrive at an acceptable approximation to the price than the
two Broadie-Glasserman methods, at least when the di-
mension of the state vector is low, but do not provide a
confidence interval with a guaranteed minimum probability
of containing the price.

However, using one set of paths to produce a suboptimal
stopping policy and a separate set of paths to estimate the
price using this policy will result in an estimator biased low.
Haugh and Kogan (2001) and Rogers (2001) offer methods
of producing an estimator biased high by considering the
dual of the American optimal stopping problem (3). Rogers
shows that this dual approach is related to the American
option seller’s hedging strategy and does not depend on
finding the American option buyer’s exercise policy and the
related low-biased estimator. Andersen and Broadie (2001)
describe a primal-dual simulation algorithm that is practical
for solving this important class of problems.

8 CONCLUSIONS

The application of simulation in financial engineering has
been a great success story and occasioned much fruitful
cross-pollination. Most evidently, financial simulations
draw strength from financial theory. One often has the-
oretical knowledge that makes simulation a more effective
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tool, because most financial problems are close to an an-
alytically tractable problem, or have analytically tractable
elements. This is the key to successful variance reduc-
tion and the invention of methods that extend simulation’s
applicability to new types of problems.

Also, as financial engineering becomes increasingly
important in the global economy, and the computational
power needed to solve more problems by simulation be-
comes increasingly affordable, more researchers investigate
simulation methods designed for financial problems. As
these problems are typically members of some class of
similarly structured problems from many domains, such
research arrives at methods of general applicability. In
financial engineering, as anywhere, the ideal simulation al-
gorithm takes advantage of all available knowledge of the
problem’s structure to deploy computational resources as
effectively as possible in reducing variance and any bias
that might be present.

Finally, one interpretation of present events is that the
success of simulation in financial engineering is having an
impact on financial theory. Mathematical finance is unset-
tled because its models do not describe financial processes
very well at all. Older models strove for simplicity and
analytical tractability at the expense of caricaturing reality
and fitting data poorly. Newer models tend to sacrifice
simplicity in exchange for capturing features of reality that
had been unaccounted for in the past: for instance, jumps,
stochastic volatility, heavy tails, and transaction costs. The
continuing success of simulation allows financial engineers
to adopt methods that do not yield analytical solutions and
are computationally expensive, but are more successful in
describing and controlling financial risks. The result of bet-
ter engineering should be more efficient markets and fewer
disasters.
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