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ABSTRACT 
 
This paper seeks a new simulation and execution paradigm 
for the design and operation of complex systems. An ex-
panded life cycle for a simulation model is first provided. It 
is assumed that complex systems can be represented as sys-
tems of interacting subsystems, which evolve by executing 
tasks upon objects. Care is taken to distinguish the real 
world where process execution occurs from the virtual world 
where planning is addressed. It is illustrated that the ideal 
model should be able to both evaluate and control the sub-
system that it addresses. The advantages of such approach 
are discussed with relation to both validation and execution 
needs. In particular, it is demonstrated that a distributed-
controller based paradigm could provide significant advan-
tages in the evaluation of the system using distributed simu-
lation. This form of execution is also contrasted to evolving 
on-line simulation requirements that will support the real-
time distributed management of these systems. 

1 INTRODUCTION 

Computers and information technologies have accelerated 
the construction of systems of ever-increasing complexity.  
Moreover, society’s needs and desires will continue to 
drive system development.  The ability to analyze and 
manage the emerging complex systems has not kept pace 
with the system evolution unfortunately.  Consider the re-
cent concerns with air traffic control systems.  The consen-
sus is that the current traffic exceeds the operational capac-
ity at several major airports.    However, this consensus 
cannot be verified because one cannot determine capacity 
of the current system or project how that capacity is af-
fected by disruptions.  Moreover, one cannot predict if a 
planned response will mitigate the disruption or will am-
plify its consequences with positive feedback. 
 However, simulation modeling and analyses is the 
only alternative for assessing performance of such complex 
systems.  Analytical approaches do not and probably will 
not ever exist.  The scientific/engineering community has 
recognized the expanding chasm between the current simu-
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lation capabilities and those needed to design and manage 
the current complex systems.  Presumably, this chasm 
should influence the evolution of future simulation tech-
nologies.  The chasm between capabilities and needs con-
tinues to widen, however.  Given this state of affairs, one 
must conclude that inertial barriers are constraining this 
evolution, and these inertial barriers must arise from the 
current paradigms underlying accepted modeling and 
analysis practices.  It now appears that the existing para-
digms may have taken us to a dead end from where there is 
no possibility of bridging the chasm between needs and 
capabilities. 
 If this assertion is correct, then one must seek other 
paradigms, and that is the intent of this paper.  The paper 
adopts a green-field approach, ignoring all available simu-
lation technologies and practices.  The paper first defines 
needs and then seeks means for addressing them.  The pa-
per’s intent is not to provide a new paradigm per se.  In-
deed, there may be more than one solution.  Rather, the 
goal is to discuss the essential capabilities that an effective 
paradigm must provide. 

2 THE LIFECYCLE OF A SIMULATION MODEL 

A list of essential modeling requirements obviously de-
pends upon the model’s intended use.  Existing simulation 
practices primarily address the off-line analysis of a pro-
posed system or a modification to an existing system.  
Many models are never verified because most models sup-
port the design of a proposed system.  After the designed 
system is implemented, there is limited, if any, future need 
for the simulation model, and the model is abandoned.   

Let us assume that a singular simulation model can be 
employed during both the design and operation of a sys-
tem.  Figure 1 provides a proposed lifecycle for a simula-
tion model.  The lifecycle assumes that the system design 
is also dynamic and distinguishes two primary application 
phases:  off-line (associated with system design) and on-
line (associated with system operation).  This lifecycle will 
initially be addressed as a serial process moving from sys-
tem conceptualization through design to operation and 
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maintenance.  Later, design and operation will be consid-
ered as concurrent functions in order to allow  the system 
to be modified even as it operates. 

2.1 Off-Line Stages 

2.1.1 Conceptualization 

The first stage is conceptualization where the boundaries 
for the considered system are established.  For example, 
one might consider the air traffic control system for man-
aging all flights over the continental United States.  Such 
complex systems are best viewed as a system of subsys-
tems.  The question arises as to what subsystems might ex-
ist, how each subsystem behaves and how the interactions 
among the subsystems might be coordinated.  Although 
how one decomposes a complex system into its constituent 
subsystems may not be unique, basic rationales do govern 
the decomposition process, including temporal, spatial and 
functional considerations as well as a need to view the sys-
tem at multiple levels of granularity. 

Consider temporal relationships.  The overall system 
as well as an individual subsystem can address multiple 
time domains.  An airport’s traffic control might be inter-
ested in the immediate runway operations, the projected 
number of operations that will occur during the next hour 
and the potential disruptions that might evolve if a fore-
casted storm occurs in the afternoon.    

There are also spatial considerations.  The continental 
United States is divided into several air control regions.  
Each of these regions is then subdivided into sectors both 
on a geographical and altitudinal basis.  In addition, the 
airspace in the immediate vicinity of an airport is desig-
nated for dedicated control.  Clearly, a management struc-

 

Figure 1:  Expanded Life Cycle for a Simulation Model 
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ture is required to coordinate the traffic within each re-
gion/sector/airport. 

There are also functional relationships.  Landings and 
takeoffs may be considered by different controllers at a busy 
airport.  Certainly, runway operations will be segregated 
from ground operations. Each spatial subsystem can also 
contain numerous physical/system elements.  At an airport, 
system elements include passengers, planes, airlines and 
their personnel, general aviation providers, and the control-
lers.  There can also be multiple linkages among the similar 
system elements across the spatially defined subsystems.   

Because different system elements within a given sub-
system must address different functions on different time 
domains, it follows that each subsystem will consider the 
system state at different levels of granularity.  One control-
ler might view the arrivals to a given airport as simply an 
anticipated arrival pattern.  Another controller might con-
sider each plane on an individual basis, but not know the 
individual passengers traveling on the flight.   However, 
the airline must have a list of passengers in each flight. 
 

Requirement 1:  A modeling paradigm must intrinsically 
support all modes of decomposition in order to specify 
the constituent subsystems that comprise the overall sys-
tem and the fundamental relationships among these sub-
systems.  The goal is to achieve a system-of-systems per-
spective for viewing the entire system. 

 
Next, the operational capabilities for each subsystem 

must be described.  Each subsystem might include several 
system elements.  Some of these elements are acted upon.  
For example, passengers must board the plane before it de-
parts from the gate.  The plane must also be serviced and 
inspected.  Some of the elements will act upon the others.  
For example, one or more airline personnel assist with the 
boarding operation.  The pilot performs the final inspection 
and commands all plane operations between the departure 
from a gate and the arrival at the next gate.  In order to 
model any subsystem, one must be able to define what 
tasks or operations can be executed, what system elements 
are involved and the specific procedures for executing a 
given operation.  Furthermore, executing a singular task 
may involve several distinct subsystems at different times.  
For example, as a given flight travels from Washington 
National/Reagan Airport to Chicago O’Hare, it crosses 
several air traffic control regions and sectors.  Clearly, one 
must also specify how tasks/operations can be transferred 
from one subsystem to another or coordinated.  A task exe-
cution at one subsystem might also cause future tasks to 
occur at other subsystems.  For example, a takeoff at one 
airport necessitates that a future landing will hopefully oc-
cur at another airport.   
 

Requirement 2:  Systems evolve as they execute proce-
dures or tasks.  A modeling paradigm must address 
the task execution process within each subsystem and 
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the associated mechanisms for coordinating task exe-
cution among the subsystems. 

 
The goal is to expand the scope of model application in 

order to support the management of the operational system.  
Defining the management structure becomes a critical com-
ponent of the design and task execution process.  Obviously, 
the operational constraints arising from the included man-
agement structure must be described within the model. 

 
2.1.2  Translation 
 
The next step in the life cycle is to construct the model.  In 
some instances, a physical model or prototype may be con-
structed.  More often, simulation studies employ computa-
tional models.  One might employ a commercial simulation 
package to create the computational model in such cases.  
However, few available packages can support the modeling 
requirements discussed above.  Alternatively, one might 
employ a general programming language as C, C++ or 
Java.  Simulation models are often object-oriented, and it 
may be beneficial to adopt an object-oriented programming 
language.  However, such an adoption is not essential.   

While generating the model, one must also consider 
how the model will be executed.  Today, two basic execu-
tion modes are employed:  execute the model on a single 
processor or distribute the model across several processors.  
The decision to employ a distributed computational envi-
ronment is often made after the model has been specified.   
Unfortunately, such an approach ignores the possibility 
that different modeling paradigms might provide models 
that are easier to distribute.  Moreover, the conventional 
(single-threaded) processing and distributed (multi-
threaded) processing are not the only two options. 

Before seeking other execution modes, let us recon-
sider the model from a response perspective.  The compu-
tational model itself can be viewed as a description of all 
possible responses that could occur when it is executed.  
For stochastic systems, it is impossible to delineate every 
possible state trajectory.  Nevertheless, the model might 
permit one to characterize summary features of the con-
tained responses.  One typically employs the computational 
model to sample a collection of state trajectories within an 
experiment in order to predict statistically the system’s per-
formance for a particular assignment of values to the in-
cluded design variables.   One can also consider a singular 
trial.  This latter execution mode often arises in training 
situations, where the trainee interacts with the system as its 
simulated state trajectory evolves and takes action that in-
fluence the system’s future response. 

The above execution modes are associated with off-line 
applications.  With respect to the latter two cases, either sin-
gle-threaded or multi-threaded (distributed) computational 
methods might be employed.  Other execution modes also 
exist for on-line applications.  In the second case described 
above, one projected the conditioned response of the system 
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derived from a given assignment of design variables.  In an 
on-line simulation, one might project the conditioned near-
term response, given the current system state and the se-
lected control policy for managing the considered subsys-
tem.  Given that each individual component subsystem must 
be managed, each subsystem requires its own subsystem 
model in order to project its future performance.   

That is, any subsystem might perform a dedicated on-
line simulation for its near-term response as it continues to 
operate in real-time.  Given that different systems consider 
different time horizons, the dedicated on-line simulations 
would be customized to project the response for an appro-
priate time-period.  In addition, a given subsystem might 
perform more than a single on-line simulation in order co-
ordinate its response with the other subsystems with which 
it interacts.   In particular, the outputs from the detailed on-
line simulations of one or more subsystems could statisti-
cally characterize the initial state from which another sub-
system performs another less detailed on-line simulation 
over an extended horizon.  It is critical that one distin-
guishes the latter situation from the typical distributed 
simulation scenario.  A conventional distributed simulation 
addresses a singular experiment with a given model.  On-
line applications require multiple experiments to be con-
ducted concurrently across a collection of subsystems or 
within a given subsystem.  Moreover, the interaction 
among subsystems may require an on-line simulation by 
one subsystem to be concurrently coordinated with another 
on-line simulation within a different subsystem. 
 

Requirement 3:  The simulation paradigm must sup-
port, if not facilitate, the various execution modes that 
can occur in both off-line and on-line applications.  In 
particular, the paradigm should employ intuitive state 
definitions that will permit the simulation trial to be 
easily initialized to a measured or projected system 
state and simulated responses to be shared among in-
teracting subsystems. 

 
2.1.3  Verification 
 
Verification represents a feedback mechanism that insures 
that model specifications have been faithfully incorporated 
within the computational model.  Conventional simulation 
tools often force the modeler to modify one or more speci-
fications in order to allow the model to be described with 
the tool’s included objects.  Some modeling specifications 
are nearly impossible to achieve within a given modeling 
paradigm.  For example, stochastic queuing networks gen-
erate system responses as a collective set of local responses 
occurring at the included nodes.  It is difficult to model and 
assess the performance constraints associated with a pro-
posed control architecture using this paradigm. 
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2.1.4  Design 
 
Several processes can be initiated after the model is cre-
ated.  Using off-line analysis, the designer can explore al-
ternative assignments for the included design variables in 
order to enhance the system’s expected performance.  
Given that the model should also consider the control ar-
chitecture, the designer might also explore different con-
troller specifications for managing individual subsystems 
and the interactions among the subsystems. 
 
2.1.4  Training 
 
Most complex systems also require one or more humans to 
interact with various subsystems while the system operates.  
In this regard, the control structure must first provide accurate 
information in order to assist the operator in selecting and im-
plementing an appropriate course of action.  Training often 
involves the trainee interacting with a singular simulated tra-
jectory as it evolves in real time.  It may be difficult to con-
duct comprehensive training sessions where all operators con-
currently participate because a complex system can employ 
many operators.  Therefore, the overall model should provide 
submodels that can be effectively employed to train an indi-
vidual operator in the management of a particular subsystem 
as it would evolve while interacting with the other subsys-
tems, even though their operators are not present.   

The review process that follows a training exercise is 
also critical.  Here, an instructor might query the trainee re-
garding a particular course of action that s/he selected at a 
given point during a training session.  Ideally, the instructor 
would desire to return the simulation exercise to state where 
the trainee elected a questionable course of action and assess 
the consequences that might have evolved if an alternative 
course of action was adopted.  In order to have this capabil-
ity, the modeling paradigm should provide a temporal state 
representation that can be easily stored and replayed as de-
sired.  Any stored state should also provide an initial point 
from which a subsequent training exercise can be initiated 
and stored as another trajectory.  This may appear to be un-
realistic request, but remember that one can now store fea-
ture length movies on a single DVD.  The proposed replay 
mechanisms would also assist the verification process.  
 
2.1.5  Validation 
 
The above steps (Conceptualization, Translation, Design, 
Training and Verification) only address off-line analyses 
preceding the implementation of the system.  That is, these 
steps can occur even if the physical system does not exist.  
Presumably, the desired outcome of the design process is 
the construction and operation of the designed system.    

Recall that the verification process sought to insure 
that model specifications had been faithfully addressed 
within the computational model.  Verification cannot check 
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the validity of the model specifications defined during the 
conceptualization.  The validity of these specifications can 
only be checked by comparing the simulated performance 
projections against the actual system performance.  The 
goal of validation is then to refine the model so that it cor-
rectly replicates the system behavior.  Generally, validation 
is also addressed as an off-line procedure. 

The need for model validation is sometimes questioned 
after the design system has been implemented.  However, if 
one seeks to improve the system’s design further, then one 
should first improve the model’s accuracy.  Thus, with a more 
accurate model, one can initiate the next design cycle for im-
proving the system.  Such improvements might be directed 
solely toward a more efficient execution of the current tasks 
the system can address.  The redesign process might also seek 
to expand the capabilities of the existing system in order to 
permit it to perform additional tasks.  The redesign process 
still represents an off-line analysis of a proposed system that 
currently does not exist even though this redesign process can 
be addressed while the actual system operates . 

Uses of the simulation model within the on-line opera-
tion of the existing system will now be discussed.  Before 
addressing on-line applications, however, one first must 
distinguish the real world from the virtual world.  The op-
eration of the real-world system provides a real response 
that can be observed and measured.  The simulation exer-
cise creates a virtual response projecting what could hap-
pen.  The validation process contrasts that virtual response 
against the actual response for a given set of conditions. 
 
2.2  On-Line Considerations 

 
On-line applications necessitate an immediate interaction 

between the real and virtual worlds.  Davis (1998) discusses 
the on-line simulation process where the simulation trial is ini-
tialized to the current state of the system and its future re-
sponse from that state is then projected under a specified set 
of operating conditions.  He continues to discuss how one 
might employ on-line simulation analyses to compare alterna-
tive strategies/courses of action for execution given the cur-
rent state.  His discussed approach is an elaboration of prior 
applications of simulation to scheduling tasks where the future 
performance is projected and compared against the actual per-
formance.  The deviations between the predicted (virtual) and 
real-world response are monitored under these prior schedul-
ing applications.  Whenever these deviations become signifi-
cantly large, the simulated virtual projection is then updated 
(i.e. the model is re-simulated).   Davis (1998), on the other 
hand, advocated that the on-line simulations occur constantly 
as the system evolves. That is, one should not wait for the de-
viations to grow in order to justify further simulation. 

Unfortunately, none of these past approaches ade-
quately support the on-line management of a complex sys-
tem.  Prior approaches have focused upon the future evolu-
tion of a given subsystem.   Complex systems are 
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comprised of a set of subsystems that must be coordinated.  
Addressing a single subsystem’s problem independently of 
the other subsystems with which it interacts is insufficient 
for the management of the overall system.  In many cases, 
it is actually counterproductive.  One must consider the co-
ordinated response of the entire set of included subsystems 
as they interact under the coordination of the included 
control architecture. 

In order to define the requirements for supporting the 
on-line system operation, one needs to return to the funda-
mental principles under which the system operates.  The 
overall system evolves as it included subsystems perform 
tasks.  In most cases, the execution of tasks is goal-oriented.  
That is, the system (with its subsystems) has a purpose or 
reason for changing its state.  Consider the air transportation 
system.  The flights do not occur simply to move planes 
from one location to another.  Rather the flights transport 
customers (passengers) or cargo between locations.  Simi-
larly, a manufacturing system makes product to sell. 

Let us assume that the subsystems perform their tasks 
upon other objects or entities.   Because real-world systems 
are being considered, let us assume that these objects are 
real and reside in the physical world.  On the other hand, 
most planning and coordination occurs in the virtual world 
where one seeks to assess the consequences of a course of 
action before it is implemented.   

If one assumes that subsystems exist to execute tasks, 
then their tasks must be assigned in a manner that is consis-
tent with the overall goal for the system.  Let us assume that 
every subsystem can interact with a set of other subsystems 
from which it receives tasks for execution.  After receiving 
an assigned task, a given subsystem may further decompose 
the assigned task into subtasks and then seek the assistance 
of other subsystems in executing the generated subtasks.  
Eventually, this proposed task (re)assignment process pro-
vides a collection of subtasks that can be immediately exe-
cuted upon a real object.  When such a situation occurs, no 
further task decomposition is needed.  Rather, the assigned 
task is executed upon the real object by a real-world process. 

Clearly, one must be able to model the state evolution 
of the real-world objects as they are processed in the real 
world.  This evolution is necessarily constrained by the 
processing plan that defines which tasks will be performed 
upon the object.  In Figure 2(a), the process plan is graphi-
cally depicted.  At the left there is a circle representing the 
real-world object that is to be processed.  A sequence of 
arrows is included to the right of the object, each represent-
ing the subtasks that are to be performed upon the object.  
Each indicated task arrow include subtasks that can be 
executed at a single given process.  Therefore, in order for 
the considered object to progress along the processing plan 
from one task arrow to the next, the object must physically 
move from one process to another. 

The goal in processing the object is to consume the 
process plan.  As each processing task is finished, the state 
of the considered object changes.  In a sense, the remaining 
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processing steps provide a manner for one to predict how 
the object will evolve as it is processed by the system.  
Hence, the object in Figure 2(a) represents the original ob-
ject before any processing is initiated.  As each task is exe-
cuted, the circle advances to right.  The tasks to the right of 
the object represent the remaining processing plan.  The 
executed tasks are horizontally flipped and placed to the 
immediate left of the object as they are executed.  The se-
quence of left-facing arrows to the left of the object repre-
sents its prior processing history.  Hence, the object in Fig-
ure 2(b) denotes the object at its current state after the first 
two tasks have been executed.  If the object moves forward 
along the remaining process, its future state changes can be 
projected.  On the other hand, if one moves backward 
along the object’s processing history, one can presumably 
backtrack the executed tasks in order to return to the origi-
nal object shown in Figure 2(a).  In Figure 2(c), the case 
where all of the tasks have been executed is represented.   

Figure 2 depicts the case where the process plan is de-
fined before the object enters the system.  Other situations 
also exist including process plans with alternative paths, 
process plans with loops to allow rework, process plans 
that evolve at the time of execution.  Unfortunately, there 
is insufficient space to discuss these other situations.   

Given this assumed structure for a processing plan, the 
modeling of an individual subsystem can be addressed.  At 
any given time, the subsystem has a set of assigned tasks to 
be executed by elements within its control domain.  The 
subsystem receives these tasks from other subsystems,  
called its Assignors.  In executing an assigned task, the 
subsystem usually decomposes the task into subtasks (us-
ing prescribed procedures) and then reassigns the gener-
ated subtasks to other subsystems, which are termed its 
Acceptors.   The proposed relationship is depicted in Fig-
ure 3.  In the depicted general case, a subsystem executes 
tasks by reassigning them as subtasks.  However, if the 
subsystem is a real-world process, it physically can per-
form a physical task upon a real object.  Moreover, as the 
complex system operates in real time, its physical state 
evolves through the task executions occurring at the real-
world processes.  Processes can have no Acceptors because 

 

Figure 2: A Processing Plan and its Execution 

(a) 

(b) 

(c) 
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the act within the real world in real time.  They must exe-
cute the tasks that they are assigned. 

On the other hand, the more general subsystem relies 
upon its Acceptors to execute its assigned tasks.  Conse-
quently, it physically cannot act in the real world or in real 
time.  Rather, it considers a virtual world of what could hap-
pen as its assigned tasks are executed by its Acceptors in the 
future.  It must also rely upon its Acceptors to describe its 
current state because they are responsible for executing its 
reassigned subtasks, which will cause its state to change.  
One can also assume that the given subsystem has other as-
signed tasks, which it has not yet decomposed or reassigned.  
The subsystem’s controller must seek a plan for the reas-
signed execution of these remaining tasks.  Using the feed-
back information from its Acceptors, the subsystem’s con-
troller then employs on-line simulation to project its 
statistical performance should it adopt a given reassignment 
strategy.  Observe, however, that this on-line simulation is 
being initialized to the projected future state for its Accep-
tors as they execute their currently assigned tasks.  Conse-
quently, the subsystem’s simulated trajectory resides entirely 
within the virtual world of the future.  Its on-line simulated 
state trajectory cannot consider the current time because 
only real-world processes can act in real time. 

Let us now view each subsystem as a pipeline that re-
ceives tasks from its Assignors and transports them as sub-
tasks to its Assignors.  A subsystem’s primary on-line 
simulation projects the flow for the tasks that are currently 
in its pipeline or have been reassigned to its Assignors.  If 
new tasks are not accepted, then the subsystem’s pipeline 
becomes empty.  Therefore, a subsystem must constantly 
seek new tasks from its Assignors as inputs to its pipeline.  
Each Assignor also represents another pipeline containing 
its accepted tasks that are to be reassigned as subtasks to its 
set of Acceptors, to which the considered subsystem be-
longs.  Each Assignor is also performing its own on-line 
simulation that is initializes to projected future state of its 
Acceptors (that includes the considered subsystem) as they 
execute their currently assigned task. 

Usually, the granularity of an Assignor’s on-line simu-
lation is less detailed than that of any Acceptor, including 
the considered subsystem.  Hence, when the considered 
subsystem interacts with an Assignor, the Assignor expects 
the considered subsystem to provide a more detailed as-

 
Figure 3:  Basic Relations among Subsystems 
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sessment of the probable outcome should a given task be 
assigned to the considered subsystem.  In this regard, the 
considered subsystem interacting with the particular As-
signor performs another on-line simulation to assess the 
consequences of making a proposed assignment before the 
assignment actually occurs.   

The considered subsystem also acts as an Assignor to 
its Acceptors’ interface between the considered subsystem 
and its Acceptors.  A recursive nature results where each 
subsystem performs an internal on-line simulation pertain-
ing to the execution of the tasks currently in its pipeline 
and two shared on-line simulations:  one in conjunction 
with its Acceptors and the other in conjunction with its As-
signors.   Moreover, these three on-line simulations can 
occur concurrently within any given subsystem. 

The subsystem employs the same model in implement-
ing all three on-line simulations.  In fact, the on-line simula-
tions differ only in the set of considered tasks.  One on-line 
simulation projects the outcome of the current assigned and 
reassigned tasks.  Another projects the outcome if additional 
tasks are accepted.  The latter projects the outcome if addi-
tional subtasks are reassigned.  Given the multiple uses, the 
subsystem’s model must explain the task acceptance, de-
composition and reassignment processes.  In short, the sub-
system’s model must depict the behavior of its controller as 
it moves tasks through the subsystem’s pipeline.  Ideally,  
the model should be the controller for the subsystem.  If this 
situation could occur, then the collection of subsystem mod-
els immediately comprises the set of controllers that forms 
the control architecture; and more importantly, this feature 
significantly simplifies the validation process because the set 
of system models and controllers are one and the same. 

The remaining components within the overall system 
model are the process models.  These processes exist in the 
real world and can be modeled using traditional engineering 
approaches.  For example, one can physically model the dy-
namics of a robot, a milling machine, an aircraft and so forth.  
Each of these physical processes has its dedicated controller 
and instruction set for interacting with process.  In fact, many 
physical processes are now shipped with dedicated software 
emulators that permit one to verify that a generated set of in-
structions provides a desired response or outcome. 

Knowing what subsystem models are needed, the next 
step is to define the system’s architecture and its concept of 
operation governing the interactions among the included 
subsystems.  Let us begin with the included collection of 
real-world processes.  The task execution of these proc-
esses causes the real-time state evolution of the overall sys-
tem.  However, these processes must be connected to the 
control architecture in order to receive tasks.  Therefore, 
each process must have at least one Assignor 

Most subsystems, including all processes, will have 
Assignors.  The Assignors for one or more subsystems 
may reside outside the environment of the considered sys-
tem because one must arbitrarily define the boundary of 
the considered system.  These external Assignors provide 
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the exciting force upon the addressed system.  Hence, ex-
ternal Assignors must exist and are essential. 

Now consider any subsystem within the system that is 
not a process.  Through its Acceptors, it can indirectly as-
sign tasks to a subset of the included processes.  One could 
derive more general connectivity principles, but let us sim-
ply assume that an exciting task assignment from the envi-
ronment will be sequentially decomposed into a sequence 
of subtasks that ultimately will be executed at the proc-
esses.  Moreover, if the decomposition results in any sub-
task that cannot be executed with the included processes, 
then the task cannot be executed by the overall system. 

Obviously, the next step is to define what tasks can be 
executed by the considered system.  Because the tasks that de-
termine the system’s physical evolution in real time are exe-
cuted upon other physical objects at the system’s included 
processes, one must define first the set of objects that will be 
acted upon and what tasks will be performed.  Because each 
of these tasks occurs at a physical process, one can write the 
instruction set for the task in the dedicated instruction lan-
guage for the appropriate process.  Also, observe that the exe-
cution of any task upon an object at a process may require ad-
ditional objects or resources.  In a manufacturing setting, one 
might need an operator to install the object into the machine 
and then monitor the machine’s operation.  Often the ma-
chined object will be placed into a fixture (another resource) 
prior to this installation.  A given machining operation may 
require a tool, yet another resource.  

In some cases, the output from the processing of one 
object might become the input for the processing of an-
other object.  For example, when one assembles an auto-
mobile, numerous components are sequentially attached to 
the assembled object.  Each of these components must ei-
ther be manufactured or assembled from other components.  

 Given the set of tasks that will be assigned to the sys-
tem from its environment,  the essential task decomposi-
tion schemes must be defined in order to allow each exter-
nal exciting task to be executed using predefined subtasks 
that can be executed at the included processes.  An incom-
ing task is then treated as an object (or order) to which a 
sequence of remaining processing steps is attached. As-
suming that a given controller (other than a process con-
troller) is now managing a particular order, the controller 
determines the next process that the order should visit and 
selects an appropriate Acceptor through which that process 
can be accessed.  The selected Acceptor is then asked to 
Accept the order and execute one or more remaining proc-
ess steps.  This iterative assignment process continues until 
the Acceptor is the required next process. 

When an Acceptor accepts a task, it must take physical 
control of the object upon which the task is to be per-
formed.  In the real world, this implies additional support-
ing/enabling tasks may be required for the transfer of 
physical control to occur.  In a manufacturing setting, a 
material handler might retrieve the involved object from 
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one workstation and deliver it to another.  Observe, how-
ever, that the material handler is also a physical process 
that can change the physical location of the object. 

The basic conversation among the controllers is very 
simple.  The Assignor first requests an Acceptor to Accept 
the object and then to Execute a specified task upon the ac-
cepted object.  After the Acceptor accepts the object with 
its assigned task, it provides feedback information pertain-
ing to when or if the task has been completed.  This feed-
back information is generated when the Acceptor performs 
an on-line simulation pertaining to the planned execution 
of its assigned tasks.  There is one concern, however.  Ide-
ally, the Assignor desires to know if the Acceptor can exe-
cute that task before the actual assignment occurs.  There-
fore, a provision should be included to allow the Assignor 
to Pre-qualify the Acceptor before the Assignment occurs.  
In the performing the Pre-qualification, the Acceptor ad-
dresses the following concerns: 

 
• Insures that the current state of the process will 

permit it to execute the task 
• Determines what additional resources must be as-

similated in order for the task to be executed and  
• Projects when the task might be finished, assum-

ing that the needed resources will be delivered by 
a specified time. 

 
This Pre-qualification requires the Acceptor to look 

ahead in order to determine how its managed subsystems’ 
state might evolve should the task be assigned.  This look 
ahead is addressed through its on-line simulations and its 
subsequent requests of its own Acceptors to Pre-qualify 
any subtask that could evolve from the decomposition of 
the proposed task assignment. 

In general, the Assignor conducts a sequential com-
munication with its appropriate Acceptor with the instruc-
tions to Pre-qualify, to Accept and to Execute each subtask 
derived from the decomposition of an assigned task.  The 
feedback information from the Acceptor’s Pre-
qualification determines what might happen if the task is 
assigned and when the task will be completed after the task 
has been assigned.  Since this feedback information pro-
jects a future outcome, it represents planning within the 
virtual world.  The principal exception involves the process 
because their controllers typically do not have an installed 
planning capability.  Rather, a process simply Accepts the 
object with the assigned task (in its instructional language) 
and then Executes the task.   The process then notifies the 
Assignor when the task is completed.  
 
2.2.1  Implementing Model as a Distributed Controller 
 
This paper previously advocated that the model for a manag-
ing subsystem and the code that implements its controller 
should be the same.  One must now distinguish the execu-
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tion of the collection of management subsystems during the 
typical simulation of the overall system’s response versus 
the on-line operation of the system where the same models 
manage the systems response.  The on-line management ap-
plication will be considered first.  Managing subsystems 
must behave both as an Acceptor and an Assignor while 
functioning as pipelines for the execution of tasks.  Observe, 
however, that the interaction among managing subsystems 
does not change the physical state of any physical entity.  
Rather, it changes which entities a managing subsystem con-
trols and the assigned tasks it has agreed to execute. 

The managing subsystems interact by sending messages 
as described above.  Each managing subsystem knows its 
Assignors and Acceptors.  Hence, it knows from which sub-
systems it can receive messages, the type of messages it will 
receive and how it should respond.  Whenever a managing 
subsystem receives a message, it triggers the execution of its 
model that serves as its controller.  The message processing 
is a singular-threaded execution that causes an internal 
change of the controller’s state within its virtual world.  The 
message process may also cause messages to be sent to other 
controllers either now or at some future time.  When the 
controllers are managing the real system, they will likely 
transfer their messages via a communication network.  
However, distinct controllers need not be situated upon dis-
tinct computers nor do all the controllers need to be onsite.   
It is only necessary that one controller can send messages to 
another controller in an expeditious manner. 

Physical processes must be managed because the sys-
tem is operational.  Each of these processes usually has its 
own dedicated controller implemented upon a microcom-
puter processor or a programmable logic controller.  These 
process controllers must communicate with their managing 
controllers, Assignors.  Often, serial communication means 
such as RS-232 are employed, but it is sometimes possible 
to communicate with these specialized process controllers 
over a conventional Ethernet LAN.  These process control-
lers must receive their tasks in their dedicated instructional 
language from their assigned Assignor.  Often, the special-
ized process controller will be attached directly to the 

Figure 4:  Proposed Configuration for Enabling Com-
munication among the Controllers 
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computer where its Assignor resides.  This is particularly 
true when serial communication is employed. 

However, experience with real-world systems has dem-
onstrated that the configuration depicted in Figure 4 is more 
versatile.  In this scenario, a message server is included that 
receives all transmitted messages and then routes them to their 
appropriate addresses where the recipient controller’s code is 
executed.  The address for a managing controller is typically 
an IP node.  The process controllers are usually attached to the 
message server if serial communication is employed or as-
signed an IP node if they can receive their messages from an 
Ethernet LAN.  Observe that Figure 4 includes a partition be-
tween the virtual world addressed by the managing controllers 
and the real world within which the process controllers act. 

Let us focus on the message server’s operation.  Incom-
ing messages are received and routed to their destination 
with minimal delay.  The recipient controller processes the 
message and then routes its responses to other controllers 
through the message server at the appropriate time.   

The proposed message server’s operation further pro-
vides the basis for simulating the entire system using the 
same set of subsystem models as shown in Figure 5.  In im-
plementing a simulation of the entire system, each real proc-
ess is replaced with the computer code (often supplied by 
vendor) that emulates its processing.  These emulators 
should employ the same instruction set as the actual process.  
The subsystem’s models can be located upon a single com-
puter because every subsystem model executes as a singular-
threaded computation.  A software implementation of the 
message server models the communication among the con-
trollers and controls the simulation as follows: 

 
 

Figure 5:  Configuration for Simulating System where
Controllers Interact via a Virtual Message Server 
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The queued messages are stored in chronological order 
based upon their desired delivery time.  After a message is 
processed, the simulation time is advanced to desired de-
livery time for the next message in the queue.  The mes-
sage with the computational thread is then forwarded to the 
recipient controller whose included model processes the 
message and generates the appropriate response(s) to  
specified recipient(s) and at a specified delivery time(s).  
These messages, along with the computational thread, are 
returned to the message server, which then inserts the new 
messages into its chronological ordered message queue.  
The next message is then removed from the queue and the 
simulation time is advanced to its delivery time.  The mes-
sage and the computational thread are then passed to the 
next designated recipient controller. 
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2.2.2  Implementing Model as a Distributed Simulation 
 
The proposed operation is very similar to the conventional 
processing of a scheduled event queue in most current 
simulations.   Thus, it should also be possible to implement 
the simulation in a multi-threaded distributed environment 
using available distributed simulation techniques because 
of this similarity.  Fujimoto (1999) provides an excellent 
discussion of the current techniques.   

In order to demonstrate how a modeling architecture 
might enhance one’s ability to perform distributed simula-
tions, let us consider the operation of the multi-level sys-
tem pictured in Figure 6.  The overall system is comprised 
of seven subsystems.  Subsystem 1 serves as the Assignor 
to the accepting subsystems 2 and 3.  Subsystem 2 man-
ages or serves as the Assignor to processes 4 through 7.    
One can assume that subsystem 3 also manages processes.  
However, its processes have not been included in order to 
simplify what is already a complex figure.   
Figure 6:  Proposed Hierarchical Task Decomposition as a Foundation for Distributed Simulation 
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Currently, objects A through G are being processed by 
the system. These objects are depicted o the left of subsys-
tem 1, as they were initially assigned.  The included white 
arrows represent the sequence of tasks, with supported 
tasks included, that are to be executed by the processes un-
der the control of subsystems 2 and 3.  The shaded arrow 
before the circle represents the processing history that oc-
curred before the object arrived at subsystem 1.  Hence, the 
circle for the object at input represents its state at the time 
it arrived at subsystem 1.  To the right of the large arrow 
that represents subsystem 1 is the desired goal state for 
each object where all the assigned tasks have been exe-
cuted.  Note in this case, all the original task arrows have 
been flipped to represent their completion and the object 
state is represented by a circle to the right of the completed 
tasks.  The rightmost shaded arrow for any object repre-
sents the tasks that will remain after the currently assigned 
tasks are executed. 

Within the large arrow that represents subsystem 1, the 
current state of each of the processed objects is repre-
sented.  This case assumes that a portion of the assigned 
tasks have been executed upon each object and the arrow 
immediately to the right of the circle represents the current 
task that is being executed.  In order to simplify the discus-
sion, let us assume the objects have been labeled such that 
the next task for objects A through D will involve proc-
esses under the control of subsystem 2 while objects E 
through G have a next task that requires processes man-
aged by subsystem 3.  Let us also assume that the next task 
has been assigned for objects A through D to subsystem 2, 
which is indicated by drawing a dashed rectangle around 
their next tasks and projecting that rectangle onto the input 
of subsystem 2.  Similarly, the next tasks for objects E 
through G are indicated as the inputs to subsystem 3. 

Now let us focus upon subsystem 2.  The desired out-
put for subsystem 2 requires the completion of the next as-
signed task as indicated to the right of the subsystem 2’s 
representative arrow.  Within the arrow representing sub-
system 2,  the current state of subsystem 2 is indicated as it 
processes its assigned tasks.  Observe, however, that the 
assigned task for each object has been further decomposed 
into a set of subtasks that will be executed at processes 4 
through 7 that it manages.  For object A, the first subtask is 
currently being addressed by process 4.  For object B, the 
first subtask has been completed, and the second subtask is 
being addressed by process 5.  Several subtasks have al-
ready been executed upon object C and the next subtask is 
waiting to be assigned.  One can assume that this next sub-
task must not require process 6, which is currently idle.  
The last subtask upon object D is being addressed by proc-
ess 7.  Again, these assignments are depicted by the dashed 
rectangles that are projected onto the input side of the ap-
propriate process.   Observe also that a similar reassign-
ment of subtasks for objects E through G should have oc-
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curred at the processes managed by subsystem 3, which 
have not been included in the figure.  

Now let us look at the processes.  Each process is single 
threaded and can only process a single object at a time.  On 
the other hand, subsystems 1 through 3 are multi-threaded 
and can manage several objects concurrently.  Remember 
also only the processes can act in real time and this is where 
the physical changes to processed objects occur.  Given that 
one knows when each process was assigned its current proc-
essing task, one can sample the future time when the current 
task will be completed.   At this point, the physical state of 
the involved object will cease to change until its next sub-
task is assigned to the appropriate process.  With respect to 
objects A, B and D, subsystem 2 has two options.  Allow the 
assigned processing subtask to be completed or interrupt 
(preempt) a current processing task.  Let us postpone the 
preempting option for the moment.  In this case, subsystem 
2 knows when each of the ongoing processes will be com-
pleted because each process samples its completion time and 
then posts it with subsystem 2. 

Subsystem 2 is primarily interested in two future 
events.  The first event is when a new processing thread 
can be initiated upon another object.  The second event is 
when all the subtasks for a given object have been com-
pleted, implying that it has completed the next primary task 
upon the given object as assigned by subsystem 1.  Let us 
consider some special cases: 
 

Case 1:  Object C is waiting for process 4.  On the 
other hand, process 4 is scheduled to complete its cur-
rent subtask upon A before the other processes com-
plete their current tasks.  Therefore, as soon as process 
4 completes its current task, it can immediately initiate 
the next processing subtask on C. 
 
Case 2: Objects A, B and C will all need process 7 to 
address their next subtask.  Let us assume that processes 
4 and 5 will complete their current subtasks before proc-
ess 7.  Hence, the next time a new processing subtask 
can be initiated is when process 7 finishes its current ef-
fort upon object D. 
 
Case 3:  After process 7 finishes its current task upon 
object D, subsystem 2 will have completed the entire 
sequence of subtasks for executing the next primary 
task for object D.  Therefore, when process 7 finishes, 
subsystem 2 can notify subsystem 1 that it has com-
pleted its assigned task upon object D. 
 
Subsystem 2 can compute the minimum time at which 

it can initiate a new processing subtask at one of its man-
aged processes or the time it will finished an assigned task 
on one of the assigned objects because it knows the sam-
pled completion time for each process.  Let us refer to the 
minimum time that either of these situations will occur as 
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subsystem 2’s next event time.  Subsystem 2 computes its 
next event time and posts it with its Assignor or subsystem 
1.  If the next event corresponds to the completion of an 
assigned primary task upon a given object, the posted next 
event time is accompanied with the message that subsys-
tem 2 uses to notify subsystem 1 that it has completed an 
assigned task upon the given object.  In a similar fashion, 
subsystem 3 also computes its next event time.   

Let us now consider the case where the next event 
time for both subsystem 2 and 3 corresponds to a simple 
initiation of a next processing subtask.  No message will be 
sent to subsystem 1 in this case.  Subsystem 1 responds by 
pulling the next event time from either subsystem 2 or 3, 
depending upon which subsystem has posted the smallest 
next event time.  At this point, the subsystem whose posted 
next event time was pulled is authorized to perform any 
system updates up to the posted event time.  Observe that 
this could necessitate several processes would update their 
state also.  The updating subsystem (2 or 3) would tell the 
processes to update their state to the completion of their 
current task by issuing the command to return the involved 
object at its sampled completion time.  After all the updat-
ing has occurred at the involved processes, the updating 
subsystem (2 or 3) computes its next event time and posts 
it with subsystem 1.   

Now let us investigate the case where the next event to 
be considered by subsystem 1 corresponds to the completion 
of a primary subtask that it assigned either to subsystem 2 or 
3.  In this case, an appropriate completion message will be 
transmitted with the posted next event time.  Subsystem 1 
will respond to the appropriate subsystem with a return re-
quest at the posted next event time.  At this point, the recipi-
ent subsystem can update its state to that posted event time.  
Again, several other processes might need to update their 
state to reflect the completion of any processing subtask that 
occurred before the posted event time. 

Subsystem 1 also has the option to assign a new task 
to either subsystem 2 or 3.  For example, after subsystem 2 
completes the current task upon object D at process 7, sub-
system 1 can assign object D’s next primary task either to 
subsystem 2 or 3.  Also observe that subsystem 1 will 
eventually complete its assigned tasks upon objects A 
through G.  If no new tasks are assigned to subsystem 1, 
then it and its managed subsystems become idle.  There-
fore, one can assume that subsystem 1 has an Assignor, 
which is not illustrated in Figure 6.   

That same assignor may manage several subsystems 
that have similar capabilities to the illustrated subsystem 1.  
If this is the case, then subsystem 1 must post its next event 
time, which represents the minimum next event time for 
subsystems 2 and 3, with its Assignor.  Additionally, if this 
next event represents the completion of the assigned se-
quence of tasks upon a given object, then it will submit the 
appropriate completion message to its Assignor.  In this 
regard, subsystem 1 interacts with its Assignor in a manner 
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that is similar to the way that systems 2 or 3 interact with 
subsystem 1.  In addition, subsystems 2 and 3 assume the 
role of subsystem 1’s processes. 

Most systems are driven by external inputs.  Moreover, 
at least one subsystem within the modeled system must have 
no Assignors.  In traditional simulation approaches, one ex-
cites the system by creating entities.  Whenever a creation 
occurs, the external creator posts its next creation time.  
Therefore, any subsystem that interacts with a creator has 
both a minimum next event time among its Acceptors and a 
next creation time.  The involved subsystem then selects the 
minimum between these two times.  If the minimum time 
corresponds to the next event time, then the involved subsys-
tem pulls the posted next event time for the appropriate Ac-
ceptor, as discussed above.  If the minimum time is the next 
creation time, then it accepts the created object and reassigns 
it to the appropriate Acceptor. 

Any Acceptor can update its simulated time either to the 
time associated with a pulled next event or the time attached 
to an incoming message from its Assignor.  Whenever this 
Acceptor updates its state, it triggers a chain reaction among 
its Acceptors and their Acceptors.  This recursive updating 
continues until processes are reached.  When a single-
threaded process updates it state after completing a subtask, 
it remains idle until another subtask is assigned.  When the 
process receives its next assignment, it samples its comple-
tion time, which represents the process’s next event time.  
Whenever any Acceptor posts its next event time, its As-
signor determines if a next event time has been posted for 
each of its active Acceptors.  If so, then the Assignor posts 
its next event time.  This process continues until a top-level 
Assignor is reached.  A top-level Assignor then determines 
whether a creation or next event will occur as described 
above and the entire process repeats. 

The following additional observations can be made:  
 
• First, an Acceptor can have more than one As-

signor.  In this case, it posts its next event time 
with any Assignor from which it has an active as-
signment. 

• Second, preempting causes no problem because the 
message to preempt must come as a command 
from the original Assignor.  But that same As-
signor controls which Acceptor can next update its 
state.  For consistency, however, no Assignor 
should be permitted to issue a command with an 
associated time that is prior to the current simula-
tion time. 

• In order to allow more parallel processing to oc-
cur, if one Acceptor to a given Assignor is permit-
ted to update to a given simulated time, then all of 
the Acceptors to a given Assignor should be per-
mitted to update to the same time.  Observe, how-
ever, that the posted next event time will be 
changed only for the Acceptor that receives the 
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next assignment or has its next event time pulled.  
Using this fact, the proposed paradigm should be 
able to employ numerous processors without 
needing to worry about time-warping or other 
synchronization procedures. 

 
2.2.3  Autovalidation and Maintenance 
 
A major concern in employment of a simulation model 
within an on-line control application is providing a model 
that reflects the true system behavior.  Most complex sys-
tems are time variant and require continuous update of key 
modeling parameters such as task durations and reliabil-
ities.  In addition, one also desires to provide new tasks for 
the system while removing former tasks.  One might also 
desire to change the organization of the control architecture 
as well as the manner in which individual controllers select 
their next task for execution. 

Employing a modeling paradigm based upon controller 
interactions, significantly simplifies model maintenance.  In 
particular, one can demonstrate that it is possible to provide 
on-line environments that allows the modeler to update the 
model easily and, in many cases, autonomously.  The same 
paradigm also permits one to easily define new tasks for the 
systems or to remove tasks that are no longer essential.    

Unfortunately, space constraints will not permit a de-
tailed consideration of these issues.  These considerations are 
real and must be addressed by future modeling paradigms. 
 
3 CONCLUSIONS 
 
This paper has attempted to define the specifications for 
new simulation modeling and execution paradigms for the 
design and management of complex systems. The goal was 
not to provide a solution for these specifications.  Rather it 
was to assess what is needed. 

The preliminary list specifications was compiled during 
many years of experience with complex systems.  It is ex-
pected that more specifications will evolve as one attempts 
to provide the described capabilities for real-world systems.  
Because this list is preliminary, the intent was not to provide 
a solution, even though a solution is known.  The paper’s 
intent is to generate discussion of what is needed rather than 
how best one might meet the essential requirements. 
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