
Proceedings of the 2001 Winter Simulation Conference
B. A. Peters, J. S. Smith, D. J. Medeiros, and M. W. Rohrer, eds.

OPEN-SOURCE SML AND SILK FOR JAVA-BASED, OBJECT-ORIENTED SIMULATION

Richard A. Kilgore

SML Consortium and ThreadTec, Inc.
P. O. Box 7

Chesterfield, MO 63006, U.S.A.

ABSTRACT

Silk® and SML are software libraries of Java, C++, C# and
VB.Net classes that support object-oriented, discrete-event
simulation. SML™ is a new open-source or “free” software
library of simulation classes that enable multi-language
development of complex, yet manageable simulations
through the construction of usable and reusable simulation
objects. These objects are usable because they express the
behavior of individual entity-threads from the system object
perspective using familiar process-oriented modeling within
an object-oriented design supported by a general purpose
programming language. These objects are reusable because
they can be easily archived, edited and assembled using
professional development environments that support multi-
language, cross-platform execution and a common
component architecture. This introduction supports the
tutorial session that describes the fundamentals of designing
and creating an SML or Silk model.

1 INTRODUCTION

Silk and SML were designed to be different things to
different people (SML 2001; Healy and Kilgore 1997;
Kilgore, et al. 1998, 2000, 2001). To some users, the
languages are a set of basic simulation class libraries that
can be creatively assembled into a variety of new modeling
constructs. To others, the languages are a process-oriented
modeling language that offers the power and flexibility of
a standard programming language. To others, they are a a
visual modeling environment where modeling components
can be graphically assembled to quickly create simulation
applications. SML and Silk can also be a very practical
tool for building object-oriented simulation components
and domain-specific simulators.

These languages are not so much a simulation
language in itself as they are simulation extension of the
base languages. The power, flexibility and extensibility of
the languages derive directly from their base language and
the clean way in which the simulation-related extensions
have been integrated into the language. Achieving such a
262
high level of integration would not be possible were it not
for a unique combination of features in the base languages.
One is a simple yet powerful framework that greatly
facilitates the implementation of object-oriented design
methodology and its capabilities for creating flexible,
modular, and reusable programs. Another is the built-in
support for multi-threaded execution, which is essential to
representing in a natural way the flow of entities in process
simulation models. By incorporating the modeling
environment into Silk and SML, users also have direct
access to native support for browser-based execution,
standard Internet communication protocols, database
connectivity and graphical user interface development.
Java and .NET’s platform neutral design also means that
models can be developed and executed on practically any
combination of computer hardware and software platforms.

This paper is intended to serve primarily as an
introduction to the language level features of SML and Silk
which serve as the foundation for developing reusable
simulation components and higher level domain-specific
simulators. Other articles dealing with other important
aspects of SML and the Silk language are listed in the
References section. Section 2 contains an overview of
creating an object-oriented model with SML and Silk.
Section 3 describes the development of SML and Silk in
Java Integrated Development Environments. Section 4 is
an overview of JavaBean components for visual modeling
and animation. Section 5 contains concluding remarks.

2 OBJECT-ORIENTED DESIGN

Object-oriented simulation is the most powerful when the
user follows a consistent design pattern for object-oriented
modeling in which each “intelligent” component is
modeled as an independent entity class.

To illustrate this concept, consider the typical single-
server queuing system of a customer served by a bank
teller. There are two intelligent components in the system
capable of independent thought and action, the Customer
and the Teller. This system could be modeled as a single
class from either a pure Customer-push or Teller-pull

Kilgore

perspective. But there are substantial design benefits to
adherence to the proper object-oriented simulation
representation of the system in which there is one Silk
simulation class for each intelligent system component.
The representation of the Customer and Teller classes are
described in Figures 1 and 2. The numbers in brackets in
the text will refer to the line numbers in these figures and
color is used in electronic versions of this paper to
distinguish Java keywords (blue), keywords (red),
comments (green) and user-defined identifiers (black).

2.1 The Customer Class

A simulation class is like any typical Java programming class.
The package of classes referenced are identified in an import
statements [1] and the user-defined class name Customer is
declared as an extension of the Entity class [2]. The class
structure consists of the data declarations [3-11] which will
define the characteristics of the simulation entities created
from this class and the default Silk process method [12-26]
that will change those entity characteristics as the state of the
263
system changes. The essence of object-oriented simulation is
the use of these Entity methods, Java statements and other
objects within this process method to represent exactly what
behavior that the real systems entity experiences.

Each instance of this Customer class is assigned two
unique, user-defined attribute identifiers, attArrivalTime,
attServiceDelay [4]. Since a simulation is a Java program,
these attributes can be any Java or data type. In this case, a
Java double precision variable is needed, but the service
times might be an entire array of process objects that
define tasks, resources required and service times (please
see <http://www.threadtec.com/models> for
more industrial-strength examples).

While each Customer instance will have these unique
attribute identifiers, all instances of the Customer class will
share common static class variables representing Java or
simulation objects [6-11]. Only objects for random
variable generation and statistics are shown in this
example, but again remember that these models are Java
programs so the entire collection of Java data types and
objects available. For example, a more complex model
1. import threadtec.silk.*; // Silk general purpose classes

2. public class Customer extends Entity {

3. // Attributes (instance variables) unique to each customer
4. double attArrivalTime, attServiceDelay;

5. // Silk objects (class variables) common to all customers
6. static Exponential expInterArrivalTime = new Exponential(10.0),
7. expServiceDelay = new Exponential(8.0);
8. static Observational obsTimeInSystem = new Observational("Time in System"),
9. obsTimeInQueue = new Observational("Time in Queue");
10. static Queue queCustomer = new Queue("Customer Queue");
11. static TimeDependent timQueue = new TimeDependent(queCustomer.length,"In Queue");

12. public void process(){

13. // create next customer arrival and record arrival time
14. create(expInterArrivalTime.sample());
15. attArrivalTime = time;

16. // assign service time for this customer and wait for service
17. attServiceDelay = expServiceDelay.sample();
18. queue(queCustomer);

19. // queue delay controlled by teller
20. halt(); // suspend process until teller activates
21. obsTimeInQueue.record(time - attArrivalTime); // record queue time

22. // service delay controlled by teller
23. halt(); // suspend process until teller activates
24. obsTimeInSystem.record(time - attArrivalTime); // record system time

25. dispose();

26. }// end of process method
27. }// end of Customer class

Figure 1: Customer Class Definition

Kilgore

might contain an array of all of the required processing
delay distributions that this entity might require.

A significant advantage of SML and Silk over previous
object-oriented languages is the use of process-oriented
methods familiar to users of other simulation language.
Every class must contain a process method containing these
statements (or references to other classes that contain these
statements) and it is here that the power of object-oriented
modeling becomes evident. The process method [12-26]
describes line for line the sequence of actions and
information processing that defines the intelligent behavior
of this system component. When the component is waiting
for a decision or action of another intelligent component, the
entity will halt its process until activated.

In this example, the Customer creates [14] the arrival
of the next Customer using a sample from a Silk
Exponential random variable object created in the data
declaration. The attArrivalTime variable is then set to the
current value of simulation time [15]. The “att” prefix is
not required and has no special significance other than to
remind the modeler that this is an instance variable unique
to this object. Next, the attServiceDelay variable is then
assigned a sample value from the appropriate service time
distribution [17]. More complex models would likely have
different distributions for different Customer classes and
the use of an attribute for service delay will allow the
Teller object access to the required processing time for
each Customer instance and type.
264
This assignment of the service time to an attribute of
the Customer object is an important object-oriented design
choice. Is the time required for service an attribute of the
Customer or should it be defined as a characteristic of the
Teller? If different Tellers have different performance
characteristics in performing the required service, those
factors properly belong in the Teller class definition. But
the basis for the service requirement is a characteristic of
the customer and new customer types (which might inherit
from this Customer class) should have the ability to modify
the default customer service requirement without
modification in Teller classes. Small design choices such
as this are crucial to the adherence of a consistent design
that will make models easier to reuse.

The Entity queue method then places this Customer
instance in a queue [18] object which is simply an ordered
list of Customer entities. Note that this queue is not linked
with any particular Resource object so an Entity can be
simultaneously listed in any of a number of Queues. This
is extremely useful for modeling complex server behavior
and facilitates proper statistics collection.

Until this point, the Customer entity is an intelligent
component that has “pushed” through process methods to
join the Teller queue. In the actual system, control of the
choice of which Customer is served next is now passed to
the Teller object. Consequently, the Customer object is
halted by a halt method [20]. This distinction may seem
cumbersome at first and the traditional entity-push
1. import threadtec.silk.*; // Silk general purpose classes

2. public class Teller extends Entity {

3. static Resource resTeller = new Resource ("Teller");
4. static TimeDependent timTeller = new TimeDependent(resTeller.numBusy, "Utilization");

5. public void process () {

6. while (true) { // Teller not scheduled, continuously seeks new Customers

7. // wait while condition is true (no customers in queue
8. while(condition (Customer.queCustomer.getLength() == 0));

9. // obtain reference to first customer in queue and remove it
10. Customer entCustomer = (Customer)Customer.queCustomer.remove(1);

11. // process customer and release teller
12. seize (resTeller);
13. entCustomer.activate(); // end halt for customer in queue
14. delay (entCustomer.attServiceDelay);
15. entCustomer.activate(); // end halt for customer in system
16. release (resTeller);

17. }// end of while block for Teller processing

18. }// end of process method

19. }// end of Teller class

Figure 2: Teller Class Definition

Kilgore

approach could be used throughout the process definition.
But the object-oriented design requires that data
characteristics and behavior of each object to be
encapsulated within that object. The significance of this
approach will become clearer as the behavior of the Teller
object is described below.

The Customer is “pulled” from the queue and
activated by the Teller object [shown in Figure 2, line 13].
The Customer object then continues the process method by
recording the time spent in the halted state in a Silk
Observation statistic object [21]. The TimeDependent
object for Customer queue length [11] is automatically
updated each time that the queue characteristic length is
changed. Similarly, the end of service is also under the
control of the Teller object so the Customer is again halted
[23] until service is completed and the Customer is
activated by the Teller object [Figure 2, 15]. Statistics for
system time are then recorded for system time [24], and
this instance of the Customer class is then disposed [25].
The dispose method actually places the entity object in a
pool of Customer objects to be reincarnated as
representations of future customers.

2.2 The Teller Class

The description of the Teller class is found in Figure 2. It
defines the simulation system data and behavior from the
perspective of the Teller. Since the Teller class is also a
system component with independent intelligence, it is a
modeled as an Entity [2]. A Resource object created to
represent the Teller state [3]. The responsibility for when
and how to change this state from busy to available is left to
265
the process method for the Teller [5-18]. The Java while
block [6] is used to continuously loop the single instance of
the Teller throughout the simulation. By default, an entity
executes the process method only once so this Java construct
is necessary to allow the instance of Teller entity to
continuously repeat the process method for subsequent
Customers.

Interaction between Silk objects is reserved for the
Silk/Java construct known as the while(condition()) . The
while(condition()) combines the Java while statement and
the Silk condition method [8]. Similar to the halt method,
this statement temporarily stops the process of a Silk entity
until activated by another process. In this case, the entity
proceeds only when the expression defined within the
condition method evaluates to false. The user is
responsible for stating the conditions for the wait based on
the state of Queues, Resources and other Silk or user-
defined state variables. The corresponding construct in
SML uses a similar but distinct structure that halts the
entity until the combination of conditions is true.

At first look, this structure may appear cumbersome
for simple systems. But more experienced modelers will
appreciate the ability to create compound conditions for
modeling resource behavior based on a variety of factors.
Performance is less affected by this complexity as Boolean
conditions are re-evaluated only when those objects which
appear in the methods change value. Note that while many
entities may be waiting for the same condition, only one is
activated at a time to allow the activated entity an
opportunity to change the condition (by seizing a resource
or joining a queue).
1. import threadtec.silk.*; // references Silk methods found in this package

2. public class Simulation extends Silk {

3. public void init () {

4. // instantiate Silk Entity objects prior to the beginning of run
5. Customer entCustomer = (Customer)newEntity(Customer.class); // create first Customer
6. entCustomer.start(0.0);

7. Teller entTeller = (Teller)newEntity(Teller.class); // create first Teller
8. entTeller.start(0.0);

9. } // end init method

10. public void run () {

11. // initialize Silk settings and flags prior to beginning of run
12. setReplications(1); // End simulation at the end of 1 replication.
13. setRunLength(10000.); // Execute the simulation for 10000 time units
14. setControlConsole (true); // Use Control Console for interactive control

15. } // end run method

16. } // end Simulation class

Figure 3: Simulation Class Definition

Kilgore

The net result in the case of the Teller is that the
arrival or existence of an entity in the Customer queue
results in the continuation of the Teller process. The Teller
calls the remove method of the Queue object to obtain a
Customer reference and remove the Customer entity from
the queue [10]. This statement shows the use of a
declaration of an object type within an expression
(Customer entCustomer) and also the casting of the object
type returned by the remove method to a Customer object
type. Users commonly “wrap” complex methods like these
within other simpler user-defined methods of their own
creation. But the power of open-source SML is the ability
of the development community to create and extend the
language without sacrificing the underlying power and
flexibility of the basic Entity methods.

The Teller object uses the reference to the Customer
entity entCustomer, to access the service delay attributes of
the Customer [14] and to invoke the activate method to
resume the process method for the halted Customer entity
as described earlier [13,15]. The seize and release methods
in [12,16] modify the busy state of the Teller Resource
object to allow the TimeDependent object to automatically
track Teller utilization [4].

Finally, a brief note is necessary to explain the entity-
thread concept enabled by Java. Entities are in SML and
Silk Java threads. Java's support for multi-threaded
execution enables the various types of entity behaviors
(halt, delay and while(condition) described above. It is
also an essential aspect to the implementation of a natural
process-oriented modeling capability in Java. An executive
thread running in the background coordinates the
management of simulated time and the resumption of
suspended threads.

2.3 The SIMULATION Class

All Silk models require a Simulation class, as shown in
Figure 3, primarily for the purpose of creating the first
instance of each class in the init method [3]. The
newEntity method [5] is responsible for the creation and
use of the Silk entity object pool of the indicated class and
returns a reference to a new or existing member of that
pool. The start method [6] then begins the execution of the
Entity process method after a delay of the appropriate time
units. In addition, other global parameters may be declared
in the Simulation init method since all Entities extend
Simulation and thus have access to all public variables and
methods defined in the Simulation class. Finally, the run
method of the Simulation class is automatically called by
Silk to start the execution of the desired number of runs
and run length [12,13]. Execution will end with the
creation of a Summary Report window or the user can ask
that a Control Console be used for interactive execution,
tracing and animation control [14]. The Simulation class
also has a finish method that is called at the end of each
266
replication of the simulation to allow programmed
execution of complex experimental designs.

2.4 Object-Oriented Design Choices

As seen in this example Java-based simulation provides
great flexibility regarding the choice of object-oriented
design patterns. Consider the decision to declare the
Queue object to be a characteristic of the Customer class
[Fig. 1, 10]. Even in this simple example, a user has at
least four choices as to the proper assignment of this Queue
object. One option if for the Queue object to be declared
public and instantiated in the Simulation class which
makes the queue reference available in all entity processes.
But object-oriented design principles encourage the
encapsulation of data and methods in their respective
classes so that only those classes which need access to
these objects can access these objects. The choice is then
between the Teller class, the Customer class or a third class
which might contain the physical description of the facility
in which the Teller is located.

This decision is very important for complex model
design and simulation object reusability. Modelers are
encouraged to create process methods that reflect the actual
characteristics and behavior of the corresponding
intelligent system component. In this system, the
Customer is in control of the behavior regarding which
queue to join (and in more complex models, how long to
wait in the queue chosen or whether to switch lines, etc.).
For that reason, the queue definitions are made in the
Customer class so that other versions of the model can
change Customer queueing behavior without modifying the
Teller class.

3 DEVELOPMENT ENVIRONMENTS

The Silk and SML simulation extensions to the Java
language are themselves implemented entirely in Java.
The only requirements for building and executing
simulation models are a Java language compiler and run-
time Virtual Machine that are compatible with Sun’s JDK
1.3 specification of the language. Most commercial
simulation software vendors constrain users to a single
proprietary and often cumbersome development
environment. Users can choose from a variety of
professional, third-party Java Integrated Development
Environments (IDE’s). Each of these IDE’s provides a
sophisticated graphical interface and a rich collection of
tools for project management, source code creation and
modification, compilation, debugging, and deployment as
standalone applications, browser-based applets, or server-
based servlets. Figure 4 contains a screen snapshot of the
example problem from the previous section within the
Visual Café development environment.

Kilgore

4 JAVABEANS COMPONENT MODELING

Simulation without programming is unrealistic in most
industrial strength models and no simulation vendor has
the omniscience necessary to create components that do
not require modification to represent the subtle, but
important differences between system alternatives. But
starting a model with graphical Silk components to create a
simulation might be preferable to developing applications
from scratch. Component-based simulation applications
bring economies of speed in development and testing by
capitalizing on previous successes (Pidd, 1000). Java-
based simulation libraries like SML and Silk allow users to
leverage the use of JavaBeans as a set of classes and
programming conventions that constitute a component
development model for the Java language.

JavaBeans are designed to be manipulated graph-ically
within visual development environments like Visual Café.
The bias is these early years of Java tool design has been
toward use of JavaBeans for GUI development where
property changes are easier than code changes. But the
emergence of Enterprise JavaBeans for cross-platform,
cross-developer application development is driving
changes in these tools beneficial for simulation-component
development. Visual programming allows for the
concentration and separation of skills among developers.
Skilled programmers build and make available beans for
other developers with more domain-specific knowledge
(and typically less technical programming expertise) to
assemble visually into custom applications. This model
works as well for simulation development applications as it
does for complex programming applications.

JavaBeans can be applied to any aspect of an
simulation application. It is a relatively simple matter to
write self-contained, simulation modeling components
based on SML and Silk that automatically make known
their functionality and interoperability when incorporated
into a JavaBeans visual development environment. Within
this environment, they can be added to user-defined
component toolboxes or palettes. Users can then assemble
components visually into a model by placing them in a
workspace and editing their properties to create a desired
behavior. None of these manipulations require code to be
written by the application developer.

While JavaBeans provides a means for packaging
functionality into reusable units; beans by themselves do

Figure 4: Modeling using the Visual Café Integrated Java Development Environment
267

Kilgore

not ensure reusability. To exploit the potential that
simulation components have to offer, policies that define
the functionality and modes of interoperability that allow
components to be reused must be developed and adhered
to. For example, there exist a set of policies and
supporting classes that define the ways in which
components must interact to produce animated displays of
system state changes. These conventions were used in the
implementation of a core capability in Silk that provides
for animating entity movements, entity queueing, entity
delays, and numeric and analog displays of state variable
values among others. If the prescribed conventions are
followed, it is a simple matter for users to modify these
existing components or define new ones that will
interoperate with any simulation model.

Developing guidelines for enterprise modeling
components will be more challenging. Consideration will
need to be given to the application domain as well as the
range of model granularity the components are required to
accommodate. Silk, SML and JavaBeans, however,
significantly facilitate the manner in which these issues can
be approached - both from a design and imple-mentation
standpoint. In combination, they have the potential to raise
component model development, interoperability, and
reusability, to a new level.

5 SUMMARY

The Java language extensions that constitute SML and Silk
were designed to encourage better discrete-event
simulation through better programming by better
programmers. Since the modeling language is integrated
into the Java programming language, the full power and
flexibility of the Java programming language is available.
Unlike proprietary modeling environments, Silk users also
benefit from the growing number of commercially
available professional Java development tools. And unlike
proprietary software, SML users can benefit from the large
community of simulation researchers and practitioners who
can guide and participate in SML development. The open-
source licensing of SML will encourage developers to
share language-level and component-level advances via the
Internet and will also foster increased activity in the
development of high-level, domain-specific simulation
tools that end-users favor.

REFERENCES

Healy, K. and R. Kilgore. 1997. SilkTM: A Java-based
process simulation language. Proceedings of the 1997
Winter Simulation Conference, ed. S. Andradóttir, K.
Healy, D. Withers, and B.L. Nelson, 475-482.
Piscataway, NJ: Institute of Electrical and Electronics
Engineers.
268
Kilgore, R. A., Healy, K. J. and Kleindorfer, G. B. 1998.
The future of Java-based simulation. Proceedings of
the 1998 Winter Simulation Conference Proceedings,
ed. D. J. Medeiros, E. F. Watson, J. S. Carson, M. S.
Manivannan, 1707-1712. Piscataway, NJ: Institute of
Electrical and Electronics Engineers.

Kilgore, R. and K. Healy. 1998. Java, enterprise simulation
and the SilkTM simulation language. Proceedings of
the 1998 International Conference on Web-Based
Modeling & Simulation, ed. P. Fishwick, D. Hill, and
R. Smith, 442-449. SCS, San Diego CA..

Kilgore, R., K. Healy, and G. Kleindorfer . 1998. SilkTM:
usable and reusable Java-based object-oriented
simulation. Proceedings of the 12th European
Simulation Multiconference. SCS International, Ghent,
Belgium.

Kilgore, R. 2001. Open-Source Simulation Modeling
Language (SML). In Proceedings of the 2001 Winter
Simulation Conference, ed., B. Peters, J. Smith.
Piscataway, NJ: Institute of Electrical and Electronics
Engineers.

Pidd, Michael , N. Oses and R. J. Brooks. 1999.
Component-based simulation on the web? In
Proceedings of the 1999 Winter Simulation
Conference, ed., P. A. Farrington, H. B. Nembhard, D.
T. Sturrock, and G. W. Evans, 1438-1444. Piscataway,
NJ: Institute of Electrical and Electronics Engineers.

SML, Simulation Modeling Language. Available online
via <http://www.threadtec.com/sml>
[accessed July 1, 2001].

AUTHOR BIOGRAPHY

RICHARD A. KILGORE is a co-author of the Silk
language and a consultant in the development of industrial
simulation and scheduling solutions. Dr. Kilgore is a
founding member of the open-source Simulation Modeling
Language (SML) Consortium. He has over 20 years of
experience as a modeling consultant to Fortune 500 firms
in a variety of industries with a variety of simulation and
scheduling tools. He received his B.B.A. and M.B.A
degrees from Ohio University and Ph.D. in Management
Science from the Pennsylvania State University. Formerly,
he was a capacity-planning analyst with Ford Motor Co.
and Vice-President of Products for Systems Modeling
Corp. His e-mail address is <kilgore@threadtec.com>.

SML is a trademark of the SML Consortium.
Silk is a trademark of ThreadTec, Inc.
Java is a trademark of Sun Microsystems, Inc.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

