
Proceedings of the 2001 Winter Simulation Conference
B. A. Peters, J. S. Smith, D. J. Medeiros, and M. W. Rohrer, eds.

DISTRIBUTED SIMULATION AND CONTROL: THE FOUNDATIONS

 Wayne J. Davis

Department of General Engineering
University of Illinois at Urbana-Champaign

Urbana, IL 61801 USA

ABSTRACT

This paper seeks a new simulation and execution paradigm
for the design and operation of complex systems. An ex-
panded life cycle for a simulation model is first provided. It
is assumed that complex systems can be represented as sys-
tems of interacting subsystems, which evolve by executing
tasks upon objects. Care is taken to distinguish the real
world where process execution occurs from the virtual world
where planning is addressed. It is illustrated that the ideal
model should be able to both evaluate and control the sub-
system that it addresses. The advantages of such approach
are discussed with relation to both validation and execution
needs. In particular, it is demonstrated that a distributed-
controller based paradigm could provide significant advan-
tages in the evaluation of the system using distributed simu-
lation. This form of execution is also contrasted to evolving
on-line simulation requirements that will support the real-
time distributed management of these systems.

1 INTRODUCTION

Computers and information technologies have accelerated
the construction of systems of ever-increasing complexity.
Moreover, society’s needs and desires will continue to
drive system development. The ability to analyze and
manage the emerging complex systems has not kept pace
with the system evolution unfortunately. Consider the re-
cent concerns with air traffic control systems. The consen-
sus is that the current traffic exceeds the operational capac-
ity at several major airports. However, this consensus
cannot be verified because one cannot determine capacity
of the current system or project how that capacity is af-
fected by disruptions. Moreover, one cannot predict if a
planned response will mitigate the disruption or will am-
plify its consequences with positive feedback.
 However, simulation modeling and analyses is the
only alternative for assessing performance of such complex
systems. Analytical approaches do not and probably will
not ever exist. The scientific/engineering community has
recognized the expanding chasm between the current simu-
187
lation capabilities and those needed to design and manage
the current complex systems. Presumably, this chasm
should influence the evolution of future simulation tech-
nologies. The chasm between capabilities and needs con-
tinues to widen, however. Given this state of affairs, one
must conclude that inertial barriers are constraining this
evolution, and these inertial barriers must arise from the
current paradigms underlying accepted modeling and
analysis practices. It now appears that the existing para-
digms may have taken us to a dead end from where there is
no possibility of bridging the chasm between needs and
capabilities.
 If this assertion is correct, then one must seek other
paradigms, and that is the intent of this paper. The paper
adopts a green-field approach, ignoring all available simu-
lation technologies and practices. The paper first defines
needs and then seeks means for addressing them. The pa-
per’s intent is not to provide a new paradigm per se. In-
deed, there may be more than one solution. Rather, the
goal is to discuss the essential capabilities that an effective
paradigm must provide.

2 THE LIFECYCLE OF A SIMULATION MODEL

A list of essential modeling requirements obviously de-
pends upon the model’s intended use. Existing simulation
practices primarily address the off-line analysis of a pro-
posed system or a modification to an existing system.
Many models are never verified because most models sup-
port the design of a proposed system. After the designed
system is implemented, there is limited, if any, future need
for the simulation model, and the model is abandoned.

Let us assume that a singular simulation model can be
employed during both the design and operation of a sys-
tem. Figure 1 provides a proposed lifecycle for a simula-
tion model. The lifecycle assumes that the system design
is also dynamic and distinguishes two primary application
phases: off-line (associated with system design) and on-
line (associated with system operation). This lifecycle will
initially be addressed as a serial process moving from sys-
tem conceptualization through design to operation and

Davis

maintenance. Later, design and operation will be consid-
ered as concurrent functions in order to allow the system
to be modified even as it operates.

2.1 Off-Line Stages

2.1.1 Conceptualization

The first stage is conceptualization where the boundaries
for the considered system are established. For example,
one might consider the air traffic control system for man-
aging all flights over the continental United States. Such
complex systems are best viewed as a system of subsys-
tems. The question arises as to what subsystems might ex-
ist, how each subsystem behaves and how the interactions
among the subsystems might be coordinated. Although
how one decomposes a complex system into its constituent
subsystems may not be unique, basic rationales do govern
the decomposition process, including temporal, spatial and
functional considerations as well as a need to view the sys-
tem at multiple levels of granularity.

Consider temporal relationships. The overall system
as well as an individual subsystem can address multiple
time domains. An airport’s traffic control might be inter-
ested in the immediate runway operations, the projected
number of operations that will occur during the next hour
and the potential disruptions that might evolve if a fore-
casted storm occurs in the afternoon.

There are also spatial considerations. The continental
United States is divided into several air control regions.
Each of these regions is then subdivided into sectors both
on a geographical and altitudinal basis. In addition, the
airspace in the immediate vicinity of an airport is desig-
nated for dedicated control. Clearly, a management struc-

Figure 1: Expanded Life Cycle for a Simulation Model
188
ture is required to coordinate the traffic within each re-
gion/sector/airport.

There are also functional relationships. Landings and
takeoffs may be considered by different controllers at a busy
airport. Certainly, runway operations will be segregated
from ground operations. Each spatial subsystem can also
contain numerous physical/system elements. At an airport,
system elements include passengers, planes, airlines and
their personnel, general aviation providers, and the control-
lers. There can also be multiple linkages among the similar
system elements across the spatially defined subsystems.

Because different system elements within a given sub-
system must address different functions on different time
domains, it follows that each subsystem will consider the
system state at different levels of granularity. One control-
ler might view the arrivals to a given airport as simply an
anticipated arrival pattern. Another controller might con-
sider each plane on an individual basis, but not know the
individual passengers traveling on the flight. However,
the airline must have a list of passengers in each flight.

Requirement 1: A modeling paradigm must intrinsically
support all modes of decomposition in order to specify
the constituent subsystems that comprise the overall sys-
tem and the fundamental relationships among these sub-
systems. The goal is to achieve a system-of-systems per-
spective for viewing the entire system.

Next, the operational capabilities for each subsystem

must be described. Each subsystem might include several
system elements. Some of these elements are acted upon.
For example, passengers must board the plane before it de-
parts from the gate. The plane must also be serviced and
inspected. Some of the elements will act upon the others.
For example, one or more airline personnel assist with the
boarding operation. The pilot performs the final inspection
and commands all plane operations between the departure
from a gate and the arrival at the next gate. In order to
model any subsystem, one must be able to define what
tasks or operations can be executed, what system elements
are involved and the specific procedures for executing a
given operation. Furthermore, executing a singular task
may involve several distinct subsystems at different times.
For example, as a given flight travels from Washington
National/Reagan Airport to Chicago O’Hare, it crosses
several air traffic control regions and sectors. Clearly, one
must also specify how tasks/operations can be transferred
from one subsystem to another or coordinated. A task exe-
cution at one subsystem might also cause future tasks to
occur at other subsystems. For example, a takeoff at one
airport necessitates that a future landing will hopefully oc-
cur at another airport.

Requirement 2: Systems evolve as they execute proce-
dures or tasks. A modeling paradigm must address
the task execution process within each subsystem and

Davis

the associated mechanisms for coordinating task exe-
cution among the subsystems.

The goal is to expand the scope of model application in

order to support the management of the operational system.
Defining the management structure becomes a critical com-
ponent of the design and task execution process. Obviously,
the operational constraints arising from the included man-
agement structure must be described within the model.

2.1.2 Translation

The next step in the life cycle is to construct the model. In
some instances, a physical model or prototype may be con-
structed. More often, simulation studies employ computa-
tional models. One might employ a commercial simulation
package to create the computational model in such cases.
However, few available packages can support the modeling
requirements discussed above. Alternatively, one might
employ a general programming language as C, C++ or
Java. Simulation models are often object-oriented, and it
may be beneficial to adopt an object-oriented programming
language. However, such an adoption is not essential.

While generating the model, one must also consider
how the model will be executed. Today, two basic execu-
tion modes are employed: execute the model on a single
processor or distribute the model across several processors.
The decision to employ a distributed computational envi-
ronment is often made after the model has been specified.
Unfortunately, such an approach ignores the possibility
that different modeling paradigms might provide models
that are easier to distribute. Moreover, the conventional
(single-threaded) processing and distributed (multi-
threaded) processing are not the only two options.

Before seeking other execution modes, let us recon-
sider the model from a response perspective. The compu-
tational model itself can be viewed as a description of all
possible responses that could occur when it is executed.
For stochastic systems, it is impossible to delineate every
possible state trajectory. Nevertheless, the model might
permit one to characterize summary features of the con-
tained responses. One typically employs the computational
model to sample a collection of state trajectories within an
experiment in order to predict statistically the system’s per-
formance for a particular assignment of values to the in-
cluded design variables. One can also consider a singular
trial. This latter execution mode often arises in training
situations, where the trainee interacts with the system as its
simulated state trajectory evolves and takes action that in-
fluence the system’s future response.

The above execution modes are associated with off-line
applications. With respect to the latter two cases, either sin-
gle-threaded or multi-threaded (distributed) computational
methods might be employed. Other execution modes also
exist for on-line applications. In the second case described
above, one projected the conditioned response of the system
189
derived from a given assignment of design variables. In an
on-line simulation, one might project the conditioned near-
term response, given the current system state and the se-
lected control policy for managing the considered subsys-
tem. Given that each individual component subsystem must
be managed, each subsystem requires its own subsystem
model in order to project its future performance.

That is, any subsystem might perform a dedicated on-
line simulation for its near-term response as it continues to
operate in real-time. Given that different systems consider
different time horizons, the dedicated on-line simulations
would be customized to project the response for an appro-
priate time-period. In addition, a given subsystem might
perform more than a single on-line simulation in order co-
ordinate its response with the other subsystems with which
it interacts. In particular, the outputs from the detailed on-
line simulations of one or more subsystems could statisti-
cally characterize the initial state from which another sub-
system performs another less detailed on-line simulation
over an extended horizon. It is critical that one distin-
guishes the latter situation from the typical distributed
simulation scenario. A conventional distributed simulation
addresses a singular experiment with a given model. On-
line applications require multiple experiments to be con-
ducted concurrently across a collection of subsystems or
within a given subsystem. Moreover, the interaction
among subsystems may require an on-line simulation by
one subsystem to be concurrently coordinated with another
on-line simulation within a different subsystem.

Requirement 3: The simulation paradigm must sup-
port, if not facilitate, the various execution modes that
can occur in both off-line and on-line applications. In
particular, the paradigm should employ intuitive state
definitions that will permit the simulation trial to be
easily initialized to a measured or projected system
state and simulated responses to be shared among in-
teracting subsystems.

2.1.3 Verification

Verification represents a feedback mechanism that insures
that model specifications have been faithfully incorporated
within the computational model. Conventional simulation
tools often force the modeler to modify one or more speci-
fications in order to allow the model to be described with
the tool’s included objects. Some modeling specifications
are nearly impossible to achieve within a given modeling
paradigm. For example, stochastic queuing networks gen-
erate system responses as a collective set of local responses
occurring at the included nodes. It is difficult to model and
assess the performance constraints associated with a pro-
posed control architecture using this paradigm.

Davis

2.1.4 Design

Several processes can be initiated after the model is cre-
ated. Using off-line analysis, the designer can explore al-
ternative assignments for the included design variables in
order to enhance the system’s expected performance.
Given that the model should also consider the control ar-
chitecture, the designer might also explore different con-
troller specifications for managing individual subsystems
and the interactions among the subsystems.

2.1.4 Training

Most complex systems also require one or more humans to
interact with various subsystems while the system operates.
In this regard, the control structure must first provide accurate
information in order to assist the operator in selecting and im-
plementing an appropriate course of action. Training often
involves the trainee interacting with a singular simulated tra-
jectory as it evolves in real time. It may be difficult to con-
duct comprehensive training sessions where all operators con-
currently participate because a complex system can employ
many operators. Therefore, the overall model should provide
submodels that can be effectively employed to train an indi-
vidual operator in the management of a particular subsystem
as it would evolve while interacting with the other subsys-
tems, even though their operators are not present.

The review process that follows a training exercise is
also critical. Here, an instructor might query the trainee re-
garding a particular course of action that s/he selected at a
given point during a training session. Ideally, the instructor
would desire to return the simulation exercise to state where
the trainee elected a questionable course of action and assess
the consequences that might have evolved if an alternative
course of action was adopted. In order to have this capabil-
ity, the modeling paradigm should provide a temporal state
representation that can be easily stored and replayed as de-
sired. Any stored state should also provide an initial point
from which a subsequent training exercise can be initiated
and stored as another trajectory. This may appear to be un-
realistic request, but remember that one can now store fea-
ture length movies on a single DVD. The proposed replay
mechanisms would also assist the verification process.

2.1.5 Validation

The above steps (Conceptualization, Translation, Design,
Training and Verification) only address off-line analyses
preceding the implementation of the system. That is, these
steps can occur even if the physical system does not exist.
Presumably, the desired outcome of the design process is
the construction and operation of the designed system.

Recall that the verification process sought to insure
that model specifications had been faithfully addressed
within the computational model. Verification cannot check
190
the validity of the model specifications defined during the
conceptualization. The validity of these specifications can
only be checked by comparing the simulated performance
projections against the actual system performance. The
goal of validation is then to refine the model so that it cor-
rectly replicates the system behavior. Generally, validation
is also addressed as an off-line procedure.

The need for model validation is sometimes questioned
after the design system has been implemented. However, if
one seeks to improve the system’s design further, then one
should first improve the model’s accuracy. Thus, with a more
accurate model, one can initiate the next design cycle for im-
proving the system. Such improvements might be directed
solely toward a more efficient execution of the current tasks
the system can address. The redesign process might also seek
to expand the capabilities of the existing system in order to
permit it to perform additional tasks. The redesign process
still represents an off-line analysis of a proposed system that
currently does not exist even though this redesign process can
be addressed while the actual system operates .

Uses of the simulation model within the on-line opera-
tion of the existing system will now be discussed. Before
addressing on-line applications, however, one first must
distinguish the real world from the virtual world. The op-
eration of the real-world system provides a real response
that can be observed and measured. The simulation exer-
cise creates a virtual response projecting what could hap-
pen. The validation process contrasts that virtual response
against the actual response for a given set of conditions.

2.2 On-Line Considerations

On-line applications necessitate an immediate interaction

between the real and virtual worlds. Davis (1998) discusses
the on-line simulation process where the simulation trial is ini-
tialized to the current state of the system and its future re-
sponse from that state is then projected under a specified set
of operating conditions. He continues to discuss how one
might employ on-line simulation analyses to compare alterna-
tive strategies/courses of action for execution given the cur-
rent state. His discussed approach is an elaboration of prior
applications of simulation to scheduling tasks where the future
performance is projected and compared against the actual per-
formance. The deviations between the predicted (virtual) and
real-world response are monitored under these prior schedul-
ing applications. Whenever these deviations become signifi-
cantly large, the simulated virtual projection is then updated
(i.e. the model is re-simulated). Davis (1998), on the other
hand, advocated that the on-line simulations occur constantly
as the system evolves. That is, one should not wait for the de-
viations to grow in order to justify further simulation.

Unfortunately, none of these past approaches ade-
quately support the on-line management of a complex sys-
tem. Prior approaches have focused upon the future evolu-
tion of a given subsystem. Complex systems are

Davis

comprised of a set of subsystems that must be coordinated.
Addressing a single subsystem’s problem independently of
the other subsystems with which it interacts is insufficient
for the management of the overall system. In many cases,
it is actually counterproductive. One must consider the co-
ordinated response of the entire set of included subsystems
as they interact under the coordination of the included
control architecture.

In order to define the requirements for supporting the
on-line system operation, one needs to return to the funda-
mental principles under which the system operates. The
overall system evolves as it included subsystems perform
tasks. In most cases, the execution of tasks is goal-oriented.
That is, the system (with its subsystems) has a purpose or
reason for changing its state. Consider the air transportation
system. The flights do not occur simply to move planes
from one location to another. Rather the flights transport
customers (passengers) or cargo between locations. Simi-
larly, a manufacturing system makes product to sell.

Let us assume that the subsystems perform their tasks
upon other objects or entities. Because real-world systems
are being considered, let us assume that these objects are
real and reside in the physical world. On the other hand,
most planning and coordination occurs in the virtual world
where one seeks to assess the consequences of a course of
action before it is implemented.

If one assumes that subsystems exist to execute tasks,
then their tasks must be assigned in a manner that is consis-
tent with the overall goal for the system. Let us assume that
every subsystem can interact with a set of other subsystems
from which it receives tasks for execution. After receiving
an assigned task, a given subsystem may further decompose
the assigned task into subtasks and then seek the assistance
of other subsystems in executing the generated subtasks.
Eventually, this proposed task (re)assignment process pro-
vides a collection of subtasks that can be immediately exe-
cuted upon a real object. When such a situation occurs, no
further task decomposition is needed. Rather, the assigned
task is executed upon the real object by a real-world process.

Clearly, one must be able to model the state evolution
of the real-world objects as they are processed in the real
world. This evolution is necessarily constrained by the
processing plan that defines which tasks will be performed
upon the object. In Figure 2(a), the process plan is graphi-
cally depicted. At the left there is a circle representing the
real-world object that is to be processed. A sequence of
arrows is included to the right of the object, each represent-
ing the subtasks that are to be performed upon the object.
Each indicated task arrow include subtasks that can be
executed at a single given process. Therefore, in order for
the considered object to progress along the processing plan
from one task arrow to the next, the object must physically
move from one process to another.

The goal in processing the object is to consume the
process plan. As each processing task is finished, the state
of the considered object changes. In a sense, the remaining
191
processing steps provide a manner for one to predict how
the object will evolve as it is processed by the system.
Hence, the object in Figure 2(a) represents the original ob-
ject before any processing is initiated. As each task is exe-
cuted, the circle advances to right. The tasks to the right of
the object represent the remaining processing plan. The
executed tasks are horizontally flipped and placed to the
immediate left of the object as they are executed. The se-
quence of left-facing arrows to the left of the object repre-
sents its prior processing history. Hence, the object in Fig-
ure 2(b) denotes the object at its current state after the first
two tasks have been executed. If the object moves forward
along the remaining process, its future state changes can be
projected. On the other hand, if one moves backward
along the object’s processing history, one can presumably
backtrack the executed tasks in order to return to the origi-
nal object shown in Figure 2(a). In Figure 2(c), the case
where all of the tasks have been executed is represented.

Figure 2 depicts the case where the process plan is de-
fined before the object enters the system. Other situations
also exist including process plans with alternative paths,
process plans with loops to allow rework, process plans
that evolve at the time of execution. Unfortunately, there
is insufficient space to discuss these other situations.

Given this assumed structure for a processing plan, the
modeling of an individual subsystem can be addressed. At
any given time, the subsystem has a set of assigned tasks to
be executed by elements within its control domain. The
subsystem receives these tasks from other subsystems,
called its Assignors. In executing an assigned task, the
subsystem usually decomposes the task into subtasks (us-
ing prescribed procedures) and then reassigns the gener-
ated subtasks to other subsystems, which are termed its
Acceptors. The proposed relationship is depicted in Fig-
ure 3. In the depicted general case, a subsystem executes
tasks by reassigning them as subtasks. However, if the
subsystem is a real-world process, it physically can per-
form a physical task upon a real object. Moreover, as the
complex system operates in real time, its physical state
evolves through the task executions occurring at the real-
world processes. Processes can have no Acceptors because

Figure 2: A Processing Plan and its Execution

(a)

(b)

(c)

Davis

the act within the real world in real time. They must exe-
cute the tasks that they are assigned.

On the other hand, the more general subsystem relies
upon its Acceptors to execute its assigned tasks. Conse-
quently, it physically cannot act in the real world or in real
time. Rather, it considers a virtual world of what could hap-
pen as its assigned tasks are executed by its Acceptors in the
future. It must also rely upon its Acceptors to describe its
current state because they are responsible for executing its
reassigned subtasks, which will cause its state to change.
One can also assume that the given subsystem has other as-
signed tasks, which it has not yet decomposed or reassigned.
The subsystem’s controller must seek a plan for the reas-
signed execution of these remaining tasks. Using the feed-
back information from its Acceptors, the subsystem’s con-
troller then employs on-line simulation to project its
statistical performance should it adopt a given reassignment
strategy. Observe, however, that this on-line simulation is
being initialized to the projected future state for its Accep-
tors as they execute their currently assigned tasks. Conse-
quently, the subsystem’s simulated trajectory resides entirely
within the virtual world of the future. Its on-line simulated
state trajectory cannot consider the current time because
only real-world processes can act in real time.

Let us now view each subsystem as a pipeline that re-
ceives tasks from its Assignors and transports them as sub-
tasks to its Assignors. A subsystem’s primary on-line
simulation projects the flow for the tasks that are currently
in its pipeline or have been reassigned to its Assignors. If
new tasks are not accepted, then the subsystem’s pipeline
becomes empty. Therefore, a subsystem must constantly
seek new tasks from its Assignors as inputs to its pipeline.
Each Assignor also represents another pipeline containing
its accepted tasks that are to be reassigned as subtasks to its
set of Acceptors, to which the considered subsystem be-
longs. Each Assignor is also performing its own on-line
simulation that is initializes to projected future state of its
Acceptors (that includes the considered subsystem) as they
execute their currently assigned task.

Usually, the granularity of an Assignor’s on-line simu-
lation is less detailed than that of any Acceptor, including
the considered subsystem. Hence, when the considered
subsystem interacts with an Assignor, the Assignor expects
the considered subsystem to provide a more detailed as-

Figure 3: Basic Relations among Subsystems
192
sessment of the probable outcome should a given task be
assigned to the considered subsystem. In this regard, the
considered subsystem interacting with the particular As-
signor performs another on-line simulation to assess the
consequences of making a proposed assignment before the
assignment actually occurs.

The considered subsystem also acts as an Assignor to
its Acceptors’ interface between the considered subsystem
and its Acceptors. A recursive nature results where each
subsystem performs an internal on-line simulation pertain-
ing to the execution of the tasks currently in its pipeline
and two shared on-line simulations: one in conjunction
with its Acceptors and the other in conjunction with its As-
signors. Moreover, these three on-line simulations can
occur concurrently within any given subsystem.

The subsystem employs the same model in implement-
ing all three on-line simulations. In fact, the on-line simula-
tions differ only in the set of considered tasks. One on-line
simulation projects the outcome of the current assigned and
reassigned tasks. Another projects the outcome if additional
tasks are accepted. The latter projects the outcome if addi-
tional subtasks are reassigned. Given the multiple uses, the
subsystem’s model must explain the task acceptance, de-
composition and reassignment processes. In short, the sub-
system’s model must depict the behavior of its controller as
it moves tasks through the subsystem’s pipeline. Ideally,
the model should be the controller for the subsystem. If this
situation could occur, then the collection of subsystem mod-
els immediately comprises the set of controllers that forms
the control architecture; and more importantly, this feature
significantly simplifies the validation process because the set
of system models and controllers are one and the same.

The remaining components within the overall system
model are the process models. These processes exist in the
real world and can be modeled using traditional engineering
approaches. For example, one can physically model the dy-
namics of a robot, a milling machine, an aircraft and so forth.
Each of these physical processes has its dedicated controller
and instruction set for interacting with process. In fact, many
physical processes are now shipped with dedicated software
emulators that permit one to verify that a generated set of in-
structions provides a desired response or outcome.

Knowing what subsystem models are needed, the next
step is to define the system’s architecture and its concept of
operation governing the interactions among the included
subsystems. Let us begin with the included collection of
real-world processes. The task execution of these proc-
esses causes the real-time state evolution of the overall sys-
tem. However, these processes must be connected to the
control architecture in order to receive tasks. Therefore,
each process must have at least one Assignor

Most subsystems, including all processes, will have
Assignors. The Assignors for one or more subsystems
may reside outside the environment of the considered sys-
tem because one must arbitrarily define the boundary of
the considered system. These external Assignors provide

Davis

the exciting force upon the addressed system. Hence, ex-
ternal Assignors must exist and are essential.

Now consider any subsystem within the system that is
not a process. Through its Acceptors, it can indirectly as-
sign tasks to a subset of the included processes. One could
derive more general connectivity principles, but let us sim-
ply assume that an exciting task assignment from the envi-
ronment will be sequentially decomposed into a sequence
of subtasks that ultimately will be executed at the proc-
esses. Moreover, if the decomposition results in any sub-
task that cannot be executed with the included processes,
then the task cannot be executed by the overall system.

Obviously, the next step is to define what tasks can be
executed by the considered system. Because the tasks that de-
termine the system’s physical evolution in real time are exe-
cuted upon other physical objects at the system’s included
processes, one must define first the set of objects that will be
acted upon and what tasks will be performed. Because each
of these tasks occurs at a physical process, one can write the
instruction set for the task in the dedicated instruction lan-
guage for the appropriate process. Also, observe that the exe-
cution of any task upon an object at a process may require ad-
ditional objects or resources. In a manufacturing setting, one
might need an operator to install the object into the machine
and then monitor the machine’s operation. Often the ma-
chined object will be placed into a fixture (another resource)
prior to this installation. A given machining operation may
require a tool, yet another resource.

In some cases, the output from the processing of one
object might become the input for the processing of an-
other object. For example, when one assembles an auto-
mobile, numerous components are sequentially attached to
the assembled object. Each of these components must ei-
ther be manufactured or assembled from other components.

 Given the set of tasks that will be assigned to the sys-
tem from its environment, the essential task decomposi-
tion schemes must be defined in order to allow each exter-
nal exciting task to be executed using predefined subtasks
that can be executed at the included processes. An incom-
ing task is then treated as an object (or order) to which a
sequence of remaining processing steps is attached. As-
suming that a given controller (other than a process con-
troller) is now managing a particular order, the controller
determines the next process that the order should visit and
selects an appropriate Acceptor through which that process
can be accessed. The selected Acceptor is then asked to
Accept the order and execute one or more remaining proc-
ess steps. This iterative assignment process continues until
the Acceptor is the required next process.

When an Acceptor accepts a task, it must take physical
control of the object upon which the task is to be per-
formed. In the real world, this implies additional support-
ing/enabling tasks may be required for the transfer of
physical control to occur. In a manufacturing setting, a
material handler might retrieve the involved object from
193
one workstation and deliver it to another. Observe, how-
ever, that the material handler is also a physical process
that can change the physical location of the object.

The basic conversation among the controllers is very
simple. The Assignor first requests an Acceptor to Accept
the object and then to Execute a specified task upon the ac-
cepted object. After the Acceptor accepts the object with
its assigned task, it provides feedback information pertain-
ing to when or if the task has been completed. This feed-
back information is generated when the Acceptor performs
an on-line simulation pertaining to the planned execution
of its assigned tasks. There is one concern, however. Ide-
ally, the Assignor desires to know if the Acceptor can exe-
cute that task before the actual assignment occurs. There-
fore, a provision should be included to allow the Assignor
to Pre-qualify the Acceptor before the Assignment occurs.
In the performing the Pre-qualification, the Acceptor ad-
dresses the following concerns:

• Insures that the current state of the process will

permit it to execute the task
• Determines what additional resources must be as-

similated in order for the task to be executed and
• Projects when the task might be finished, assum-

ing that the needed resources will be delivered by
a specified time.

This Pre-qualification requires the Acceptor to look

ahead in order to determine how its managed subsystems’
state might evolve should the task be assigned. This look
ahead is addressed through its on-line simulations and its
subsequent requests of its own Acceptors to Pre-qualify
any subtask that could evolve from the decomposition of
the proposed task assignment.

In general, the Assignor conducts a sequential com-
munication with its appropriate Acceptor with the instruc-
tions to Pre-qualify, to Accept and to Execute each subtask
derived from the decomposition of an assigned task. The
feedback information from the Acceptor’s Pre-
qualification determines what might happen if the task is
assigned and when the task will be completed after the task
has been assigned. Since this feedback information pro-
jects a future outcome, it represents planning within the
virtual world. The principal exception involves the process
because their controllers typically do not have an installed
planning capability. Rather, a process simply Accepts the
object with the assigned task (in its instructional language)
and then Executes the task. The process then notifies the
Assignor when the task is completed.

2.2.1 Implementing Model as a Distributed Controller

This paper previously advocated that the model for a manag-
ing subsystem and the code that implements its controller
should be the same. One must now distinguish the execu-

Davis

tion of the collection of management subsystems during the
typical simulation of the overall system’s response versus
the on-line operation of the system where the same models
manage the systems response. The on-line management ap-
plication will be considered first. Managing subsystems
must behave both as an Acceptor and an Assignor while
functioning as pipelines for the execution of tasks. Observe,
however, that the interaction among managing subsystems
does not change the physical state of any physical entity.
Rather, it changes which entities a managing subsystem con-
trols and the assigned tasks it has agreed to execute.

The managing subsystems interact by sending messages
as described above. Each managing subsystem knows its
Assignors and Acceptors. Hence, it knows from which sub-
systems it can receive messages, the type of messages it will
receive and how it should respond. Whenever a managing
subsystem receives a message, it triggers the execution of its
model that serves as its controller. The message processing
is a singular-threaded execution that causes an internal
change of the controller’s state within its virtual world. The
message process may also cause messages to be sent to other
controllers either now or at some future time. When the
controllers are managing the real system, they will likely
transfer their messages via a communication network.
However, distinct controllers need not be situated upon dis-
tinct computers nor do all the controllers need to be onsite.
It is only necessary that one controller can send messages to
another controller in an expeditious manner.

Physical processes must be managed because the sys-
tem is operational. Each of these processes usually has its
own dedicated controller implemented upon a microcom-
puter processor or a programmable logic controller. These
process controllers must communicate with their managing
controllers, Assignors. Often, serial communication means
such as RS-232 are employed, but it is sometimes possible
to communicate with these specialized process controllers
over a conventional Ethernet LAN. These process control-
lers must receive their tasks in their dedicated instructional
language from their assigned Assignor. Often, the special-
ized process controller will be attached directly to the

Figure 4: Proposed Configuration for Enabling Com-
munication among the Controllers
194
computer where its Assignor resides. This is particularly
true when serial communication is employed.

However, experience with real-world systems has dem-
onstrated that the configuration depicted in Figure 4 is more
versatile. In this scenario, a message server is included that
receives all transmitted messages and then routes them to their
appropriate addresses where the recipient controller’s code is
executed. The address for a managing controller is typically
an IP node. The process controllers are usually attached to the
message server if serial communication is employed or as-
signed an IP node if they can receive their messages from an
Ethernet LAN. Observe that Figure 4 includes a partition be-
tween the virtual world addressed by the managing controllers
and the real world within which the process controllers act.

Let us focus on the message server’s operation. Incom-
ing messages are received and routed to their destination
with minimal delay. The recipient controller processes the
message and then routes its responses to other controllers
through the message server at the appropriate time.

The proposed message server’s operation further pro-
vides the basis for simulating the entire system using the
same set of subsystem models as shown in Figure 5. In im-
plementing a simulation of the entire system, each real proc-
ess is replaced with the computer code (often supplied by
vendor) that emulates its processing. These emulators
should employ the same instruction set as the actual process.
The subsystem’s models can be located upon a single com-
puter because every subsystem model executes as a singular-
threaded computation. A software implementation of the
message server models the communication among the con-
trollers and controls the simulation as follows:

Figure 5: Configuration for Simulating System where
Controllers Interact via a Virtual Message Server

Davis

The queued messages are stored in chronological order
based upon their desired delivery time. After a message is
processed, the simulation time is advanced to desired de-
livery time for the next message in the queue. The mes-
sage with the computational thread is then forwarded to the
recipient controller whose included model processes the
message and generates the appropriate response(s) to
specified recipient(s) and at a specified delivery time(s).
These messages, along with the computational thread, are
returned to the message server, which then inserts the new
messages into its chronological ordered message queue.
The next message is then removed from the queue and the
simulation time is advanced to its delivery time. The mes-
sage and the computational thread are then passed to the
next designated recipient controller.

195
2.2.2 Implementing Model as a Distributed Simulation

The proposed operation is very similar to the conventional
processing of a scheduled event queue in most current
simulations. Thus, it should also be possible to implement
the simulation in a multi-threaded distributed environment
using available distributed simulation techniques because
of this similarity. Fujimoto (1999) provides an excellent
discussion of the current techniques.

In order to demonstrate how a modeling architecture
might enhance one’s ability to perform distributed simula-
tions, let us consider the operation of the multi-level sys-
tem pictured in Figure 6. The overall system is comprised
of seven subsystems. Subsystem 1 serves as the Assignor
to the accepting subsystems 2 and 3. Subsystem 2 man-
ages or serves as the Assignor to processes 4 through 7.
One can assume that subsystem 3 also manages processes.
However, its processes have not been included in order to
simplify what is already a complex figure.
Figure 6: Proposed Hierarchical Task Decomposition as a Foundation for Distributed Simulation

Davis

Currently, objects A through G are being processed by
the system. These objects are depicted o the left of subsys-
tem 1, as they were initially assigned. The included white
arrows represent the sequence of tasks, with supported
tasks included, that are to be executed by the processes un-
der the control of subsystems 2 and 3. The shaded arrow
before the circle represents the processing history that oc-
curred before the object arrived at subsystem 1. Hence, the
circle for the object at input represents its state at the time
it arrived at subsystem 1. To the right of the large arrow
that represents subsystem 1 is the desired goal state for
each object where all the assigned tasks have been exe-
cuted. Note in this case, all the original task arrows have
been flipped to represent their completion and the object
state is represented by a circle to the right of the completed
tasks. The rightmost shaded arrow for any object repre-
sents the tasks that will remain after the currently assigned
tasks are executed.

Within the large arrow that represents subsystem 1, the
current state of each of the processed objects is repre-
sented. This case assumes that a portion of the assigned
tasks have been executed upon each object and the arrow
immediately to the right of the circle represents the current
task that is being executed. In order to simplify the discus-
sion, let us assume the objects have been labeled such that
the next task for objects A through D will involve proc-
esses under the control of subsystem 2 while objects E
through G have a next task that requires processes man-
aged by subsystem 3. Let us also assume that the next task
has been assigned for objects A through D to subsystem 2,
which is indicated by drawing a dashed rectangle around
their next tasks and projecting that rectangle onto the input
of subsystem 2. Similarly, the next tasks for objects E
through G are indicated as the inputs to subsystem 3.

Now let us focus upon subsystem 2. The desired out-
put for subsystem 2 requires the completion of the next as-
signed task as indicated to the right of the subsystem 2’s
representative arrow. Within the arrow representing sub-
system 2, the current state of subsystem 2 is indicated as it
processes its assigned tasks. Observe, however, that the
assigned task for each object has been further decomposed
into a set of subtasks that will be executed at processes 4
through 7 that it manages. For object A, the first subtask is
currently being addressed by process 4. For object B, the
first subtask has been completed, and the second subtask is
being addressed by process 5. Several subtasks have al-
ready been executed upon object C and the next subtask is
waiting to be assigned. One can assume that this next sub-
task must not require process 6, which is currently idle.
The last subtask upon object D is being addressed by proc-
ess 7. Again, these assignments are depicted by the dashed
rectangles that are projected onto the input side of the ap-
propriate process. Observe also that a similar reassign-
ment of subtasks for objects E through G should have oc-
196
curred at the processes managed by subsystem 3, which
have not been included in the figure.

Now let us look at the processes. Each process is single
threaded and can only process a single object at a time. On
the other hand, subsystems 1 through 3 are multi-threaded
and can manage several objects concurrently. Remember
also only the processes can act in real time and this is where
the physical changes to processed objects occur. Given that
one knows when each process was assigned its current proc-
essing task, one can sample the future time when the current
task will be completed. At this point, the physical state of
the involved object will cease to change until its next sub-
task is assigned to the appropriate process. With respect to
objects A, B and D, subsystem 2 has two options. Allow the
assigned processing subtask to be completed or interrupt
(preempt) a current processing task. Let us postpone the
preempting option for the moment. In this case, subsystem
2 knows when each of the ongoing processes will be com-
pleted because each process samples its completion time and
then posts it with subsystem 2.

Subsystem 2 is primarily interested in two future
events. The first event is when a new processing thread
can be initiated upon another object. The second event is
when all the subtasks for a given object have been com-
pleted, implying that it has completed the next primary task
upon the given object as assigned by subsystem 1. Let us
consider some special cases:

Case 1: Object C is waiting for process 4. On the
other hand, process 4 is scheduled to complete its cur-
rent subtask upon A before the other processes com-
plete their current tasks. Therefore, as soon as process
4 completes its current task, it can immediately initiate
the next processing subtask on C.

Case 2: Objects A, B and C will all need process 7 to
address their next subtask. Let us assume that processes
4 and 5 will complete their current subtasks before proc-
ess 7. Hence, the next time a new processing subtask
can be initiated is when process 7 finishes its current ef-
fort upon object D.

Case 3: After process 7 finishes its current task upon
object D, subsystem 2 will have completed the entire
sequence of subtasks for executing the next primary
task for object D. Therefore, when process 7 finishes,
subsystem 2 can notify subsystem 1 that it has com-
pleted its assigned task upon object D.

Subsystem 2 can compute the minimum time at which

it can initiate a new processing subtask at one of its man-
aged processes or the time it will finished an assigned task
on one of the assigned objects because it knows the sam-
pled completion time for each process. Let us refer to the
minimum time that either of these situations will occur as

Davis

subsystem 2’s next event time. Subsystem 2 computes its
next event time and posts it with its Assignor or subsystem
1. If the next event corresponds to the completion of an
assigned primary task upon a given object, the posted next
event time is accompanied with the message that subsys-
tem 2 uses to notify subsystem 1 that it has completed an
assigned task upon the given object. In a similar fashion,
subsystem 3 also computes its next event time.

Let us now consider the case where the next event
time for both subsystem 2 and 3 corresponds to a simple
initiation of a next processing subtask. No message will be
sent to subsystem 1 in this case. Subsystem 1 responds by
pulling the next event time from either subsystem 2 or 3,
depending upon which subsystem has posted the smallest
next event time. At this point, the subsystem whose posted
next event time was pulled is authorized to perform any
system updates up to the posted event time. Observe that
this could necessitate several processes would update their
state also. The updating subsystem (2 or 3) would tell the
processes to update their state to the completion of their
current task by issuing the command to return the involved
object at its sampled completion time. After all the updat-
ing has occurred at the involved processes, the updating
subsystem (2 or 3) computes its next event time and posts
it with subsystem 1.

Now let us investigate the case where the next event to
be considered by subsystem 1 corresponds to the completion
of a primary subtask that it assigned either to subsystem 2 or
3. In this case, an appropriate completion message will be
transmitted with the posted next event time. Subsystem 1
will respond to the appropriate subsystem with a return re-
quest at the posted next event time. At this point, the recipi-
ent subsystem can update its state to that posted event time.
Again, several other processes might need to update their
state to reflect the completion of any processing subtask that
occurred before the posted event time.

Subsystem 1 also has the option to assign a new task
to either subsystem 2 or 3. For example, after subsystem 2
completes the current task upon object D at process 7, sub-
system 1 can assign object D’s next primary task either to
subsystem 2 or 3. Also observe that subsystem 1 will
eventually complete its assigned tasks upon objects A
through G. If no new tasks are assigned to subsystem 1,
then it and its managed subsystems become idle. There-
fore, one can assume that subsystem 1 has an Assignor,
which is not illustrated in Figure 6.

That same assignor may manage several subsystems
that have similar capabilities to the illustrated subsystem 1.
If this is the case, then subsystem 1 must post its next event
time, which represents the minimum next event time for
subsystems 2 and 3, with its Assignor. Additionally, if this
next event represents the completion of the assigned se-
quence of tasks upon a given object, then it will submit the
appropriate completion message to its Assignor. In this
regard, subsystem 1 interacts with its Assignor in a manner
197
that is similar to the way that systems 2 or 3 interact with
subsystem 1. In addition, subsystems 2 and 3 assume the
role of subsystem 1’s processes.

Most systems are driven by external inputs. Moreover,
at least one subsystem within the modeled system must have
no Assignors. In traditional simulation approaches, one ex-
cites the system by creating entities. Whenever a creation
occurs, the external creator posts its next creation time.
Therefore, any subsystem that interacts with a creator has
both a minimum next event time among its Acceptors and a
next creation time. The involved subsystem then selects the
minimum between these two times. If the minimum time
corresponds to the next event time, then the involved subsys-
tem pulls the posted next event time for the appropriate Ac-
ceptor, as discussed above. If the minimum time is the next
creation time, then it accepts the created object and reassigns
it to the appropriate Acceptor.

Any Acceptor can update its simulated time either to the
time associated with a pulled next event or the time attached
to an incoming message from its Assignor. Whenever this
Acceptor updates its state, it triggers a chain reaction among
its Acceptors and their Acceptors. This recursive updating
continues until processes are reached. When a single-
threaded process updates it state after completing a subtask,
it remains idle until another subtask is assigned. When the
process receives its next assignment, it samples its comple-
tion time, which represents the process’s next event time.
Whenever any Acceptor posts its next event time, its As-
signor determines if a next event time has been posted for
each of its active Acceptors. If so, then the Assignor posts
its next event time. This process continues until a top-level
Assignor is reached. A top-level Assignor then determines
whether a creation or next event will occur as described
above and the entire process repeats.

The following additional observations can be made:

• First, an Acceptor can have more than one As-

signor. In this case, it posts its next event time
with any Assignor from which it has an active as-
signment.

• Second, preempting causes no problem because the
message to preempt must come as a command
from the original Assignor. But that same As-
signor controls which Acceptor can next update its
state. For consistency, however, no Assignor
should be permitted to issue a command with an
associated time that is prior to the current simula-
tion time.

• In order to allow more parallel processing to oc-
cur, if one Acceptor to a given Assignor is permit-
ted to update to a given simulated time, then all of
the Acceptors to a given Assignor should be per-
mitted to update to the same time. Observe, how-
ever, that the posted next event time will be
changed only for the Acceptor that receives the

Davis

next assignment or has its next event time pulled.
Using this fact, the proposed paradigm should be
able to employ numerous processors without
needing to worry about time-warping or other
synchronization procedures.

2.2.3 Autovalidation and Maintenance

A major concern in employment of a simulation model
within an on-line control application is providing a model
that reflects the true system behavior. Most complex sys-
tems are time variant and require continuous update of key
modeling parameters such as task durations and reliabil-
ities. In addition, one also desires to provide new tasks for
the system while removing former tasks. One might also
desire to change the organization of the control architecture
as well as the manner in which individual controllers select
their next task for execution.

Employing a modeling paradigm based upon controller
interactions, significantly simplifies model maintenance. In
particular, one can demonstrate that it is possible to provide
on-line environments that allows the modeler to update the
model easily and, in many cases, autonomously. The same
paradigm also permits one to easily define new tasks for the
systems or to remove tasks that are no longer essential.

Unfortunately, space constraints will not permit a de-
tailed consideration of these issues. These considerations are
real and must be addressed by future modeling paradigms.

3 CONCLUSIONS

This paper has attempted to define the specifications for
new simulation modeling and execution paradigms for the
design and management of complex systems. The goal was
not to provide a solution for these specifications. Rather it
was to assess what is needed.

The preliminary list specifications was compiled during
many years of experience with complex systems. It is ex-
pected that more specifications will evolve as one attempts
to provide the described capabilities for real-world systems.
Because this list is preliminary, the intent was not to provide
a solution, even though a solution is known. The paper’s
intent is to generate discussion of what is needed rather than
how best one might meet the essential requirements.

REFERENCES

Davis, W. J. 1998. On-line Simulation: The Need and the

Evolving Research Requirements. In the Simulation
Handbook, ed. J. Banks, 465-516. New York: John
Wiley and Sons, Inc.

Fujimoto, Richard. 1999. Parallel and Distributed Simula-
tion Systems. New York: John Wiley and Sons, Inc.,

198
AUTHOR BIOGRAPHY

WAYNE J. DAVIS is a professor of General Engineering
at the University of Illinois at Urbana-Champaign. His
research addresses the distributed intelligent control
architectures for complex systems. To support this
research, he has developed several new modeling
paradigms and on-line simulation approaches.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

