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ABSTRACT 
 
A desire with iterative optimization techniques is that the 
algorithm reach the global optimum rather than get 
stranded at a local optimum value.  Here, we examine the 
global convergence properties of a “gradient free” 
stochastic approximation algorithm called “SPSA,” that 
has performed well in complex optimization problems.  
We establish two theorems on the global convergence of 
SPSA.  The first provides conditions under which SPSA 
will converge in probability to a global optimum using the 
well-known method of injected noise.  In the second 
theorem, we show that, under different conditions, “basic” 
SPSA without injected noise can achieve convergence in 
probability to a global optimum.  This latter result can 
have important benefits in the setup (tuning) and 
performance of the algorithm.  The discussion is supported 
by numerical studies showing favorable comparisons of 
SPSA to simulated annealing and genetic algorithms. 
 
1 INTRODUCTION 
 
A problem of great practical importance is the problem of 
stochastic optimization, which may be stated as the 

problem of finding a minimum point, pR∈*θ , of a real-
valued function )(θL , called the “loss function,” that is 
observed in the presence of noise.  Many approaches have 
been devised for numerous applications over the long 
history of this problem.  A common desire in many 
applications is that the algorithm reach the global 
minimum rather than get stranded at a local minimum 
value.  In this paper, we consider the popular stochastic 
optimization technique of stochastic approximation (SA), 
in particular, the form that may be called “gradient-free” 
SA.  This refers to the case where the gradient, 
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∂θθ∂θ /)()( Lg = , of the loss function is not readily 
available or not directly measured (even with noise).  This 
is a common occurrence, for example, in complex systems 
where the exact functional relationship between the loss 
function value and the parameters, θ , is not known and 
the loss function is evaluated by measurements on the 
system (or by other means, such as simulation).  In such 
cases, one uses instead an approximation to )(θg  (the 
well-known form of SA called the Kiefer-Wolfowitz type 
is an example). 

The usual form of this type of SA recursion is: 
 

 )ˆ(ˆˆˆ 1 kkkkk ga θθθ −=+ ,      (1) 

 
where )(ˆ θkg  is an approximation (at the kth step of the 

recursion) of the gradient )(θg , and }{ ka  is a sequence of 

positive scalars that decreases to zero (in the standard 
implementation) and satisfies other properties.  This form 
of SA has been extensively studied, and is known to 
converge to a local minimum of the loss function under 
various conditions. 

Several authors (e.g., Chin (1994), Gelfand and Mitter 
(1991), Kushner (1987), and Styblinski and Tang (1990)) 
have examined the problem of global optimization using 
various forms of gradient-free SA.  The usual version of 
this algorithm is based on using the standard “finite 
difference” gradient approximation for )(ˆ θkg .  It is known 

that carefully injecting noise into the recursion based on 
this standard gradient can result in an algorithm that 
converges (in some sense) to the global minimum.  For a 
discussion of the conditions, results, and proofs, see, e.g., 
Fang et al. (1997), Gelfand and Mitter (1991), and 
Kushner (1987).  The amplitude of the injected noise is 
decreased over time (a process called “annealing”), so that 
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the algorithm can finally converge when it reaches the 
neighborhood of the global minimum point. 

A somewhat different version of SA is obtained by 
using a “simultaneous perturbation” gradient 
approximation, as described in Spall (1992) for 
multivariable ( 1>p ) problems.  The gradient 
approximation in simultaneous-perturbation SA (SPSA) is 
much faster to compute than the finite-difference 
approximation in multivariable problems.  More 
significantly, using SPSA often results in a recursion that 
is much more economical, in terms of loss-function 
evaluations, than the standard version of SA.  The loss 
function evaluations can be the most expensive part of an 
optimization, especially if computing the loss function 
requires making measurements on the physical system.  
Several studies (e.g., Spall (1992), Chin (1997)) have 
shown SPSA to be very effective in complex optimization 
problems.  A considerable body of theory has been 
developed for SPSA (Spall (1992), Chin (1997), Dippon 
and Renz (1997), Spall (2000), and the references therein), 
but, because of the special form of its gradient 
approximation, existing theory on global convergence of 
standard SA algorithms is not directly applicable to SPSA.  
In Section 2 of this paper, we present a theorem showing 
that SPSA can achieve global convergence (in probability) 
by the technique of injecting noise.  The “convergence in 
probability” results of our Theorem 1 (Section 2) and 
Theorem 2 (Section 3) are standard types of global 
convergence results.  Several authors have shown or 
discussed global convergence in probability or in 
distribution (Chiang et al. (1987), Gelfand and Mitter 
(1991), Gelfand and Mitter (1993), Geman and Geman 
(1984), Fang et al. (1997), Hajek (1988), Kushner (1987), 
Yakowitz et al. (2000), and Yin (1999)).  Stronger “almost 
sure” global convergence results seem only to be available 
by using generally infeasible exhaustive search (Dippon 
and Fabian (1994)) or random search methods (Yakowitz 
(1993)), or for cases of optimization in a discrete (θ -) 
space (Alrefaei and Andradottir (1999)). 

The method of injection of noise into the recursions has 
proven useful, but naturally results in a relative slowing of 
the rate of convergence of the algorithm (e.g., Yin (1999)) 
due to the continued injection of noise when the recursion is 
near a global solution.  In addition, the implementation of 
the extra noise terms adds to the complexity of setting up the 
algorithm.  In Section 3, we present a theorem showing that, 
under different (more demanding) conditions, the basic 
version of SPSA can perform as a global optimizer without 
the need for injected noise.  Section 4 contains numerical 
studies demonstrating SPSA’s performance compared to two 
other popular strategies for global optimization, namely, 
simulated annealing and genetic algorithms; and Section 5 is 
a summary.   
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2 SPSA WITH INJECTED NOISE AS  
A GLOBAL OPTIMIZER 

 
Our first theorem applies to the following algorithm, which 
is the basic SPSA recursion indicated in equation (1), 

modified by the addition of extra noise terms:  

 

 kkkkkkk qga ωθθθ +−=+ )ˆ(ˆˆˆ
1 ,                         (2) 

 

where p
k R∈ω  is i.i.d. ),0( IN  injected noise, kaak /= , 

kkqqk loglog/2 = , 0>a , 0>q , and )(ˆ •kg  is the 

“simultaneous perturbation” gradient defined as follows: 
 

])()([)2()(ˆ )()(1 −+− −+∆−−∆+∆≡ kkkkkkkkk cLcLcg εεθθθ , 

                 (3) 
 

where )(, ±
kkc ε  are scalars, p

k R∈∆ , and the inverse of a 

vector is defined to be the vector of inverses.  This 
gradient definition follows that given in Spall (1992).  The 

kε  terms represent (unknown) additive noise that may 

contaminate the loss function observation, the kc sequence 

is deterministic and chosen to decrease to zero, and the 

kl∆  components are chosen randomly according to the 

conditions in Spall (1992), usually (but not necessarily) 
from the Bernoulli ( 1± ) distribution.  (Uniformly or 
normally distributed perturbations are not allowed by the 
regularity conditions.) 

Our theorem on global convergence of SPSA using 
injected noise is based on a result in Gelfand and Mitter 
(1991).  The statements of the hypotheses, the associated 
definitions, and the proofs for the two theorems are quite 
long and involved.  These will not be given here, but are 
available in the references quoted below.  We can now 
state our first theorem as follows: 

 
Theorem 1: Under hypotheses H1 through H9 in Maryak 

and Chin (2001), kθ̂  in  algorithm (2) converges in 

probability to the set of global minima of )(θL . 
 
Proof:  See Maryak and Chin (1999), and the remark on 
convergence in probability in Gelfand and Mitter (1991), 
p. 1003.  
 
3 SPSA WITHOUT INJECTED NOISE  

AS A GLOBAL OPTIMIZER 
 
As indicated in the introduction above, the injection of 
noise into an algorithm, while providing for global 
optimization, introduces some difficulties such as the need 
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for more “tuning” of the extra terms and retarded 
convergence in the vicinity of the solution, due to the 
continued addition of noise. This effect on the rate of 
convergence of an algorithm using injected noise is 
technically subtle, but may have an important influence on 
the algorithm’s performance.  In particular, Yin (1999) 
shows that an algorithm of the form (2) converges at a rate 

proportional to )(loglog constk + , while the nominal local 

convergence rate for an algorithm without injected noise is 
3/1k , i.e., )ˆ( *3/1 θθ −kk  converges in distribution (Spall 

(1992)).  These rates indicate a significant difference in 
performance between the two algorithms. 

A certain characteristic of the SPSA gradient 
approximation led us to question whether SPSA needed to 
use injected noise for global convergence.  Although this 
gradient approximation tends to work very well in an SA 
recursion, the SPSA gradient, evaluated at any single point 
in θ -space, tends to be less accurate than the standard 
finite-difference gradient approximation evaluated at θ .  
So, one is led to consider whether the effective noise 
introduced (automatically) into the recursion by this 
inaccuracy is sufficient to provide for global convergence 
without a further injection of additive noise.  It turns out 
that basic SPSA (i.e., without injected noise) does indeed 
achieve the same type of global convergence as in 
Theorem 1, but under a different, and more difficult to 
check, set of conditions. 

In this Section, we designate Kushner (1987) as K87, 
and Kushner and Yin (1997) as KY97.  Here we are 
working with the basic SPSA algorithm having the same 
form as equation (1): 

 

 )ˆ(ˆˆˆ
1 kkkkk ga θθθ −=+ ,                    (4) 

 
where )(ˆ •kg  is the simultaneous-perturbation approximate 

gradient defined in Section 2, and now (obviously) no 
extra noise is injected into the algorithm 

Now we can state our main theorem: 
 

Theorem 2. Under assumptions J1 through J12 in Maryak 

and Chin (2001), kθ̂  in algorithm (4) converges in 

probability to the set of global minima of )(θL . 
The idea of the proof is as follows (see Maryak and 

Chin (2001) for the details).  This theorem follows from 
results (in a different context) in K87 for an algorithm 

])ˆ([ˆˆ 1 kkkkk ga ζθθθ +−=+ , where kζ  is i.i.d. Gaussian 

(injected) noise.  In order to prove our Theorem 2, we start 
by writing the SPSA recursion as 

])ˆ([ˆˆ *
1 kkkkk ga ζθθθ +−=+ , where )ˆ()ˆ(ˆ*

kkkk gg θθζ −≡  is 

the “effective noise” introduced by the inaccuracy of the 
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SPSA gradient approximation.  So, our algorithm has the 

same form as that in K87.  However, since *
kζ  is not i.i.d. 

Gaussian, we cannot use K87’s result directly.  Instead, we 
use material in Kushner and Yin (1997) to establish a key 
“large deviation” result related to our algorithm (4), which 

allows the result in K87 to be used with *
kζ  replacing the 

kζ  in his algorithm. 

 
4 NUMERICAL STUDIES: SPSA  

WITHOUT INJECTED NOISE 
 
4.1 Two-Dimensional Problem 
 
A study was done to compare the performance of SPSA to 
a recently published application of the popular genetic 
algorithm (GA).  The loss function is the well-known 
Griewank function (see Haataja (1999)) defined for a two-
dimensional ),( 21 ′= ttθ , by:  

 

]2/)100cos[()100cos()( 21 −−= ttL θ  

14000/])100()100[( 2
2

2
1 −−+−− tt , 

 
which has thousands of local minima in the vicinity of a 
single global minimum at )100,100( ′=θ  at which 0)( =θL .  
Haataja (1999) describes the application of a GA to this 
function (actually, to find the maximum of )(θL− ) based 
on noise-free evaluations of )(θL  (i.e., 0=kε ).  This study 

achieved a success rate of 66% (see Haataja’s Table 1.3, 
p.16) in 50 independent trials of the GA, using 300 
generations and 9000 )(θL  evaluations in each run of the 
GA.  Haataja’s definition of a successful solution is a 
reported solution where the norm of the solution minus the 

correct value, *θ , is less than 0.2, and the value of the loss 
function at the reported solution is within 0.01 of the 
correct value of zero.  We examined the performance of 
basic SPSA (without adding injected noise) on this 

problem, using α)/( kAaak += , with 100,60 == aA  and 

602.=α , a slowly decreasing gain sequence of a form that 
has been used in many applications (see Spall (1998)).  For 
the gradient approximation (equation (3)), we chose each 
component of k∆  to be an independent sample from a 

Bernoulli )1(±  distribution, and γkcck /= , with 10=c  

and 101.=γ .  Since we used the exact loss function, the 

kε noise terms were zero.  We ran SPSA, allowing 3000 

function evaluations in each of 50 runs, and starting the 
algorithm (each time) at a point randomly chosen in the 
domain ]400,200[]400,200[ −×− .  Haataja’s θ -domain was 

also constrained to lie in a box, but the dimensions of the 
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box were not specified.  Hence we chose a domain that is a 
cube centered at the global minimum, in which there are 
many local minima of )(θL  (as seen in Haataja’s (1999) 
Figure 1.1).  SPSA successfully located the global 
minimum in all 50 runs (100% success rate). 
 
4.2 Ten-Dimensional Problem 
 
For a more ambitious test of the global performance of 
SPSA, we applied SPSA to a loss function given in 
Example 6 of Styblinski and Tang (1990), which we will 
designate for convenience as ST90.  The loss function is: 
 

)cos(4)2()(
11

21 ∏∑
==

− −=
p

i
i

p

i
i tptpL θ , 

 
where 10=p  and ),...,( 1 ′= pttθ .  This function has the 

global minimum value of 40−  at the origin, and a large 
number of local minima.  As in the two-dimensional study 
above, we used the exact loss function.  Our goal is to 
compare the performance of SPSA without injected noise 
with simulated annealing and with a GA. 

For the simulated annealing algorithm, we use the 
results reported in ST90.  They used an advanced form of 
simulated annealing called fast simulated annealing (FSA).  
According to ST90, FSA has proven to be much more 
efficient than classical simulated annealing due to using 
Cauchy (rather than Gaussian) sampling and using a fast 
(inversely linear in time) cooling scheme.  For more details 
on FSA, see ST90.  The results of their application of FSA 
to the above )(θL  are given in Table 1 below (FSA values 
taken from Table 10 of ST90).  Table 1 shows the results 
of 10 independent runs of each algorithm.  In each case 
(each run of each algorithm), the best value of )(θL  found 
by the algorithm is shown.  In their study, although FSA 
was allowed to use 50,000 function evaluations for each of 
the runs, the algorithm showed very limited success in 
locating the global minimum.  It should be noted that the 
main purpose of the ST90 paper was to examine a 
relatively new algorithm, stochastic approximation 
combined with convolution smoothing.  This algorithm, 
which they call SAS, was much more effective than FSA, 
yielding results between those shown in Table 1 for GA 
and SPSA. 

For the genetic algorithm (GA), we implemented a 
GA using the popular features of elitism (elite members of 
the old population pass unchanged into the new 
population), tournament selection (tournament size = 2), 
and real-number encoding (see Mitchell (1996), pp. 168, 
170, and 157, respectively).  After considerable 
experimentation, we found the following settings for the 
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GA algorithm to provide the best performance on this 
problem.  The population size was 100, the number of elite 
members (those carried forward unchanged) in each 
generation was 10, the crossover rate was 0.8, and 
mutation was accomplished by adding a Gaussian random 
variable with mean zero and standard deviation 0.01 to 
each component of the offspring.  The original population 
of 100 (10-dimensional) θ -vectors was created by 
uniformly randomly generating points in the 10-
dimensional hypercube centered at the origin, with edges 
of length 6 (so, all components had absolute value less 
than or equal to 3 radians).  We also constrained all 
component values in subsequent generations to be less than 
or equal to 3 in absolute value.  All runs of the GA 
algorithm reported here used 50,000 evaluations of the loss 
function.  The results of the 10 independent runs of GA are 
shown in Table 1.  Although the algorithm did reasonably 
well in getting close to the minimum loss value of –40, it 
only found the global minimum in one of the 10 runs (run 
#8).  In the other nine cases, a few (typically two or four) 
of the components were trapped in a local minimum 
(around ± π  radians), while the rest of the components 
(approximately) achieved the correct value of zero.   

We examined the performance of basic SPSA (without 
adding injected noise), using the algorithm parameters 
defined in Subsection 4.1 with 1,60 == aA , 602.=α , 

2=c , and 101.=γ .  We started θ  randomly within the 
same domain in which we chose initial values for the GA 
algorithm, and we did not constrain the search space for 
SPSA as we did for GA (the initialization and search space 
for FSA were not reported in ST90).  We ran 10 Monte 
Carlo trials (i.e., randomly varying the choices of k∆ ).  

The results are tabulated in Table 1.  The results of these 
numerical studies show a strong performance of the basic 
SPSA algorithm in difficult global optimization problems. 

 
Table 1:  Best Loss Function Value in Each of 10 
Independent Runs of Three Algorithms 

Run SPSA GA FSA 
1 −40.0 −36.6 −24.9 
2 −40.0 −38.3 −15.5 
3 −40.0 −38.3 −29.0 
4 −40.0 −36.6 −32.1 
5 −40.0 −35.0 −30.2 
6 −40.0 −38.3 −30.1 
7 −40.0 −36.6 −27.9 
8 −40.0 −40.0 −20.9 
9 −40.0 −36.6 −28.5 

10 −40.0 −38.3 −34.6 
Average Value −40.0 −37.5 −27.4 

Number of Function 
Evaluations 

2,500 50,000 50,000 
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5 SUMMARY 
 
SPSA is an efficient gradient-free SA algorithm that has 
performed well on a variety of complex optimization 
problems.  We showed in Section 2 that, as with some 
standard SA algorithms, adding injected noise to the basic 
SPSA algorithm can result in a global optimizer.  More 
significantly, in Section 3, we showed that, under certain 
conditions, the basic SPSA recursion can achieve global 
convergence without the need for injected noise.  The use 
of basic SPSA as a global optimizer can ease the 
implementation of the global optimizer (no need to tune 
the injected noise) and result in a significantly faster rate of 
convergence (no extra noise corrupting the algorithm in 
the vicinity of the solution).  In the numerical studies, we 
found significantly better performance of SPSA as a global 
optimizer than for the popular simulated annealing and 
genetic algorithm methods, which are often recommended 
for global optimization.  In particular, in the case of a 10-
dimensional optimization parameter (θ ), the fast 
simulated annealing and genetic algorithms generally 
failed to find the global solution. 
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