
Proceedings of the 2001 Winter Simulation Conference
B. A. Peters, J. S. Smith, D. J. Medeiros, and M. W. Rohrer, eds.

SIMULATION INTEROPERABILITY WITH THE MICRO SAINT
SIMULATION SOFTWARE AND COM SERVICES

Daniel W. Schunk
Wendy K. Bloechle

Micro Analysis and Design, Inc.

4900 Pearl East Circle
Boulder, CO 80301, U.S.A.

ABSTRACT

In today’s high tech world the need for interoperability
among programs has never been more necessary. If a user
were able to utilize different programs’ strengths in unison,
then the ability for programs to work together would
greatly expand current software’s ability to analyze. In re-
sponse to this request, COM Services was added to the
most recent release of Micro Saint. This paper will feature
an example of how to apply interoperability to the Micro
Saint simulation software as well as present some exam-
ples of how to further utilize COM Services.

1 INTRODUCTION

Communication has become key to the successful opera-
tion of business, military and health care systems. In par-
ticular, companies see the value of having interoperability
between various software programs. However, in many
cases, the information cannot be transferred from one
software program to another.

Recognizing this emerging need for inter-model com-
munication, COM Services was developed as a new feature
for Micro Saint. One of the essential needs that has been
identified in the simulation community is the ability for
different models, developed by different organizations,

Figure 1: An Example of Dynamic Interaction of Simula-
tion Components
239
possibly using different modeling tools to be able to com-
municate. In general, there are two types of communica-
tion that might be sought:

1. Dynamic data exchange during simulation runs
whereby, one simulation relies upon another
simulation federate to provide data during the
simulation. This concept is illustrated in Figure 1
where different military simulation objects reflect-
ing different systems (e.g., tanks, and airplanes)
interact in order to form a larger simulation of the
battlefield.

2. Sharing data between simulation runs through a
central data repository. For example, Figure 2 il-
lustrates how, during system requirements defini-
tion and development, some models’ outputs may
serve as other models’ inputs.

Micro Saint has recognized the need for communica-

tion in the simulation market and has taken the steps to en-
sure interoperability using COM Services. COM Services
was developed using the Component Object Model (COM)
architecture, COM allows applications and systems to be
built from components supplied by different software ven-
dors. COM is programming language independent and al-

Analysis /
Allocation

Tradeoffs

Requirements

HW

Human
SW

Design

Data
Repository

Figure 2: An Example of Simulation Model Data Ex-
change Needs

Schunk and Bloechle

lows more than one application to send information to an-
other application. These capabilities are part of the reason
it was chosen for use with Micro Saint. Additionally,
COM is the most widely used object model for developing
distributed and concurrent systems.

Using Visual Basic, Visual C++, Borland C++ or some
other programming language as the middleware between Mi-
cro Saint and another application is the key to setting up in-
teroperability. This sharing of information makes solutions
more accurate and also saves needed time in any project.
More accurate results mean better models being built and bet-
ter data collection. This could indirectly yield higher profits,
or more efficient system designs. For example, Figure 3 pre-
sents the middleware concept for the integration of Micro
Saint into HLA-compliant environments.

HLA NETWORK

VR-Link

Network
Computer Interface

Subscription
Manager

Data
Manager

Micro Saint

MS-Sim
Manager

COM Interface

Figure 3: The Middleware Concept for HLA-compliant
Simulations using Micro Saint COM Services

Along with the interaction between software applica-
tions, COM also allows Micro Saint and the user to interact
in real time. Changes can be made to the simulation model
as the model is running, such as users can changing vari-
able values while the model is running.

2 COM SERVICE CAPABILITIES
AND EXAMPLE

COM Services allows communication between Micro Saint
and other software applications possible. Included with
COM Services are command line capabilities that will al-
low users to start, stop, and continue the model. In addi-
tion, model control allows the user to pause, halt and abort
the model through parsed expressions.

Data exchange allows users to pass variable values
into and out of Micro Saint. Control of the event queue al-
lows users to insert scenario events into the event queue at
specified times in the future. In addition, users can receive
event queue information from Micro Saint while the model
is running. Lastly, COM Services allows Micro Saint to
send messages to the user when a model has ended or if er-
rors have occurred.
240
3 USING COM SERVICES TO ANALYZE
AN EMERGENCY ROOM

3.1 Problem Explanation

In this example a hospital’s emergency room is being ana-
lyzed. The problem consists of how will dynamically allo-
cating the number of doctors on staff affect the number of
patients waiting for treatment and doctor utilization.

3.2 Model Explanation

The model being used for this analysis is a discrete event
simulation model developed using the Micro Saint simula-
tion software. The model is based upon the hospital’s
emergency room in which patients arrive, and based on tri-
age, the patient will either immediately receive treatment
or will go to registration. From treatment the patient may
have to undergo tests and then will either be discharged or
admitted to the hospital. Micro Saint has the option of set-
ting variables to be “external”. External variables are the
variables that Micro Saint will send to Visual Basic when a
change occurs in that variable’s value.

3.3 Visual Basic Program Development

3.3.1 Develop New ActiveX .exe Project

In order to use COM Services, when building a new Visual
Basic project, the project must be an ActiveX .exe. ActiveX
controls allows Visual Basic programs to interact with other
outside programs. The key element of an ActiveX program
is the class module. The class module allows Micro Saint to
call commands in the Visual Basic Program. The user
should also name the program “TestCOM”.

Figure 4: Form frmMain

Schunk and Bloechle

3.3.2 Interface Design

The interface for this Visual Basic program will consist of
three forms. The first form performs the basic COM
commands consisting of connecting to Micro Saint, load-
ing the emergency room model into Micro Saint and start-
ing the model. It will consist of three buttons which will
perform the previously mentioned functions (See Figure 4).
The second form will inform the user of some model statis-
tics (i.e. how many doctors are on staff, doctor utilization,
patients waiting, etc.) as well as ask the user whether to in-
crement the number of doctors on staff, decrement the
number of doctors on staff, or continue the model with no
change (See Figure 5). The final form will be a report (See
Figure 6) in which Visual Basic will show the user what
effect their changes had on the model.

Figure 5: Form frmQuestion

Figure 6: Form frmReport

These three forms will start to use the COM com-
mands. These commands and their definitions are:

• saint Connect(char *comProgramName) –

Connects to Micro Saint (This is the COM Pro-
241
gram name. Note: In the test programs it is Re-
ceiveCOMMessages)

• saint InsertIntoQueue(char *expr, short
firstOrLastAtTime, float timeOffset, float
eventTime = 0.0) – Inserts an event into the event
queue (The first part is the expression you are
sending to Micro Saint, the second part is decid-
ing whether you want it to go at the beginning of
the event queue or at the end, how much time (if
any) to offset it by, and the time you want this
event to happen. Note: If there is an offset time
then it will NOT happen at the time you put in.)

To develop this part of the model the user must place all

the necessary parts of the interface on the form as well as give
the forms the appropriate names (frmMain, frmQuestion).
The next part of this example is to input coding into the forms.
For the form frmMain, the user needs to insert code so that
this form can connect to Micro Saint, load up the appropriate
simulation model and start it, and disconnect from Micro
Saint. This can be done through a series of commands that
Micro Saint understands through COM. The coding for the
aforementioned actions are as follows:

1. Connect to Micro Saint
Set saint = CreateOb-
ject(“saint.Application.1”)
saint.Connect(“TestCOM.ReceiveCOMMessages”
AppActivate “TestCOM”

2. Load up the appropriate simulation model and
execute it
saint.OpenModel (whole)
saint.ExecuteModel (whole)

3. Disconnect from Micro Saint
saint.Disconnect
saint.Quit

For the form frmQuestion, the program will have to be able
to send commands to Micro Saint that will either increment
or decrement the current and total number of documents on
staff as well as updating variables. The coding for these
tasks are as follows:

1. Incrementing number of doctors on staff
Call saint.InsertIntoQueue(“doctors += 1;
maxdocs += 1;”, 1, 0, 10)

2. Decrementing number of doctors on staff
Call saint.InsertIntoQueue(“doctors -= 1;
maxdocs -= 1;”, 1, 0, curtime)

3. Update variable
oldutil = docutil
newval = 0
Call saint.InsertIntoQueue(“docutil :=
0;”, 1, 0, curtime)
frmQuestion.Hide

Schunk and Bloechle

3.3.3 Class Module Design

The class module (ReceiveCOMMessages) is what enables
Micro Saint to send information over to the Visual Basic
program. There are two main functions in the class module
that are important to the user. These functions and their
definitions are ReceiveIntVariable and ReceiveFloatVari-
able. When Micro Saint calls these functions, it passes to
Visual Basic the name of the variable and the variable’s new
value. Using this information, Visual Basic will record (in-
ternally) the variable’s value and prompt the user to make a
choice if necessary.

The Code for the ReceiveIntVariable function is as
follows:

Public Function ReceiveIntVari-

able(ReceiveVariable As String, number As
Long) As Long

If ReceiveVariable = “doctors” Then

 curdoc = number

ElseIf ReceiveVariable = “maxdocs” Then

 maxdoc = number

ElseIf ReceiveVariable = “day” Then

 curday = number

ElseIf ReceiveVariable = “numpatients” Then

 curpatients = number

End If

End Function

Essentially this function looks at what variable is being
passed and assigns it to the appropriate Visual Basic variable.

The next function is the ReceiveFloatVariable func-
tion, it operates in a similar fashion as the ReceiveIntVari-
able except that if the variable is the variable representing
the arrival rate, then Visual Basic will prompt the user on
the doctor staffing.

Public Function
ReceiveFloatVariable(ReceiveVariable As String,
number As Double) As Long

Dim change As String

If ReceiveVariable = “meanrate” Then

 meanrt = number

 If oldrate > 0 Then

 If oldutil > 0 Then

 utilchange = oldutil - docutil

 End If

 If utilchange < 0 Then

 change = “The utilization has in-
creased from the last decision”

 ElseIf utilchange > 0 Then

 change = “The utilization has de-
creased from the last decision”

 Else

 change = “The utilization has not
changed.”
242
 End If

 Call saint.PauseModel

 frmQuestion.Quest.Clear

 If oldrate < meanrt Then

 frmQuestion.Quest.AddItem “There
has been a change in the arrival rate of pa-
tients.”

 frmQuestion.Quest.AddItem “The
patients will be arriving at a slower pace.”

 frmQuestion.Quest.AddItem “The
current doctor utilization is “ + Str(docutil)

 frmQuestion.Quest.AddItem “There
are currently “ + Str(curpatients) + “ patients
waiting.”

 frmQuestion.Quest.AddItem
Str(maxdoc) + “ total doctors on staff. “

 frmQuestion.Quest.AddItem
Str(curdoc) + “ doctors available. “

 frmQuestion.Quest.AddItem change

 frmQuestion.Quest.AddItem “Do you
want to change the number of doctors on staff?”

 Else

 frmQuestion.Quest.AddItem “There
has been a change in the arrival rate of pa-
tients.”

 frmQuestion.Quest.AddItem “The
patients will be arriving at a faster pace.”

 frmQuestion.Quest.AddItem “The
current doctor utilization is “ + Str(docutil)

 frmQuestion.Quest.AddItem “There
are currently “ + Str(curpatients) + “ patients
waiting.”

 frmQuestion.Quest.AddItem
Str(maxdoc) + “ total doctors on staff. “

 frmQuestion.Quest.AddItem
Str(curdoc) + “ doctors available. “

 frmQuestion.Quest.AddItem change

 frmQuestion.Quest.AddItem “Do you
want to change the number of doctors on staff?”

 End If

 frmQuestion.time = curtime

 frmQuestion.Show 1

 Call saint.ExecuteModel(App.path +
“\er.mod”)

 oldrate = meanrt

 Else

 oldrate = meanrt

 End If

ElseIf ReceiveVariable = “doctorut” Then

 docutil = number

ElseIf ReceiveVariable = “clock” Then

 curtime = number

End If

End Function

Schunk and Bloechle

This function will show the user the form frmQuestion if it is
necessary as well as perform some simple statistical calcula-
tion in order to help the user make a decision on staffing.

3.4 Finished Example

With this finished example, the user can expand the analy-
sis to include all aspects of the emergency room including
nurses and other staff members. This is a way for the user
to run through certain analyses and play “what if” without
having to commit resources.

4 OTHER EXAMPLE OF COM
SERVICES APPLICATION

COM Services’ are not just limited to the previous exam-
ple. COM Services versatility allow it to be applied to
many different types of analyses in many different types of
industry. The following are two more ways that COM
could be used effectively.

4.1 Course of Action Training Tool (COATT)

Good pilot judgment and decision making are critical to safe
flight operations. A recent study of helicopter accidents, as
demonstrated in Reference 1, investigated the NTSB data-
base from 1990-1996 and analyzed 1165 accidents. Pilot
decision making was found to be a factor in 10% of all acci-
dents and 15% of all fatal accidents in this database. This is
also borne out in incident data. The Aviation Safety Report-
ing System (ASRS) performed an analysis, of 833 helicopter
incidents that occurred from 1989 through 1996. This study
found that 362 of the incidents or 43% had pilot judgment as
a major issue. However, judgment and decision making are
not a formal part of the initial rotary wing training, nor re-
current training.

The emergency medical service (EMS) industry is es-
pecially susceptible to this problem. The current project
was undertaken to develop a judgement/ decision making
trainer for EMS pilots that will help them to evaluate the
changing conditions and recognize the available courses of
action and their utility.

The technical approach for providing mission training
for helicopter pilots on the dynamic conditions and alterna-
tive courses of action that occur is a combination of com-
puter-based simulation, full motion video, still photography,
and audio. These techniques will be accessed, driven, and
displayed by a Windows graphical user interface (GUI).
This combination of technologies provides helicopter pilots
with a low cost simulator named the Course of Action Train-
ing Tool (COATT) for investigating and learning about the
potential impacts of the decisions they can make during a
mission scenario. The beta test version of the first mission
scenario has been completed.
243
4.1.1 Scenario Development

To identify a helicopter scenario that included a rich set of
dynamically changing conditions, 17 EMS pilots were in-
terviewed using a semi-structured questionnaire containing
30 questions, most of which were open-ended. The ques-
tions encouraged pilots to describe situations where they
had to make difficult decisions and the circumstances sur-
rounding those decisions.

A content analysis of the interviews revealed two
problematic areas for decision making — the weather and
the conditions at sites where they have to land. They cited
weather-related decisions as among the most important
pre-flight, in-flight, and stressful decisions they make;
judging safe landing zone conditions were important in-
flight decisions and were also rated as hard to make.

Based on these findings, a weather-related scene pick-
up mission was developed as the training scenario. In this
scenario, the trainee has to pick up a patient at an accident
scene and transport him to a designated hospital. The sce-
nario contains potentially changing weather, radio and
crew communication, possibly equipment malfunctions,
and varying terrain.

4.1.2 The Simulation Model

After defining mission scenarios, network flow diagrams
were developed to depict all of the alternative processes
that could occur in the execution of the mission. Using the
network diagrams as blueprints, a discrete event simulation
model was developed using the Micro Saint simulation
tool. These simulations include rule-based and probabilis-
tic logic for the stochastic portions of the simulations such
as weather conditions. However, the alternative course of
action (COA) choices that are made by the pilot are not
programmed into the simulation. These decisions are made
by pilots as they interact directly with the simulation. Each
node in a network diagram represents either an action that
is made by the pilot or an indication of the current envi-
ronmental conditions. Figure 7 illustrates an example of a
network diagram.

The user interface presents pilots with combinations of
full-motion video clips, still photography, audio, and text
to depict the activities that are occurring in the simulation
model and the options that the pilot has as the simulation
progresses. At points throughout the mission, pilots are
presented with an update of their situation. At these points,
they are given different options, such as:

• Continuing the mission
• Aborting the mission and returning to base
• Taking an alternate route
• Landing immediately

Schunk and Bloechle

Feedback is provided by COATT to offer pilots a re-
view and critique of the decisions they made during the
mission and different courses of action they might have
chosen to improve mission safety. This feedback was de-
veloped to be consistent with the training that pilots re-
ceive and with what is known about the types of scenarios
and accidents used in COATT.

4.1.3 Use of COM to Make Simulation Interactive

Communication between the underlying Micro Saint simu-
lation model and the GUI application is accomplished us-
ing COM Services. Micro Saint COM Services allows pi-
lots to send commands and data from software that is
external to Micro Saint. The COATT application uses
Visual Basic as the external COM compliant software for
the GUI development.

When a user starts COATT, he or she selects a training
scenario or a previously run mission to replay. The con-
trolling GUI application then launches the Micro Saint
simulation model. As a node in the model executes, Micro
Saint sends a message to the GUI application to play a des-
ignated video clip. When the video clip completes, the
controlling application sends a message to Micro Saint to
execute the next node. Due to the stochastic nature of the
model, different nodes execute based on the probabilities
associated with each one. As each node executes it sends a
message to the GUI application to play a different video
clip or audio segment.

When the simulation encounters a pilot course of ac-
tion decision point, as shown in node 6 of Figure 7, the
simulation model sends a message to the controlling appli-
cation to display a pilot decision window. This window
presents the user with a text message describing the current
situation and provides choices for the course of action he
or she can take.

When the user makes a decision, the controlling appli-
cation sends a message to the Micro Saint model to execute
the appropriate node, which in turn sends a message back
to the GUI to play the next video or audio segment. This
process of displaying video and audio segments that repre-
sent what is happening in the underlying simulation model
and periodically asking the user to make a COA decision
continues until the simulation model completes. The use
244
of COM functionality to develop this interactive discrete
event simulation combined with multi-media presentation
has been demonstrated in this project to be technically fea-
sible and relatively low cost when compared to other types
of man-in-the-loop simulators.

4.2 Combat Automation Requirements
Testbed (CART)

CART was developed under the Air Force Research Labora-
tory (AFRL) research development and acquisition of hu-
man/system design tools through the Human Effectiveness
Directorate. The CART simulation environment consists of a
High Level Architecture compliant federation of simulations
(or federates). Within this simulation environment there is
the CART Human Performance Modeling (HPM) Environ-
ment (CHE). The CHE modeling and simulation software is
an expansion of the Army Research Laboratory (ARL) Hu-
man Research and Engineering Directorate (HRED) which
developed the Improved Performance Research Integration
Tool (IMPRINT).

IMPRINT provides the means for estimating man-
power, personnel, and training requirements and con-
straints for new weapon systems early in the acquisition
process. Although there were many subtle enhancements
and additions made to IMPRINT for CART, the two major
enhancements were as follows:

1. The addition of goal orientation modeling capability.
2. The addition of an adaptive simulation interop-

erability environment to allow CART models to
communicate with other simulations through an
HLA RTI.

4.2.1 HLA “Middleware” Scheme

CART simulation models act as a federate within a High
Level Architecture (HLA) compliant federation. In order
for this interaction to occur, certain “middleware” was in-
troduced into the CART HPM Environment. The data sent
across the federation, object attributes and interactions,
was mapped to the Real-time Platform Reference Federa-
tion Object Model (RPR FOM).
Network 0 Untitled
1

Take Off
2

Fly 1st
Segment

3
Weather
Improves
4

Weather
is Same
5

Weather
Worsens

6
Pilot COA

7
Continue

8
Abort
Mission
9

Radio for
Update

10
P T

Figure 7: Network Diagram

Schunk and Bloechle

The components of the CART “middleware” are
shown in Figure 8. User-defined external variables are the
interface between CART models and other HLA federates
prior to and during federation run-time. During federation
run-time, COM Services are used to communicate between
the “middleware” and the Micro Saint Run-Time Engine
(MSRTE) CART models. Mäk Technologies’ VR-Link
product provides an interface to the RTI. The “middle-
ware” interface allows the CART user to map external
variables to RPR FOM interaction parameters prior to run-
time. Run-Time “middleware” (RT MW) Code allows the
RTI with VR-Link to interact with COM during run-time.

In addition to the architecture described above, the two
keys to creating CART’s adaptive simulation interoperabil-
ity environment were the external variable concept and the
use of the RPR FOM. The Simulation Management
(SIMAN) Interactions in the RPR FOM provided more
flexibility for the CART user.

The CART GUI publishes an external variable list. By
designating some variables as “external” in the CART
model, a user sets up the model to interact with other mem-
bers of a CART federation. Prior to federation run-time,
these external variables are mapped to HLA RPR FOM in-
teraction parameters. They are also mapped to actions to be
taken (whether the CART model wants to “receive” or
“send” the data represented) when the variables are encoun-
tered during federation run-time. During federation run-
time, when these variables are used in a CART model or as-
sociated RPR FOM data is sent in through the “middleware”
by another simulation, their values update accordingly and a
simulation action (such as suspending a task or starting a
goal network) may be triggered.

5 SUMMARY

The future growth of the simulation market will hinge
largely on our ability to build models that can communicate.
We must be able to build models that we know others can
take advantage of, not ones that have a limited shelf life of
only solving one problem. As different models can share
data, the power of simulation during engineering and design
will be greatly increased. COM is a start to the basic archi-
tecture that will support that strategy.

AUTHOR BIOGRAPHIES

DANIEL W. SCHUNK is an industrial engineer for Mi-
cro Analysis and Design, Inc. He has a Bachelor of Sci-
ence in Industrial Engineering from Purdue University.
His email address is dschunk@maad.com.

245
WENDY K. BLOECHLE is the Director of Sales and
Marketing for Micro Analysis and Design, Inc. She has a
Bachelor’s of Science in Industrial Engineering from the
University of Illinois and a Master of Business Administra-
tion from the University of Colorado. Her email is
wbloechle@maad.com.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

